On nondeterministic behaviors in double categorical systems theory

Paul Wang¹

Laboratoire d'Informatique de Paris 6 Sorbonne Université

> Octoberfest 2025 October 25th, 2025

¹email: paul 'dot' wang 'at' ens 'dot' fr

• There are many approaches for studying systems using category theory:

 There are many approaches for studying systems using category theory: the "coalgebraic" point of view,

 There are many approaches for studying systems using category theory: the "coalgebraic" point of view, work based on "symmetric monoidal categories of systems", etc.

- There are many approaches for studying systems using category theory: the "coalgebraic" point of view, work based on "symmetric monoidal categories of systems", etc.
- One framework I am interested in: Double Categorical Systems Theory.

- There are many approaches for studying systems using category theory: the "coalgebraic" point of view, work based on "symmetric monoidal categories of systems", etc.
- One framework I am interested in: Double Categorical Systems Theory. Quite an active area of research: Libkind and Myers 2025, Baez 2025, etc.

- There are many approaches for studying systems using category theory: the "coalgebraic" point of view, work based on "symmetric monoidal categories of systems", etc.
- One framework I am interested in: Double Categorical Systems Theory. Quite an active area of research: Libkind and Myers 2025, Baez 2025, etc. For this talk, I mostly use ideas from the notes Myers 2023.

- There are many approaches for studying systems using category theory: the "coalgebraic" point of view, work based on "symmetric monoidal categories of systems", etc.
- One framework I am interested in: Double Categorical Systems Theory. Quite an active area of research: Libkind and Myers 2025, Baez 2025, etc. For this talk, I mostly use ideas from the notes Myers 2023.
- Key feature: can handle both composition of systems and representations between systems.

 This is Work In Progress: I wrote a draft, but it is messy/contains mistakes.

 This is Work In Progress: I wrote a draft, but it is messy/contains mistakes. Definitions aren't fully stabilized yet.

- This is Work In Progress: I wrote a draft, but it is messy/contains mistakes. Definitions aren't fully stabilized yet.
- Today: trying to explain the questions, convey intuitions.

- This is Work In Progress: I wrote a draft, but it is messy/contains mistakes. Definitions aren't fully stabilized yet.
- Today: trying to explain the questions, convey intuitions. I will mention connections with applications as we go.

- This is Work In Progress: I wrote a draft, but it is messy/contains mistakes. Definitions aren't fully stabilized yet.
- Today: trying to explain the questions, convey intuitions. I will mention connections with applications as we go.
- Lots of work on probabilistic systems, e.g. monoidal streams (Di Lavore, Felice, and Román 2022); I won't delve into it.

Outline

- Simple systems theories
- 2 Comparing systems: (bi)simulations
- Going double

Outline

- Simple systems theories
- 2 Comparing systems: (bi)simulations
- Going double

References

 \bullet Consider the following Symmetric Monoidal Categories $\mathcal{C}\colon$

- ullet Consider the following Symmetric Monoidal Categories \mathcal{C} :
 - Sets with multivalued functions; compose by taking unions of sets.

- ullet Consider the following Symmetric Monoidal Categories \mathcal{C} :
 - Sets with multivalued functions; compose by taking unions of sets.
 - Finite sets with probability kernels: $f: X \to Y$ is given by a function $X \to \mathcal{M}(Y)$. We compose by summing/integrating.

- Consider the following Symmetric Monoidal Categories C:
 - Sets with multivalued functions; compose by taking unions of sets.
 - Finite sets with probability kernels: $f: X \to Y$ is given by a function $X \to \mathcal{M}(Y)$. We compose by summing/integrating.
- Common feature: morphisms = "functions + nondeterminism"

- ullet Consider the following Symmetric Monoidal Categories \mathcal{C} :
 - Sets with multivalued functions; compose by taking unions of sets.
 - Finite sets with probability kernels: $f: X \to Y$ is given by a function $X \to \mathcal{M}(Y)$. We compose by summing/integrating.
- Common feature: morphisms = "functions + nondeterminism"
- SMC structure: sequential and parallel composition;
 parallel composition = independence

- ullet Consider the following Symmetric Monoidal Categories \mathcal{C} :
 - Sets with multivalued functions; compose by taking unions of sets.
 - Finite sets with probability kernels: $f: X \to Y$ is given by a function $X \to \mathcal{M}(Y)$. We compose by summing/integrating.
- Common feature: morphisms = "functions + nondeterminism"
- SMC structure: sequential and parallel composition;
 parallel composition = independence
- Actually, these also have a copy-discard structure, which makes them *Markov categories* (see e.g. Fritz 2020);

- Consider the following Symmetric Monoidal Categories C:
 - Sets with multivalued functions; compose by taking unions of sets.
 - Finite sets with probability kernels: $f: X \to Y$ is given by a function $X \to \mathcal{M}(Y)$. We compose by summing/integrating.
- Common feature: morphisms = "functions + nondeterminism"
- SMC structure: sequential and parallel composition; parallel composition = independence
- Actually, these also have a copy-discard structure, which makes them Markov categories (see e.g. Fritz 2020); I won't need the general notions for this talk.

Question

Question

Can we find notions of "nondeterministic systems" that are parametric (functorial) in the category (with extra structure) \mathcal{C} ?

Can we find notions of "nondeterministic systems" that are parametric (functorial) in the category (with extra structure) \mathcal{C} ?

Possible answers:

Can we find notions of "nondeterministic systems" that are parametric (functorial) in the category (with extra structure) \mathcal{C} ?

Possible answers:

 Stateless systems: morphisms A → B, where A = input object, B = output object.

Can we find notions of "nondeterministic systems" that are parametric (functorial) in the category (with extra structure) \mathcal{C} ?

Possible answers:

• Stateless systems: morphisms $A \rightarrow B$, where A = input object, B = output object. Can actually suffice for some applications!

Question

Can we find notions of "nondeterministic systems" that are parametric (functorial) in the category (with extra structure) C?

Possible answers:

- Stateless systems: morphisms A → B, where A = input object, B = output object. Can actually suffice for some applications!
- Mealy machines: systems as morphisms $S \otimes A \to S \otimes B$, where S is the state object.

Can we find notions of "nondeterministic systems" that are parametric (functorial) in the category (with extra structure) \mathcal{C} ?

Possible answers:

- Stateless systems: morphisms A → B, where A = input object, B = output object. Can actually suffice for some applications!
- Mealy machines: systems as morphisms $S \otimes A \to S \otimes B$, where S is the state object.
- Moore machines: systems as pairs of morphisms $S \to O$ and $S \otimes I \to S$, where $S \to O$ is deterministic.

Question

Can we find notions of "nondeterministic systems" that are parametric (functorial) in the category (with extra structure) \mathcal{C} ?

Possible answers:

- Stateless systems: morphisms A → B, where A = input object, B = output object. Can actually suffice for some applications!
- Mealy machines: systems as morphisms $S \otimes A \to S \otimes B$, where S is the state object.
- Moore machines: systems as pairs of morphisms $S \to O$ and $S \otimes I \to S$, where $S \to O$ is deterministic.

All the systems above have an interface, written $\begin{pmatrix} A \\ B \end{pmatrix}$ or $\begin{pmatrix} I \\ O \end{pmatrix}$.

All the systems above have an interface, which we shall denote $\begin{pmatrix} I \\ O \end{pmatrix}$.

All the systems above have an interface, which we shall denote

Questions

How do we compose systems? Can we change the interface?

All the systems above have an interface, which we shall denote $\begin{pmatrix} I \\ O \end{pmatrix}$.

Questions

How do we compose systems? Can we change the interface?

Answer: We use composition patterns. In the case of Moore machines, we will focus on lenses $\begin{pmatrix} I \\ O \end{pmatrix} \leftrightarrows \begin{pmatrix} I' \\ O' \end{pmatrix}$,

All the systems above have an interface, which we shall denote $\begin{pmatrix} I \\ O \end{pmatrix}$.

Questions

How do we compose systems? Can we change the interface?

Answer: We use composition patterns. In the case of Moore machines, we will focus on lenses $\begin{pmatrix} I \\ O \end{pmatrix} \leftrightarrows \begin{pmatrix} I' \\ O' \end{pmatrix}$, given by morphisms $f: O \to O'$ and $f^{\sharp}: O \otimes I' \to I$.

All the systems above have an interface, which we shall denote $\begin{pmatrix} I \\ O \end{pmatrix}$.

Questions

How do we compose systems? Can we change the interface?

Answer: We use composition patterns. In the case of Moore machines, we will focus on lenses $\begin{pmatrix} I \\ O \end{pmatrix} \leftrightarrows \begin{pmatrix} I' \\ O' \end{pmatrix}$, given by morphisms $f:O \to O'$ and $f^{\sharp}:O \otimes I' \to I$. For technical reasons, we shall assume they are deterministic.

All the systems above have an interface, which we shall denote $\begin{pmatrix} I \\ O \end{pmatrix}$.

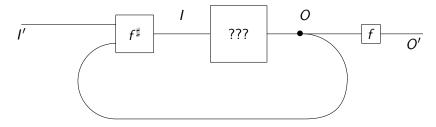
Questions

How do we compose systems? Can we change the interface?

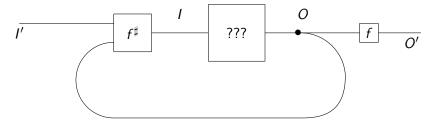
Answer: We use composition patterns. In the case of Moore machines, we will focus on lenses $\begin{pmatrix} I \\ O \end{pmatrix} \leftrightarrows \begin{pmatrix} I' \\ O' \end{pmatrix}$, given by morphisms $f:O \to O'$ and $f^{\sharp}:O \otimes I' \to I$. For technical reasons, we shall assume they are deterministic.

For Mealy machines, one can use combs (Chiribella, D'Ariano, and Perinotti 2008), which define a multicategory of interfaces.

Picture of a lens:

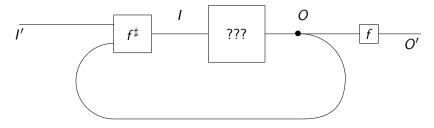


Picture of a lens:



• Plugging a system of interface $\binom{I}{O}$ in such a pattern then yields a system of interface $\binom{I'}{O'}$.

Picture of a lens:



- Plugging a system of interface $\binom{I}{O}$ in such a pattern then yields a system of interface $\binom{I'}{O'}$.
- We compose the patterns together by nesting.

Bonus

Composing systems, continued

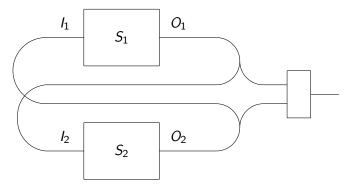
• We thus obtain a Symmetric Monoidal Category of interfaces and lenses.

Composing systems, continued

- We thus obtain a Symmetric Monoidal Category of interfaces and lenses.
- There is also a tensor product operation on systems, that acts as tensor on the interfaces.

Composing systems, continued

- We thus obtain a Symmetric Monoidal Category of interfaces and lenses.
- There is also a tensor product operation on systems, that acts as tensor on the interfaces.
- Combining both, one can construct composites:



Outline

- Simple systems theories
- 2 Comparing systems: (bi)simulations
- Going double

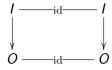
• Say, I have two systems $\mathcal S$ and $\mathcal S'$, with the same interface $\begin{pmatrix} I \\ O \end{pmatrix}$.

ullet Say, I have two systems ${\mathcal S}$ and ${\mathcal S}'$, with the same interface $\binom{I}{O}$. What could a comparison/morphism look like?

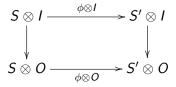
- Say, I have two systems $\mathcal S$ and $\mathcal S'$, with the same interface $\binom{I}{O}$. What could a comparison/morphism look like?
- Let's be more specific, and focus on the case where S and S' have the same observable behavior.

- Say, I have two systems S and S', with the same interface $\binom{I}{O}$. What could a comparison/morphism look like?
- ullet Let's be more specific, and focus on the case where ${\cal S}$ and ${\cal S}'$ have the same observable behavior. Then:

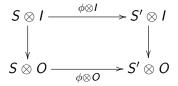
In Example 1, there can only be identity morphisms:



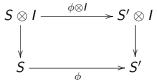
In Example 2 (Mealy machines), such a morphism is given by a map $\phi: S \to S'$ such that the following diagram commutes:

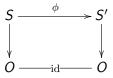


In Example 2 (Mealy machines), such a morphism is given by a map $\phi: S \to S'$ such that the following diagram commutes:



In Example 3 (Moore machines), a morphism is again given by a map $\phi: \mathcal{S} \to \mathcal{S}'$, with the condition that the following commute:





• This way, for each $\binom{I}{O}$, we get a category $\operatorname{Sys} \binom{I}{O}$ of "systems with interface $\binom{I}{O}$ and simulations".

- This way, for each $\binom{I}{O}$, we get a category $\operatorname{Sys} \binom{I}{O}$ of "systems with interface $\binom{I}{O}$ and simulations".
- Note: a simulation in our sense is essentially the same as a "morphism of coalgebras".

- This way, for each $\binom{I}{O}$, we get a category $\operatorname{Sys} \binom{I}{O}$ of "systems with interface $\binom{I}{O}$ and simulations".
- Note: a simulation in our sense is essentially the same as a "morphism of coalgebras".
- Bisimulations are then jointly monic spans in $\operatorname{Sys} \begin{pmatrix} I \\ O \end{pmatrix}$.

- This way, for each $\binom{I}{O}$, we get a category $\operatorname{Sys} \binom{I}{O}$ of "systems with interface $\binom{I}{O}$ and simulations".
- Note: a simulation in our sense is essentially the same as a "morphism of coalgebras".
- Bisimulations are then jointly monic spans in $\operatorname{Sys} \begin{pmatrix} I \\ O \end{pmatrix}$.

Idea

For interpretability of Al systems, this notion of morphism gives a tentative definition of one of the goals:

- This way, for each $\binom{I}{O}$, we get a category $\operatorname{Sys} \binom{I}{O}$ of "systems with interface $\binom{I}{O}$ and simulations".
- Note: a simulation in our sense is essentially the same as a "morphism of coalgebras".
- Bisimulations are then jointly monic spans in $\operatorname{Sys} \begin{pmatrix} I \\ O \end{pmatrix}$.

Idea

For interpretability of Al systems, this notion of morphism gives a tentative definition of one of the goals:

"Given a system S, find a simpler system S' with similar observable behavior and a morphism of systems from S to S'."

Questions

Questions

• What if I want to compare interfaces, e.g. do dimensionality reduction on input/output spaces as well?

Questions

• What if I want to compare interfaces, e.g. do dimensionality reduction on input/output spaces as well? Can I find a notion of morphism $\begin{pmatrix} I \\ O \end{pmatrix} \Rightarrow \begin{pmatrix} I' \\ O' \end{pmatrix}$?

Questions

- What if I want to compare interfaces, e.g. do dimensionality reduction on input/output spaces as well? Can I find a notion of morphism $\begin{pmatrix} I \\ O \end{pmatrix} \Rightarrow \begin{pmatrix} I' \\ O' \end{pmatrix}$?
- Assuming I get that, what does it mean to *compare systems* over a given morphism of interfaces?

Outline

- 1 Simple systems theories
- 2 Comparing systems: (bi)simulations
- Going double

 There are several candidates for the notion of "representation/chart" between interfaces

$$\left(\begin{array}{c}I\\O\end{array}\right)\rightrightarrows\left(\begin{array}{c}I'\\O'\end{array}\right):$$

 There are several candidates for the notion of "representation/chart" between interfaces

$$\left(egin{array}{c} I \\ O \end{array}
ight)
ightrightarrows \left(egin{array}{c} I' \\ O' \end{array}
ight)$$
: pairs of maps $(I
ightarrow I', \ O
ightarrow O')$,

• There are several candidates for the notion of "representation/chart" between interfaces

$$\begin{pmatrix} I \\ O \end{pmatrix} \rightrightarrows \begin{pmatrix} I' \\ O' \end{pmatrix}$$
: pairs of maps $(I \to I', O \to O')$, or maps $I \otimes O \to I' \otimes O'$ with some conditions, etc.

interfaces.

Representations of interfaces and systems

• There are several candidates for the notion of "representation/chart" between interfaces $\begin{pmatrix} I \\ O \end{pmatrix} \rightrightarrows \begin{pmatrix} I' \\ O' \end{pmatrix}$: pairs of maps $(I \to I', O \to O')$, or maps $I \otimes O \to I' \otimes O'$ with some conditions, etc. These usually yield symmetric monoidal categories of

- There are several candidates for the notion of "representation/chart" between interfaces $\begin{pmatrix} I \\ O \end{pmatrix} \Rightarrow \begin{pmatrix} I' \\ O' \end{pmatrix}$: pairs of maps $(I \to I', O \to O')$, or maps $I \otimes O \to I' \otimes O'$ with some conditions, etc. These usually yield symmetric monoidal categories of interfaces.
- Once such a notion is chosen, you can try to define a notion of "morphism/representation of systems over a given representation of interfaces".

You are also led to consider the following:

You are also led to consider the following:

$$\begin{pmatrix} I_1 \\ O_1 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} I_2 \\ O_2 \end{pmatrix}$$

$$\downarrow \uparrow \qquad \qquad \downarrow \uparrow$$

$$\begin{pmatrix} I_3 \\ O_3 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} I_4 \\ O_4 \end{pmatrix}$$

You are also led to consider the following:

$$\begin{pmatrix} I_1 \\ O_1 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} I_2 \\ O_2 \end{pmatrix}$$

$$\downarrow \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \uparrow$$

$$\begin{pmatrix} I_3 \\ O_3 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} I_4 \\ O_4 \end{pmatrix}$$

Is there a natural notion of "square" given such a boundary?

You are also led to consider the following:

$$\begin{pmatrix} I_1 \\ O_1 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} I_2 \\ O_2 \end{pmatrix}$$

$$\downarrow \uparrow \qquad \qquad \downarrow \uparrow \qquad \qquad \downarrow \uparrow$$

$$\begin{pmatrix} I_3 \\ O_3 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} I_4 \\ O_4 \end{pmatrix}$$

Is there a natural notion of "square" given such a boundary? Should it be given by compatibility conditions? Compatibility data?

In technical terms, the goal is to find:

In technical terms, the goal is to find:

 $oldsymbol{0}$ A double category \mathbb{I} of interfaces.

In technical terms, the goal is to find:

- A double category I of interfaces.
- 2 A (lax unital) double functor $Sys : \mathbb{I} \to \mathbb{C}at$ that goes to the double category of (small) categories, functors, profunctors, and natural transformations.

In technical terms, the goal is to find:

- A double category I of interfaces.
- ② A (lax unital) double functor $\mathrm{Sys}:\mathbb{I}\to\mathbb{C}\mathrm{at}$ that goes to the double category of (small) categories, functors, profunctors, and natural transformations.

Issue: interchange remains elusive...

Thank you!

Thank you!

References

- Baez, John C. (2025). "Double Categories of Open Systems: the Cospan Approach". arXiv:2509.22584.
- Chiribella, G., G. M. D'Ariano, and P. Perinotti (2008). "Quantum Circuit Architecture". *Phys. Rev. Lett.* 101 (6).
- Di Lavore, Elena, Giovanni de Felice, and Mario Román (Aug. 2022). "Monoidal Streams for Dataflow Programming". Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '22. New York, NY, USA: Association for Computing Machinery, pp. 1–14.
- Fritz, Tobias (2020). "A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics". *Advances in Mathematics* 370.
- Libkind, Sophie and David Jaz Myers (May 2025). "Towards a double operadic theory of systems". arXiv:2505.18329.
- Myers, David Jaz (2023). Categorical Systems Theory. In Preparation.

Bonus: charts between interfaces

Charts
$$\begin{pmatrix} I \\ O \end{pmatrix} \Rightarrow \begin{pmatrix} I' \\ O' \end{pmatrix}$$
 are pairs of morphisms $O \to O'$ and $I \otimes O \to I' \otimes O'$ such that the following commutes:

$$\begin{array}{cccc}
I \otimes O & \longrightarrow I' \otimes O' \\
\downarrow^{\pi} & & \downarrow^{\pi} \\
O & \longrightarrow O'
\end{array}$$

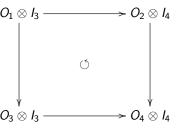
Bonus: squares of interfaces

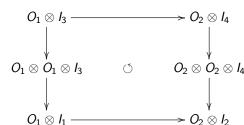
$$\begin{pmatrix} I_1 \\ O_1 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} I_2 \\ O_2 \end{pmatrix}$$

$$\downarrow \uparrow \qquad \qquad \downarrow \uparrow$$

$$\begin{pmatrix} I_3 \\ O_3 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} I_4 \\ O_4 \end{pmatrix}$$

corresponds to $s: O_1 \otimes I_3 \rightarrow O_2 \otimes I_4$, such that:





Bonus: Composing squares

- Horizontal composition is straightforward.
- Vertical composition uses conditional products; for associativity, you need some extra assumption, e.g. determinism of the lenses.
- Interchange fails in general... Is it a bug, or a feature/general obstruction?