An algebra modality admitting countably many deriving transformations¹

Jean-Baptiste Vienney

¹If you want to see the GIFs, you will need to use a compatible PDF reader such as Acrobat Reader. However, textual descriptions of the GIFs are provided on the slides:

Is differentiation unique in differential categories?

Is differentiation unique in differential categories?

(Cat making no with its head)

Additive symmetric monoidal categories

Definition

An additive symmetric monoidal category is a symmetric monoidal category (C, \otimes, I) enriched in commutative monoids such that:

$$0 \otimes f = f \otimes 0 = 0,$$

$$(f+g) \otimes h = (f \otimes h) + g \otimes h,$$

$$f \otimes (g+h) = (f \otimes g) + (f \otimes h)$$

whenever it makes sense.

Example (CMon, \otimes , \mathbb{N})

Algebra modality

Let (C, \otimes, I) be an additive symmetric monoidal category.

Definition

An algebra modality on (C, \otimes, I) is given by:

- ightharpoonup a monad (S, m, u) on C;
- ▶ natural transformations ∇_A : $SA \otimes SA \to SA$ and η_A : $A \to SA$; such that for every $A \in C$:
 - 1. (SA, ∇_A, η_A) is a commutative monoid
 - 2. the diagram

$$\begin{array}{ccc} SSA \otimes SSA & \stackrel{\nabla}{\longrightarrow} & SSA \\ {\scriptstyle m \otimes m} & & \downarrow {\scriptstyle m} \\ SA \otimes SA & \stackrel{\nabla}{\longrightarrow} & SA \end{array}$$

commutes.

Example

The symmetric algebra monad = free rig monad is an algebra modality on (CMon, \otimes , \mathbb{N}).

Deriving transformation

Let (S, m, u, ∇, η) be an algebra modality on an additive symmetric monoidal category (C, \otimes, I) .

Definition

A deriving transformation (on this algebra modality) is a natural transformation $d_A \colon SA \to SA \otimes A$, such that the four following rules are satisfied.

1. Product rule:

$$\mathsf{d}_A \circ \nabla_A = [(\nabla_A \otimes \mathrm{id}_A) \circ (\mathrm{id}_{SA} \otimes \mathsf{d}_A)] + [(\nabla_A \otimes \mathrm{id}_A) \circ (\mathrm{id}_{SA} \otimes \sigma_{A,SA}) \circ (\mathsf{d}_A \otimes \mathrm{id}_{SA})].$$

2. Linear rule:

$$\mathsf{d}_A \circ u_A = \eta_A \otimes \mathrm{id}_A.$$

3. Chain rule:

$$d_A \circ m_A = (\nabla_A \otimes \mathrm{id}_A) \circ (m_A \otimes d_A) \circ d_{SA}.$$

4. Interchange rule:

$$(d_A \otimes id_A) \circ d_A = (id_{SA} \otimes \sigma_{A,A}) \circ (d_A \otimes id_A) \circ d_A.$$



Example

The following is a deriving transformation on the symmetric algebra monad S on $(CMon, \otimes, \mathbb{N})$:

$$d_A \colon SA \longrightarrow SA \otimes A$$

$$a_1 \otimes_s \cdots \otimes_s a_n \longmapsto \sum_{0 \le k \le n} (a_1 \otimes_s \cdots \otimes_s \hat{a_k} \otimes_s \cdots \otimes_s a_n) \otimes a_k$$

If $A \simeq \mathbb{N}^n$, then $SA \simeq \mathbb{N}[x_1, \dots, x_n]$, and d_A is given by

$$f \longmapsto \sum_{0 \le k \le n} \frac{\partial f}{\partial x_i} \otimes x_i.$$

An open problem

At Octoberfest 2022, JS Lemay presented the following result (obtained with Marie Kerjean):²

Theorem

If d_1, d_2 are two deriving transformations on a same **comonoidal**³ algebra modality (S, m, u, ∇, η) , then $d_1 = d_2$.

That is:

Differentiation is unique in models of differential linear logic.

JS then asked:

Does this theorem extend to arbitrary algebra modalities?

That is:

Is differentiation unique in arbitrary differential categories?

²later appeared in Lemay J.-S. P., Additive Enrichment from Coderelictions (2025)

 $^{^3}$ that is, S is a symmetric comonoidal functor, m, u, ∇, η are comonoidal natural transformations + two other equations.

The answer

The answer

(Cat making no with its head)

The answer

(Cat making no with its head)

Should we trust our differential kitty? Proof?

The idea

There are infinitely many derivations $\partial: \mathbb{R}[x] \to \mathbb{R}[x]$. They are of the form

$$\partial = \partial(x) \frac{\mathrm{d}}{\mathrm{d}x}$$

where $\partial(x)$ is any polynomial in $\mathbb{R}[x]$.

The element $x \in \mathbb{R}[x]$ must be understood:

- ▶ algebraically, as a generic element $x \in \mathbb{R}[x]$,
- ▶ differentially, as a smooth function from \mathbb{R} to \mathbb{R} with a chosen derivative $\partial(x) \in \mathbb{R}[x]$.

Derivations don't care about composition so that $x \in \mathbb{R}[x]$ does not have to be interpreted by a derivation as the identity map on \mathbb{R} !

We take inspiration from this to build an algebra modality F on $(\mathsf{CMon}, \otimes, \mathbb{N})$ with countably many deriving transformations.

Given a commutative monoid A, FA will be a commutative rig with a function $\mathbf{f}: FA \to FA$.

We will also build for every $n \in \mathbb{N}$ a deriving transformation

$$_{n}d:FA
ightarrow FA\otimes A.$$

The function $\mathbf{f}: FA \rightarrow FA$ must be understood:

- ▶ algebraically, as a generic function $\mathbf{f} : FA \rightarrow FA$,
- ▶ differentially, as a smooth function such that $_n d(\mathbf{f}(t)) = n \cdot _n d(t)$.

The proof

F will be the free **commutative rig with a self map** monad on CMon.

Definition

A commutative rig with a self-map is a couple (R, \mathbf{f}) where R is a commutative rig and $\mathbf{f} \colon R \to R$ is a function.

A morphism $\phi: (R, \mathbf{f}) \to (S, \mathbf{g})$ is a rig homomorphism $\phi: R \to S$ such that the diagram

$$\begin{array}{ccc}
R & \xrightarrow{\phi} & S \\
f \downarrow & & \downarrow g \\
R & \xrightarrow{\phi} & S
\end{array}$$

commutes.

The resulting category is denoted by $CRig^{\circ}$.

Theorem

The forgetful functor $U \colon \mathsf{CRig}^{\circlearrowleft} \to \mathsf{CMon}$ admits a left adjoint $\mathcal{F} \colon \mathsf{CMon} \to \mathsf{CRig}^{\circlearrowleft}$.

We thus obtain a monad (F, m, u) on CMon where

$$F = U \circ \mathcal{F} \colon \mathsf{CMon} \to \mathsf{CMon}.$$

Moreover, we obtain an algebra modality (F, m, u, ∇, η) on $(\mathsf{CMon}, \otimes, \mathbb{N})$.

Proof.

For every commutative monoid A, we define by induction a set F_0A of terms and an appropriate equivalence relation \sim on F_0A . Then we set $FA = F_0A/\sim$.

Some other things are defined and proved by *structural* induction on FA and on \sim .

In the paper: 12 pages.

More detail on FA

If A is a commutative monoid, then F_0A is defined by induction in this way:

- we have symbols $0, 1 \in F_0A$,
- ▶ for every $a \in A$, we have a symbol $x_a \in F_0A$,
- ▶ for all terms $s, t \in F_0A$, we have a term $(s + t) \in F_0A$ and a term $(st) \in F_0A$,
- ▶ for every term $s \in F_0A$, we have a term $f(s) \in F_0A$.

The equivalence relation \sim on F_0A is defined by 16 induction clauses ensuring that $FA = F_0A/\sim$ is a commutative rig with a self-map.

The self-map $\mathbf{f}: FA \to FA$ is defined by $\mathbf{f}([a]) = [f(a)]$.

If $\phi:A\to B$ is a commutative monoid homomorphism, then $F\phi:FA\to FB$ is the unique morphism in $\mathsf{CRig}^\circlearrowleft$ which sends $[x_a]$ to $[x_{\phi(a)}].$

The countable family of deriving transformations

For every $n \in \mathbb{N}$, we define a deriving transformation

$$_{n}d_{A}:FA
ightarrow FA\otimes A.$$

This is the unique deriving transformation such that

$$_{n}\mathsf{d}_{A}([f(a)])=n\cdot _{n}\mathsf{d}_{A}([a]).$$

That is, $_n$ d acts as if we had $\mathbf{f} = \mathbf{n} \cdot \mathrm{id}_{FA} : FA \to FA$!

But we have $\mathbf{f} \neq \mathbf{n} \cdot \mathrm{id}_{FA} : FA \to FA$ for every $n \in \mathbb{N}$. (proved in the paper)

Constructing (by induction) these deriving transformations takes 22 pages in the paper.

It is then quite easy to prove that

$$_{n}d\neq _{p}d$$

if $n \neq p$.

Conclusion

Conclusion

(A flower is placed on the head of a cat and it suddenly understands the meaning of the universe.)

Conclusion

(A flower is placed on the head of a cat and it suddenly understands the meaning of the universe.)

If you have a problem with differential categories, ask your differential cat.

And look at my paper https://arxiv.org/abs/2510.03953 if you want the full details on today's problem.