Derived Functors in HoTT

jww. Dan Christensen

Thomas Thorbjørnsen University of Western Ontario

Outline:

- 1. Introduction
- 2. Derived Functors
- 3. F-Projectives & Tor $_*^R$
- 4. Exact Structures

1. Introduction: First definitions of Derived Functors

Let R be a ring, $\mathcal B$ an abelian category, and $F:\mathsf{Mod}_R\to\mathcal B$ a right-exact functor. The **n-th left derived functor** is

$$L_nFA := H_n(FpA)$$

where pA is a projective resolution of A.

The choice of a projective resolution only exists if the category Mod_R has enough projective objects.

 Mod_R has enough projectives by the axiom of choice (AoC).

1. Introduction: Homological algebra in HoTT

Developing homological methods **internal to Homotopy Type Theory (HoTT)**. Earlier work done by Flaten 2023, and Christensen and Flaten 2024.

HoTT is a language to reason about ∞ -toposes, e.g. ∞ -category of spaces and sheaves on sites of spaces.

We restrict to the 1-topos of sets in an ∞ -topos:

- Sets are 0-truncated objects
- Abelian groups are abelian group objects of sets
- Rings are ring objects of sets
- Etc...

HoTT has to be constructive. We cannot assume the Axiom of Choice (AoC).

Question: How do we compute derived functors without resolutions?

2. Derived Functors: Ext

Fix abelian category A.

$$\operatorname{Ext}_{\mathcal{A}}^n$$
 are the right-derived functors of $\operatorname{Hom}_{\mathcal{A}}$.

Proposition (Yoneda 1954, Christensen and Flaten 2024)

 $\operatorname{Ext}_{\mathcal{A}}^{n}$ is isomorphic to the sets:

- n = 0: $\operatorname{Ext}_{\mathcal{A}}^{0}(B, A) := \operatorname{Hom}_{\mathcal{A}}(B, A)$.
- n = 1: $\operatorname{Ext}^1_{\mathcal{A}}(B, A)$ is the set of SES $A \hookrightarrow E \to B$ modulo isomorphism of SES.
- n > 0: $\operatorname{Ext}_R^n(B, A)$ is the set of of n-fold exact sequences

$$0 \longrightarrow A \longrightarrow \cdots \longrightarrow B \longrightarrow 0$$

modulo an equivalence relation.

 $\operatorname{Ext}^1_{\mathcal{A}}$ is an abelian groups under the "Baer sum" \oplus .

The SES $A \hookrightarrow A \oplus B \twoheadrightarrow B$ is the 0-element.

2. Derived Functors: Homological δ -Functors

A **homological** δ -functor (F, δ^F) is $\{F_n : \mathcal{A} \to \mathcal{B}\}$ such that for any SES $A \stackrel{i}{\hookrightarrow} E \stackrel{p}{\twoheadrightarrow} B$ there are connecting morphisms $\delta_n^F(i, p) : F_{n+1}B \to F_nA$, natural in (i, p), which yields a chain complex

A δ -functor is **exact** if the induced chain complexes are exact.

A δ -functor (F, δ^F) is **left-universal** if for any other δ -functor (T, δ^T) , there is a natural isomorphism

$$res_0: Fun_\delta((T, \delta^T), (F, \delta^F)) \rightarrow Nat(T_0, F_0)$$

2. Derived Functors: Cohomological δ -Functors

A **cohomological** δ -functor (F, δ^F) is $\{F^n : \mathcal{A} \to \mathcal{B}\}$ such that for any SES $A \stackrel{i}{\hookrightarrow} E \stackrel{p}{\twoheadrightarrow} B$ there are connecting morphisms $\delta_F^n(i, p) : F^nB \to F^{n+1}A$, natural in (i, p), which yields a chain complex

A δ -functor is **exact** if the induced chain complexes are exact.

A δ -functor (F, δ_F) is **right-universal** if for any other δ -functor (T, δ_T) , there is a natural isomorphism

$$\mathit{res}^0 : \mathit{Fun}^\delta((F, \delta_F), (T, \delta_T)) o \mathit{Nat}(F^0, T^0)$$

2. Derived Functors: δ -Pair

A δ -pair (F_1, F, δ^F) consists of two functors $F, F^1 : \mathcal{A} \to \mathcal{B}$ and for every SES $A \stackrel{i}{\hookrightarrow} E \stackrel{p}{\twoheadrightarrow} B$ there is a connecting morphism $\delta^F(i, p) : F_1B \to FA$, natural in (i, p), which yields a 6-term chain complex

$$F_{1}A \xrightarrow{F_{1}(i)} F_{1}E \xrightarrow{F_{1}(p)} F_{1}B$$

$$\downarrow \delta^{F}(i,p) \xrightarrow{F(p)} FB$$

A δ -pair is **exact** if the induced chain complexes are exact.

A δ -pair (F_1, F, δ^F) is **left-universal** if for any other δ -pair (T_1, T, δ^T) , there is a natural isomorphism

$$res^0 : Fun_\delta((T_1, T, \delta^T), (F_1, F, \delta^F)) \rightarrow Nat(T, F)$$

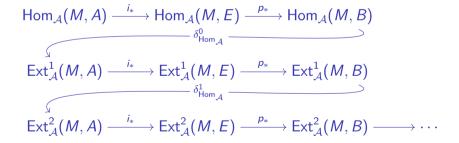
2. Derived Functors: Ext as a δ -Functor

Example

Fix $M \in \mathcal{A}$.

 $(\operatorname{Ext}_{A}^{n}(M,\cdot),\delta_{\operatorname{Hom}_{B}})$ is an exact right-universal cohomological δ -functor.

Every SES $A \hookrightarrow E \twoheadrightarrow B$ induces an exact sequence



2. Derived Functors: Left-Satellite Functors

Let $F: A \to B$ and $W: A \to Ab$ be additive functors. If there exists a representing object for the functor

$$T \mapsto Nat(W, \mathcal{B}(T, F))$$

we call it the **functor-hom exponential**, and denote it by $\{W, F\}^{A}$. Here $\mathcal{B}(T, F)(A) := \mathcal{B}(T, FA)$ for any $T \in \mathcal{A}$.

The first left-satellite functor S_1FA is

$$S_1FA := \{\mathsf{Ext}^1(A,\cdot), F\}^{\mathcal{A}}$$

If S_1FA exists for every $A \in \mathcal{A}$, then we obtain a functor S_1F .

Higher satellites are defined iteratively: $S_{n+1}F := S_1S_nF$.

Theorem (Yoneda 1960, Buchsbaum 1960)

If S_1F exists, then (S_1F, F, δ_F) is a left-universal homological δ -pair.

2. Derived Functors: Buchsbaum's Construction

Fix $B \in \mathcal{A}$.

Let $\int_{A:A} \operatorname{Ext}_A^1(B,A)$ be the category of SES ending in B.

Morphisms are diagrams on the form:

Define the functor

$$\mathsf{K}^{\mathit{F}}_{B}: \int_{A \cup A} \mathsf{Ext}^{1}_{\mathcal{A}}(B,A) \to \mathcal{B} \quad \text{by} \quad A \overset{i}{\hookrightarrow} E \overset{p}{\twoheadrightarrow} B \mapsto \mathsf{Ker}(F(i))$$

Theorem

If $\varprojlim K_B^F$ exists, then it is a model for the left-satellite functor S_1FB .

3. F-Projectives and Tor: *P***-Covers**

Let
$$\mathcal{P} \subseteq \mathcal{A}$$
 and $\mathcal{P}_B := \{A \hookrightarrow P \twoheadrightarrow B \mid P \in \mathcal{P}\} \subseteq \int_{A:\mathcal{A}} \operatorname{Ext}^1_{\mathcal{A}}(B,A)$.

 \mathcal{A} has **enough** \mathcal{P} -covers if for any $A \in \mathcal{A}$, there is an object $P \in \mathcal{P}$ with an epi $P \twoheadrightarrow A$.

Lemma (Buchsbaum 1960)

If A has enough P-covers, then P_B is final in $\int_{A:A} \operatorname{Ext}_A^1(B,A)$.

Example

Let $Free_R \subseteq Mod_R$ be the collection of free R-modules.

There are enough Free_R-covers as $R[M] \rightarrow M$.

Example

Let $\operatorname{Proj}_{\mathcal{A}} \subseteq \mathcal{A}$ be the collection of projectives.

 $\ensuremath{\mathcal{A}}$ has enough $\ensuremath{\mathcal{P}}\xspace\text{-covers}$ if it has enough projectives.

3. F-Projectives and Tor: *P* **Left-Exact**

Let $\mathcal{P} \subseteq \mathcal{A}$.

 $F: \mathcal{A} \to \mathcal{B}$ is \mathcal{P} **left-exact** if for every SES $A \stackrel{i}{\hookrightarrow} E \stackrel{p}{\twoheadrightarrow} P$ where $P \in \mathcal{P}$, F(i) is the kernel of F(p).

Lemma (Röhrl 1962)

If F is \mathcal{P} left-exact, then the functor $K_B^F|_{\mathcal{P}_B}$ is essentially constant.

Example

An *R*-module *F* is **flat** if the functor $F \otimes_R \cdot$ is exact.

Let $Flat_R \subseteq Mod_R$ be the flat R-modules.

For $M \in Mod_R$, the functor $\cdot \otimes_R M$ is $Flat_R$ left-exact.

Example

Any additive functor $F: A \rightarrow B$ is $Proj_A$ left-exact.

3. F-Projectives and Tor: F-Projectives

Let $\mathcal{P} \subseteq \mathcal{A}$ and $F : \mathcal{A} \to \mathcal{B}$. \mathcal{P} is a **collection of F-projectives** if:

- \mathcal{A} has enough \mathcal{P} -covers,
- F is \mathcal{P} left-exact.

Pick a SES $A \stackrel{\prime}{\hookrightarrow} P \twoheadrightarrow B$ such that P is F-projective, then $S_1FB := \varprojlim \mathsf{K}_B^F \simeq \varprojlim \mathsf{K}_B^F \mid_{\mathcal{P}_B} \simeq \mathsf{Ker}(F(i))$

A functor $F: \operatorname{\mathsf{Mod}}_R \to \mathcal{B}$ is **half-exact** if every SES $A \overset{i}{\hookrightarrow} E \overset{p}{\twoheadrightarrow} B$ is mapped to an exact sequence $FA \to FE \to FB$.

Theorem (T.)

Suppose that F is a half-exact functor. If \mathcal{P} is a collection of F-projectives, then (S_1F, F, δ^F) is an **exact** left-universal δ -pair.

3. F-Projectives and Tor: IsFree_R is $\cdot \otimes_R M$ -Projective I

To use theorem with $(\cdot) \otimes_R M$, we must show that any free R-module is flat

Lemma (Mines, Richman, and Ruitenburg 1988, Flaten 2023)

A free R-module N is flat.

Proof.

R is projective, therefore also flat.

Since *N* is free, there exists a set *X* such that $N \simeq R[X]$.

Arbitrary direct sums of flat is flat, and $N = \bigoplus_{x \in X} R$, so N is flat.

Theorem (T.)

The first left-satellite $\operatorname{Tor}_1^R(\cdot,M) := \mathsf{S}_1((\cdot) \otimes_R M)$ exists and $(\operatorname{Tor}_1^R(\cdot,M),(\cdot) \otimes_R M,\delta^{(\cdot)\otimes_R M})$ is an exact left-universal δ -pair.

3. F-Projectives and Tor: Tor by F-Projectives

A collection $\mathcal{P} \subseteq \mathcal{A}$ is **right-hereditary** if any epi $p : P \twoheadrightarrow Q$ with $P, Q \in \mathcal{P}$ has $Ker(f) \in P$.

Theorem (Röhrl 1962, T.)

Let $\mathcal P$ be a right-hereditary collection of F-projectives. Then there exists an exact left-universal homological δ -functor (SF, δ_F) such that $S_0F \simeq F$.

Lemma (Lombardi and Quitté 2015)

Let $f: A \rightarrow B$ be a surjection between flat modules, then Ker(f) is flat.

Theorem (T.)

There is an exact left-universal homological δ -functor $\operatorname{Tor}_R^*((\cdot), M)$ such that $(\cdot) \otimes_R M = \operatorname{Tor}_R^0((\cdot), M)$.

Furthermore, these groups can be computed by free resolutions.

4. Relative Homological Algebra: Relative Ext

Let A be an additive category.

An **exact structure** on $\mathcal A$ is a collection $\mathcal E$ of SES, plus axioms.

Each exact structure yields an $\operatorname{Ext}^1_{\mathcal{E}}$ functor.

Can define δ -functor and satellite-functor relative to \mathcal{E} .

Exact substructures $\mathcal{E}' \subseteq \mathcal{E}$ biject with biadditive half-exact subfunctors $F \subseteq \operatorname{Ext}^1_{\mathcal{E}}$.

 \mathcal{E}_{min} is the collection of split short exact sequences.

Let A be abelian.

 \mathcal{E}_{max} is the collection of all short exact sequences.

4. Relative Homological Algebra: Split-Epi Exact Structure

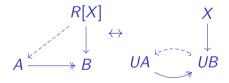
Let R be a ring.

An epi $f: A \rightarrow B$ is set-split if the morphism admits a section on the underlying sets.

Proposition (Christensen-T.)

The collection $\mathcal{E}_{\mathsf{set-split}}$ of SES with set-split epi is an exact structure.

Every free module is $\mathcal{E}_{\mathsf{set-split}}$ -projective.



 Tor_R^* and $\mathsf{Tor}_{R,\mathsf{set-split}}^*$ coincide.

Assuming the axiom of choice, then $(\mathsf{Mod}_R, \mathcal{E}_{\mathsf{max}}) \simeq (\mathsf{Mod}_R, \mathcal{E}_{\mathsf{set\text{-split}}}).$

4. Relative Homological Algebra: $\mbox{FP}_{\infty}\mbox{-Exact Structure}$

 $A \in \mathsf{Mod}_R$ is of type \mathbf{FP}_{∞} if it admits a projective resolution by finite rank free modules.

 $I \in \mathsf{Mod}_R$ is FP_∞ -injective if any mono $i : A \hookrightarrow B$ between FP_∞ -modules is mapped to an epi $\mathsf{Hom}_R(i,I)$.

Proposition (Christensen-T.)

The collection $\mathcal{E}_{\mathsf{FP}_{\infty}}$ of SES with monos $i:A\to B$ being mapped to an epi $\mathsf{Hom}_R(i,I)$ for any FP_{∞} -injective I is an exact structure.

 $\operatorname{Ext}^1_R(A,\cdot) \simeq \operatorname{Ext}^1_{\operatorname{FP}_\infty}(A,\cdot)$ whenever A is of type FP_∞ .

There are enough FP_{∞} -injectives

 FP_{∞} -injectives are divisible.

Assuming the axiom of choice, then $(\mathsf{Ab}, \mathcal{E}_{\mathsf{max}}) \simeq (\mathsf{Ab}, \mathcal{E}_{\mathsf{FP}_\infty}).$

References I

- Buchsbaum, David A. (1960). "Satellites and universal functors". In: *Ann. of Math.* (2) 71, pp. 199–209. DOI: 10.2307/1970081.
- Christensen, J. Daniel and Jarl G. Taxerås Flaten (2024). Ext Groups in Homotopy Type Theory. [Manuscript submitted for publication].
- Flaten, Jarl G. Taxerås (2023). "Univalent categories of modules". In: *Math. Structures Comput. Sci.* 33.2, pp. 106–133. DOI: 10.1017/s0960129523000178.
- Lombardi, Henri and Claude Quitté (2015). Commutative algebra: Constructive methods: Finite projective modules. Vol. 20. Springer.
- Mines, Ray, Fred Richman, and Wim Ruitenburg (1988). A course in constructive algebra. Springer-Verlag.
- Röhrl, Helmut (1962). "Über Satelliten halbexakter Funktoren". In: *Math. Z.* 79, pp. 193–223. DOI: 10.1007/BF01193115.

References II

- Yoneda, Nobuo (1954). "On the homology theory of modules". In: J. Fac. Sci. Univ. Tokyo Sect. 17, pp. 193–227.
- (1960). "On Ext and exact sequences". In: J. Fac. Sci. Univ. Tokyo Sect. 18, pp. 507–576.

Thank you!