Closed Geometric Logic

Alexander Prähauser

26.10.2025

• Lawvere was interested in both Hegel and Marx.

- Lawvere was interested in both Hegel and Marx.
- Schreiber is very interested in Hegel's treatise Science of Logic.

- Lawvere was interested in both Hegel and Marx.
- Schreiber is very interested in Hegel's treatise Science of Logic.
- Topos theory provides categorical semantics for intuitionistic logic.

- Lawvere was interested in both Hegel and Marx.
- Schreiber is very interested in Hegel's treatise Science of Logic.
- Topos theory provides categorical semantics for intuitionistic logic.
- But to both Hegel and Marx, contradiction was central.

- Lawvere was interested in both Hegel and Marx.
- Schreiber is very interested in Hegel's treatise Science of Logic.
- Topos theory provides categorical semantics for intuitionistic logic.
- But to both Hegel and Marx, contradiction was central.
- So where are the contradictions?

• Described what is now known as a bi-Heyting topos,

Alexander Prähauser

- Described what is now known as a bi-Heyting topos,
- isolated an abstract notion of boundary,

- Described what is now known as a bi-Heyting topos,
- isolated an abstract notion of boundary,
- but in his œuvre these are barely footnotes.

All prior attempts are unsatisfying

All prior attempts are unsatisfying

Either too strict to encompass examples of interest (e.g. closed subsets of topological spaces) or based on ill-defined notions.

All prior attempts are unsatisfying

Either too strict to encompass examples of interest (e.g. closed subsets of topological spaces) or based on ill-defined notions.

Why?

Why?

In a topos theory with contradictions, classifying morphisms would have to be multivalued,

Why?

In a topos theory with contradictions, classifying morphisms would have to be multivalued, but they can't just be arbitrary internal relations.

Why?

In a topos theory with contradictions, classifying morphisms would have to be multivalued, but they can't just be arbitrary internal relations.

So what are they?

To Hegel/Marx contradiction was

• where something is and is not itself,

6 / 24

Alexander Prähauser Closed Geometric Logic 26.10.2025

- where something is and is not itself,
- often at the boundary,

- where something is and is not itself,
- often at the boundary,
- unstable,

- · where something is and is not itself,
- often at the boundary,
- unstable,
- a transition between stable qualities,

- where something is and is not itself,
- often at the boundary,
- unstable,
- a transition between stable qualities,
- a driver of development,

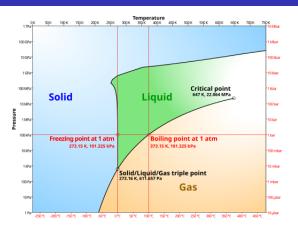
- where something is and is not itself,
- often at the boundary,
- unstable,
- a transition between stable qualities,
- a driver of development,
- part of a logic of qualities.

• (We take it that) a quality is something one cannot leave gradually.

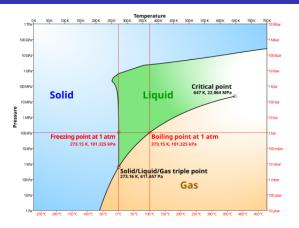
Alexander Prähauser Closed Geometric Logic 26.10.2025

- (We take it that) a quality is something one cannot leave gradually.
- So something closed.

- (We take it that) a quality is something one cannot leave gradually.
- So something closed.
- We can see how this applies in phase spaces.



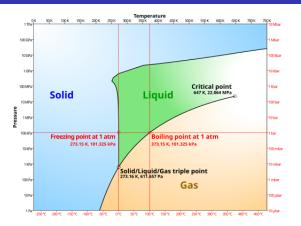
¹Courtesy of Cmglee on Wikipedia.



• The space is divided into phases,

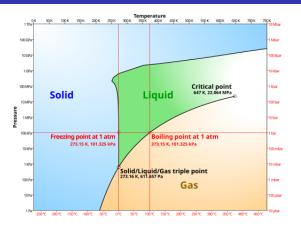
8 / 24

¹Courtesy of Cmglee on Wikipedia.



- The space is divided into phases,
- Most (not all) instability is at the boundary,

¹Courtesy of Cmglee on Wikipedia.



- The space is divided into phases,
- Most (not all) instability is at the boundary,
- Instability is small.

¹Courtesy of Cmglee on Wikipedia.

When is something small?

If we can describe smallness, we can use it to define classifying morphisms that are internal functions outside a small domain and logically describe situations as before.

When is something small?

If we can describe smallness, we can use it to define classifying morphisms that are internal functions outside a small domain and logically describe situations as before.

So what does it mean to be small?

Leading Example

In the lattice $\mathbf{C}(X)$ of closed subsets of a topological space X:

Leading Example

In the lattice C(X) of closed subsets of a topological space X:

• The join is the closure of the set-theoretic union,

Leading Example

In the lattice C(X) of closed subsets of a topological space X:

- The join is the closure of the set-theoretic union,
- We have a notion of smallness given by nowhere dense sets.

Leading Example

In the lattice C(X) of closed subsets of a topological space X:

- The join is the closure of the set-theoretic union,
- We have a notion of smallness given by nowhere dense sets.
- A closed subset is nowhere dense if and only if it is in the closure of disjoint open subset.

Smallness

Definition

In an upward-bounded preorder P, for $a \in P$ we call a small if whenever a family B satisfies

$$a \lor \bigvee B = \top,$$

then the join $\bigvee B$ exists and equals \top .

Example

Every subobject preorder of an object in a category is upward-bounded.

Example

Every subobject preorder of an object in a category is upward-bounded.

• We can still talk about joins if we don't assume they always exist,

Example

Every subobject preorder of an object in a category is upward-bounded.

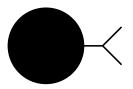
- We can still talk about joins if we don't assume they always exist,
- Most developed notions have dual "open" analogues.

Definition

In an upward-bounded preorder P, an element a is *reduced* if for any small b, every family A with $b \lor \bigvee A = a$ already satisfies $\bigvee A = a$.

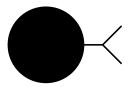
Definition

In an upward-bounded preorder P, an element a is reduced if for any small b, every family A with $b \lor \bigvee A = a$ already satisfies $\bigvee A = a$.



Definition

In an upward-bounded preorder P, an element a is *reduced* if for any small b, every family A with $b \lor \bigvee A = a$ already satisfies $\bigvee A = a$.



Example

Closed subsets are reduced if and only if they are regular.

Negations

Negations

Definition

In a bounded preorder P, a negation $\neg a$ of a is a minimal element that joins with a to \top .

Negations

Definition

In a bounded preorder P, a negation $\neg a$ of a is a minimal element that joins with a to \top .

Example

In C(X), $\neg C$ is the closure of the set-theoretic complement of C.

Boundary

Boundary

Definition

For negatory a, define the boundary $\partial a := a \wedge \neg a$ (when the meet exists).

Boundary

Definition

For negatory a, define the boundary $\partial a := a \wedge \neg a$ (when the meet exists).

Example

In the lattice of closeds, this reproduces the usual topological boundary.

Definition

A *subdivision* is a cover by reduced pieces whose intersection factors through their boundary.

Definition

A *subdivision* is a cover by reduced pieces whose intersection factors through their boundary.

Example

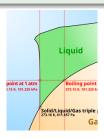
Every element a divides a space with its closed negation $\neg a$.

Definition

A subdivision is a cover by reduced pieces whose intersection factors through their boundary.

Example

Every element a divides a space with its closed negation $\neg a$.



16 / 24

Definition

A co-Heyting algebra is a bounded distributive lattice with a binary operation $x \setminus y$ left adjoint to $y \vee (-)$:

$$x \setminus y \le z \iff x \le y \lor z.$$

Definition

A co-Heyting algebra is a bounded distributive lattice with a binary operation $x \setminus y$ left adjoint to $y \vee (-)$:

$$x \setminus y \le z \iff x \le y \lor z$$
.

Example

 $\mathbf{C}(X)$ for a topological space X is a co-Heyting algebra.

Definition

A co-Heyting algebra is a bounded distributive lattice with a binary operation $x \setminus y$ left adjoint to $y \vee (-)$:

$$x \setminus y \le z \iff x \le y \lor z$$
.

Example

 $\mathbf{C}(X)$ for a topological space X is a co-Heyting algebra.

In a co-Heyting algebra,

• The closed negation is given by $\top \setminus a$.

Definition

A co-Heyting algebra is a bounded distributive lattice with a binary operation $x \setminus y$ left adjoint to $y \vee (-)$:

$$x \setminus y \le z \iff x \le y \lor z$$
.

Example

 $\mathbf{C}(X)$ for a topological space X is a co-Heyting algebra.

In a co-Heyting algebra,

- The closed negation is given by $\top \setminus a$.
- a is small if and only if $\neg a = \bot$,

Definition

A co-Heyting algebra is a bounded distributive lattice with a binary operation $x \setminus y$ left adjoint to $y \vee (-)$:

$$x \setminus y \le z \iff x \le y \lor z$$
.

Example

 $\mathbf{C}(X)$ for a topological space X is a co-Heyting algebra.

In a co-Heyting algebra,

- The closed negation is given by $\top \setminus a$.
- a is small if and only if $\neg a = \bot$,
- a is reduced if and only if $\neg a = a$.

How do we lift this to the level of categories?

Alexander Prähauser

How do we lift this to the level of categories?

Definition

A *co-Heyting category* is a coherent category in which each subobject lattice is a co-Heyting algebra.

How do we lift this to the level of categories?

Definition

A *co-Heyting category* is a coherent category in which each subobject lattice is a co-Heyting algebra.

Example

Bi-Heyting topoi.

How do we lift this to the level of categories?

Definition

A *co-Heyting category* is a coherent category in which each subobject lattice is a co-Heyting algebra.

Example

Bi-Heyting topoi.

Problems:

How do we lift this to the level of categories?

Definition

A *co-Heyting category* is a coherent category in which each subobject lattice is a co-Heyting algebra.

Example

Bi-Heyting topoi.

Problems:

Topological product projections are not closed maps,

How do we lift this to the level of categories?

Definition

A *co-Heyting category* is a coherent category in which each subobject lattice is a co-Heyting algebra.

Example

Bi-Heyting topoi.

Problems:

- Topological product projections are not closed maps,
- Generating colimits of closed/compact spaces will add "open" spaces.

Co-Heyting structures

Co-Heyting structures

Definition

A co-Heyting structure on a coherent category $\mathcal C$ is a wide co-Heyting subcategory $\overline{\mathcal C}$.

Co-Heyting structures

Definition

A co-Heyting structure on a coherent category $\mathcal C$ is a wide co-Heyting subcategory $\overline{\mathcal C}$.

Example

 \mathbf{Top} with the subcategory on closed morphisms is a co-Heyting structure.

Co-Heyting structures

Definition

A co-Heyting structure on a coherent category $\mathcal C$ is a wide co-Heyting subcategory $\overline{\mathcal C}$.

Example

 \mathbf{Top} with the subcategory on closed morphisms is a co-Heyting structure.

Example

Every co-Heyting algebra is a co-Heyting structure.

The subdivision coverage

We can take sheaves on co-Heyting structures with the right coverage.

The subdivision coverage

We can take sheaves on co-Heyting structures with the right coverage.

Definition

The subdivision coverage on a co-Heyting structure $\mathcal C$ is the smallest coverage on $\mathcal C$ containing all subdivisions in $\overline{\mathcal C}$.

The subdivision coverage

We can take sheaves on co-Heyting structures with the right coverage.

Definition

The subdivision coverage on a co-Heyting structure $\mathcal C$ is the smallest coverage on $\mathcal C$ containing all subdivisions in $\overline{\mathcal C}$.

Remark

The subdivision coverage has no open equivalent.

Sheaves inherit co-Heyting structure

Sheaves inherit co-Heyting structure

Theorem

A co-Heyting structure on a site induces a co-Heyting structure on its sheaf topos (with respect to the subdivision coverage).

Problem: Very small sites (e.g. category of n-disks) lack enough objects to be co-Heyting directly.

Problem: Very small sites (e.g. category of n-disks) lack enough objects to be co-Heyting directly.

Provide boundary pieces:

Encode would-be boundaries through coverings,

Problem: Very small sites (e.g. category of n-disks) lack enough objects to be co-Heyting directly.

Provide boundary pieces:

- Encode would-be boundaries through coverings,
- Build subdivisions from boundary facets,

Problem: Very small sites (e.g. category of n-disks) lack enough objects to be co-Heyting directly.

Provide boundary pieces:

- Encode would-be boundaries through coverings,
- Build subdivisions from boundary facets,
- Sheaves on such sites inherit a co-Heyting structure.

Problem: Very small sites (e.g. category of n-disks) lack enough objects to be co-Heyting directly.

Provide boundary pieces:

- Encode would-be boundaries through coverings,
- Build subdivisions from boundary facets,
- Sheaves on such sites inherit a co-Heyting structure.

This yields cohesive topoi;

Problem: Very small sites (e.g. category of n-disks) lack enough objects to be co-Heyting directly.

Provide boundary pieces:

- Encode would-be boundaries through coverings,
- Build subdivisions from boundary facets,
- Sheaves on such sites inherit a co-Heyting structure.

This yields cohesive topoi; in particular compact analogues of \mathbf{CartSp} (as in Differential Cohomology in a Cohesive ∞ -Topos).

Closing Remarks

 This theory is closely related to a kind of cohomology with morphisms that have piecewise properties.

Closing Remarks

- This theory is closely related to a kind of cohomology with morphisms that have piecewise properties.
- I think this largely validates Hegel's treatment of contradiction.

Thank you for your attention!