Another look at the Vietoris Locale construction

Work in progress!

Dr Christopher F. Townsend

www.christophertownsend.org

25th October 2025

Overview

- 1. Background: locale theory
- 2. Define V(X), the Vietoris locale of X
- 3. Vietoris Locale Construction Examples
- 4. Vietoris Locale Construction Key Facts
- 5. Vietoris Locale Construction via the power locales
- 6. Extending the domain of definition
- 7. Application: $B\mathbb{G}$ is a topos for any localic groupoid \mathbb{G}

Background: locale theory

We shall be focusing on the category of locales **Loc** (\equiv **Fr**^{op} where **Fr** is the category of frames; **Fr** = **Sup** \cap **PreFr** \cap **DLat**).

 There is a Sierpński locale S - an internal distributive lattice in the category of locales.

The locale $\mathbb S$ can be used to describe lower (P_L) and upper (P_U) power locales:

Fact

```
\begin{aligned} & \mathsf{Loc}(Y, P_L(X)) \cong \mathsf{Sup}(\mathcal{O}X, \mathcal{O}Y) \cong \sqcup \text{-}\mathit{Slat}[\mathbb{S}^X, \mathbb{S}^Y]. \\ & \mathsf{Loc}(Y, P_U(X)) \cong \mathsf{PreFr}(\mathcal{O}X, \mathcal{O}Y) \cong \sqcap \text{-}\mathit{Slat}[\mathbb{S}^X, \mathbb{S}^Y]. \end{aligned}
```

- Here \mathbb{S}^X is a *presheaf* Loc^{op} \longrightarrow Set defined by $W \mapsto \text{Loc}(W \times X, \mathbb{S})$.
- The points $P_L(X)$ are the closed sublocales of X. The points of $P_U(X)$ are the fitted (intersection of open) sublocales of X with compact domain.

The Vietoris Locale construction

Definition

For every locale X we can associated the Vietoris locale V(X). Its opens are generated by $\Box a$ and $\Diamond a$ for each open a of X.

Subject to:

- o preserves arbitrary joins ('suplattice structure', Sup)
- \square preserves directed joins and finite meets ('preframe structure', **PreFr**)
- $\diamond a \land \Box b \leq \diamond (a \land b)$; and, $\Box (a \lor b) \leq \Box a \lor \diamond b$
- Introduced by Johnstone in 1985 ([J85]).
- Comes from the Vietoris hyperspace construction (1922), which was defined for only compact Hausdroff spaces.
- Johnstone saw that the construction could be done for all locales (not just compact Hausdorff locales).

Examples

Example

If X is a compact Hausdorff space, then we can define a Vietoris hyperspace by defining a topology on the set of closed subsets of X. The topology is generated by

$$\diamond U = \{F | F \cap U \neq \emptyset\} \text{ and } \Box U = \{F | F \subseteq U\}$$

over all opens U of X. Purely formal/lattice theoretic matter to check that these opens satisfy the conditions just given in defining V(X).

Example

If X is discrete then V(X) is the set of finite subsets of X. Proof: A point of V(X) will consist of (i) a suplattice hom. from PX; i.e. just a subset I of X, and (ii) and a preframe hom, from PX - i.e. a Scott open filter.

Then the 'modal' like conditions ensure that the this filter is $\uparrow I$ and so I is finite. (If $\Box J = 1$ then $\forall i \in I$, $\Diamond(\{i\}) = 1$; so, $\Diamond(\{i\} \cap J) = 1$; i.e. $i \in J$. In the other direction

 $1 = \Box(I \cup I^c) \le \Box(I) \lor \diamond(I^c) = \Box(I) \lor 0 = \Box I$; so $\Box J = 1, \forall J \text{ with } I \subseteq J$).

Facts about V(X)

Johnstone 1985 proved:

- V is a monad.
- If X is compact Hausdorff then V(X) is compact Hausdorff.
- If X is locally compact, then so is V(X).
- The points of V(X) are the compact semi-fitted (a meet of fitted and closed) sublocales of V(X).
- V(X) has a semilattice structure
- ullet there is at most one V-algebra structure on any X for a given semilattice structure.

A couple of other key facts:

(I) Between compact Hausdorff algebras of V, semilattice homomorphisms are always V-algebra homomorphisms but not all compact Hausdorff semilattices are V-algebras. (II) For compact Hausdorff X, $Patch(\mathbb{S}^X) \cong V(X)$.

Looking at V via the power locales

It is immediate to see we can construct V(X) as an equalizer in the category of locales:

$$VX \longrightarrow P_L(X) \times P_U(X) \Longrightarrow Z$$

with the Z and the arrows determined by the exponential structure, so as to capture the two 'modal like' conditions. I was revisiting the area, trying to just exploit exponentiation as the universal way of looking at power locales.

How much of Johnstone 1985 can we recover?

- V is a monad because P_L and P_U are.
- V(X) is a semilattice, because $P_L(X)$ and $P_U(X)$ are semilattices.
- The points of V(X) are the compact semi-fitted sublocales because they are the meets of pairs of points of P_L and P_U .
- ullet V preserves compact Hausdorffness.

This is really mostly originally covered in Vickers work [V97] using generators and relations. For example, using the coverage theorems for the last one.

V via the power locales - newer perspectives

Some initial added perspective:

- V is formally self-dual.
- V(X) is discrete if X is (and this is formally the same result that compact Hausdorffness is preserved).
- For discrete X, $P_LX \cong IdI(V(X))$ (cf 'most basic result' PA = idI(FA); the power set is the ideal completion of the set of finite subsets of A for any set A).
- By duality $Patch(\mathbb{S}^X) = V(X)$ for compact Hausdorff X (as patch reverses ideal completion and $P_UX \cong \mathbb{S}^X$)
- for discrete/compact Hausdroff V-algebras, semilattice homomorphisms are V-algebra homomorphisms.

(These 'categorical' proofs are at various degrees of maturity.) But what really interested me was ...

Extending the domain of definition

Let \mathbb{G} be a localic groupoid. Then we can naturally extend the definition of P_L and P_U to the category $[\mathbb{G}, \mathbf{Loc}]$ of \mathbb{G} -objects. For example (lower case, \mathbb{G} just a group, G)):

$$P_L^{\mathbb{G}}(X, a: G \times X \longrightarrow X) \equiv ((P_L(X), G \times P_L(X) \longrightarrow P_L(G \times X) \xrightarrow{P_L(a)} P_L(X))$$

where the first un-labelled arrow is the strength that arises through the definition of P_L via exponentiation.

All of the key 'categorical' constructions work relative to $[\mathbb{G}, \mathbf{Loc}]$; for example we can trivially lift the definition of V:

$$V^{\mathbb{G}} \longrightarrow P_{I}^{\mathbb{G}} \times P_{II}^{\mathbb{G}} \Longrightarrow ...$$

and the results under discussion lift to this broader context.

This generality is important because:

- It 'covers all bounded toposes' since all such toposes are of the form $B(\mathbb{G}) = \mathbb{G}$ -equivariant sheaves. These embed in $[\mathbb{G}, \mathbf{Loc}]$ as the discrete \mathbb{G} -objects.
- It is an even more general context, as for connected localic groups G, B(G) is trivial but [G. Loc] is not.

Novel proof that $B(\mathbb{G})$ is a topos (avoiding Girard's theorem)

Proposition:

If $IdI^{\mathbb{G}}(_{-}):V^{\mathbb{G}}-Alg_{\mathbf{Dis}}\longrightarrow [\mathbb{G},\mathbf{Loc}]^{op}$ has a right adjoint then $B(\mathbb{G})$ is a topos.

Proof.

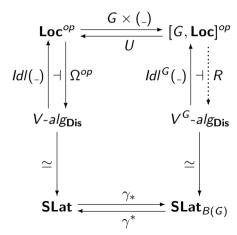
Let R be the right adjoint $[\mathbb{G}, \mathbf{Loc}]^{op} \longrightarrow V^{\mathbb{G}}$ -alg_{Dis} be the right adjoint. Then, for any two discrete \mathbb{G} -objects, A, B:

$$\begin{aligned} \mathbf{Dis}_{[\mathbb{G}, \mathbf{Loc}]}(B, RA) &\cong V^{\mathbb{G}}_{-\mathbf{Dis}}(V^{\mathbb{G}}B, (RA, \alpha_{RA})) \\ &\cong [\mathbb{G}, \mathbf{Loc}](A, IdI^{\mathbb{G}}V^{\mathbb{G}}B) \cong [\mathbb{G}, \mathbf{Loc}](A, P_L^{\mathbb{G}}(B)) \\ &\cong [\mathbb{G}, \mathbf{Loc}](A, \mathbb{S}_{\mathbb{G}}^B) \text{ (Vickers)} \\ &\cong [\mathbb{G}, \mathbf{Loc}](A \times B, \mathbb{S}_{\mathbb{G}}) \\ &= \text{"relations on } A \times B \text{"} \end{aligned}$$

So *RA* must be the powerset on *A*.

Outline of how the right adjoint R exists:

Hinges on the fact that discrete semilattices are the same thing as discrete V-algebras in any topos. Use forgetful functor from $B\mathbb{G}$ to $Sh(G_0)$ (not using that $B(\mathbb{G})$ is a topos!).



where γ is derived from the 'geometric morphism' $\gamma:$ **Set** $\longrightarrow B(G)$. NB: U is monadic.^{11/13}

Conclusions

- V can be defined relative to $[\mathbb{G}, \mathbf{Loc}]$ i.e. even more general than previously known.
- Some known 'hard' results are duals of 'easy' results (e.g. V(X) is the patch of \mathbb{S}^X for compact Hausdorff X).
- There is a novel way of looking at constructing power objects in $B(\mathbb{G})$.
- Still to do: preservation of local compactness and uniqueness of V-algebra structure (given a fixed semilattice structure).
- Approach could help to describe étale completion of localic groupoids.

References

Johnstone, P. Vietoris Locales and Localic Semilattices Continuous Lattices and Their Applications. 1985 Imprint CRC Press Pages 26

Vickers, S. *Constructive points of powerlocales* Mathematical Proceedings of the Cambridge Philosophical Society, vol. 122, Issue 2, p.207-222