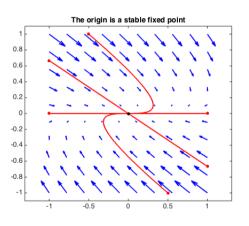
Stability and safety for control-coalgebras

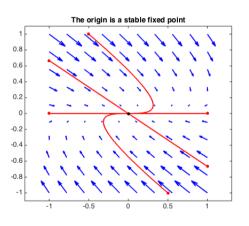
Joe Moeller

California Institute of Technology

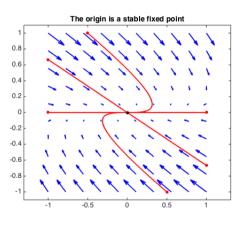
AMBER Lab



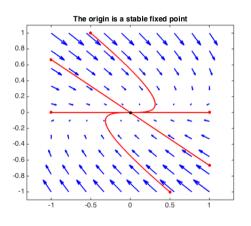
▶ vector field: σ : $E \to T(E)$



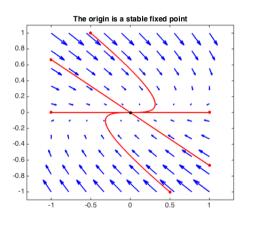
- ▶ vector field: σ : $E \to T(E)$
- ▶ solution: ϕ : $\mathbb{R}_{\geq 0} \times E \rightarrow E$



- ▶ vector field: σ : $E \to T(E)$
- ▶ solution: ϕ : $\mathbb{R}_{\geq 0} \times E \to E$
- ▶ point: x^* : $1 \rightarrow X$



- ▶ vector field: σ : $E \to T(E)$
- ▶ solution: ϕ : $\mathbb{R}_{\geq 0} \times E \to E$
- ▶ point: x^* : $1 \rightarrow X$
- equilibrium: $\sigma(x^*) = \vec{0}$ or $\phi(t, x^*) = x^*$



- ightharpoonup vector field: $\sigma \colon E \to \mathrm{T}(E)$
- ▶ solution: ϕ : $\mathbb{R}_{\geq 0} \times E \to E$
- ▶ point: x^* : $1 \rightarrow X$
- equilibrium: $\sigma(x^*) = \vec{0}$ or $\phi(t, x^*) = x^*$
- ▶ stable: $\forall \varepsilon > 0 \,\exists \delta > 0, ||x x^*|| < \delta$ implies $||\phi(t, x) x^*|| < \epsilon$

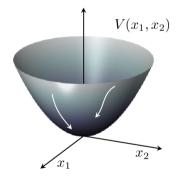
Classical Lyapunov's theorem

Theorem (Lyapunov, 1892)

Let x=0 be an equilibrium point for an autonomous system $\dot{x}=f(x)$, and $M\subset\mathbb{R}^n$ be a domain containing x=0. Let $V:M\to\mathbb{R}$ be a continuously differentiable function such that

- V(0) = 0
- $V(x) \geq 0$

Then x = 0 is a stable equilibrium point.

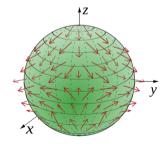


Examples

- ► T-coalgebras are (continuous-time) dynamical systems (not necessarily sections).

Definition

Let \mathcal{C} be a category, $\mathcal{F}: \mathcal{C} \to \mathcal{C}$ a functor. An \mathcal{F} -coalgebra is an object $X \in \mathcal{C}$ and a map $f: X \to \mathcal{F}(X)$.

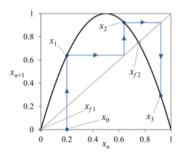


Examples

- ► *T*-coalgebras are (continuous-time) dynamical systems
- ▶ id_{Man} : Man → Man, id_{Man} -coalgebras are discrete-time dynamical systems $f: M \rightarrow id_{Man}(M) = M$.

Definition

Let \mathcal{C} be a category, $\mathcal{F}: \mathcal{C} \to \mathcal{C}$ a functor. An \mathcal{F} -coalgebra is an object $X \in \mathcal{C}$ and a map $f: X \to \mathcal{F}(X)$.



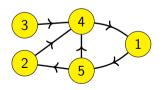
Examples

- → T-coalgebras are (continuous-time) dynamical systems (not necessarily sections).
- id_{Man}: Man → Man, id_{Man}-coalgebras are discrete-time dynamical systems f: M → id_{Man}(M) = M.
- $ightharpoonup \mathcal{P} \colon \mathsf{Set} \to \mathsf{Set}$ the power set, $\mathcal{P}\text{-coalgebras}$ are transition systems.

Definition

Let $\mathcal C$ be a category, $\mathcal F\colon \mathcal C\to \mathcal C$ a functor. An $\mathcal F$ -coalgebra is an object $X\in \mathcal C$ and a map $f\colon X\to \mathcal F(X)$.

$$f: \{1,2,3,4,5\} \to \mathcal{P}(\{1,2,3,4,5\})$$



$$f(5) = \{2, 4\}$$

Examples

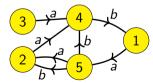
- T-coalgebras are (continuous-time) dynamical systems (not necessarily sections).
- id_{Man}: Man → Man, id_{Man}-coalgebras are discrete-time dynamical systems f: M → id_{Man}(M) = M.
- $\begin{array}{c} \blacktriangleright \ \, \mathcal{P} \colon \mathsf{Set} \to \mathsf{Set} \ \mathsf{the} \ \mathsf{power} \ \mathsf{set}, \\ \mathcal{P}\text{-}\mathsf{coalgebras} \ \mathsf{are} \ \mathsf{transition} \ \mathsf{systems}. \end{array}$
- ▶ Fix a set L of "labels", $\mathcal{P}(L \times -)$: Set \rightarrow Set, $\mathcal{P}(L \times -)$ -coalgebras are L-labeled transition systems.

Definition

Let $\mathcal C$ be a category, $\mathcal F\colon \mathcal C\to \mathcal C$ a functor. An $\mathcal F$ -coalgebra is an object $X\in \mathcal C$ and a map $f\colon X\to \mathcal F(X)$.

$$L = \{a, b\}$$

$$f: \{1, 2, 3, 4, 5\} \to \mathcal{P}(\{a, b\} \times \{1, 2, 3, 4, 5\})$$



$$f(5) = \{(a,2), (b,2), (b,4)\}$$

Measurement Object

Definition

An object $R \in \mathcal{C}$ is **posetal** if each $\mathcal{C}(X, R)$ has a partial order such that for any $f: X \to Y$, if $g_1 \geq g_2$, then $g_1 \circ f \geq g_2 \circ f$.

Definition

A measurement object $R \in \mathcal{C}$ is

- R is a posetal object
- \triangleright $\mathcal{F}(R)$ is a posetal object

Measurement Object

Definition

An object $R \in \mathcal{C}$ is **posetal** if each $\mathcal{C}(X,R)$ has a partial order such that for any $f: X \to Y$, if $g_1 \geq g_2$, then $g_1 \circ f \geq g_2 \circ f$.

Definition

A measurement object $R \in \mathcal{C}$ is

- R is a posetal object
- \triangleright $\mathcal{F}(R)$ is a posetal object
- comparison property:

$$\begin{array}{cccc}
T & \xrightarrow{c} & R & T & \xrightarrow{!} & 1 \\
\downarrow 1_{T} & & \downarrow 0_{R} & \leadsto c \downarrow & & \downarrow 0_{T} \times \mathrm{id} \\
F(T) & \xrightarrow{F(c)} F(R) & R & \longleftarrow & T
\end{array}$$

Measurement Object

Definition

An object $R \in \mathcal{C}$ is **posetal** if each $\mathcal{C}(X, R)$ has a partial order such that for any $f: X \to Y$, if $g_1 \geq g_2$, then $g_1 \circ f \geq g_2 \circ f$.

Definition

A measurement object $R \in C$ is

- R is a posetal object
- \triangleright $\mathcal{F}(R)$ is a posetal object
- comparison property:

$$T \xrightarrow{c} R \qquad T \xrightarrow{!} 1$$

$$\downarrow_{1_T} \downarrow 0_R \qquad \leadsto c \downarrow \Longleftrightarrow \downarrow_{0_T \times id}$$

$$\mathcal{F}(T) \xrightarrow{\mathcal{F}(c)} \mathcal{F}(R) \qquad R \xleftarrow{c} T$$

Definition

A semi-metric is a map $d: X \times X \rightarrow R$ such that

- $ightharpoonup d \Rightarrow 0$
- $ightharpoonup \ker(d) \cong \Delta \colon X \to X \times X$

For a fixed $x_* \colon 1 \to X$, let $\| \cdot \|_{x^*}$ denote the composite

$$X \xrightarrow{\mathrm{id}_X \times x^*} X \times X \xrightarrow{d} X$$

called the **semi-norm** relative to x^* .

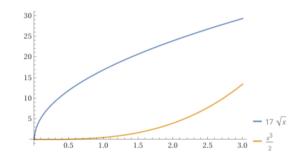
Class K Morphisms

Definition

A morphism $\alpha \colon R \to R$ is class \mathcal{K} if:

- $ightharpoonup \alpha$ is an order-preserving map
- $\triangleright \alpha$ has an order-preserving inverse α^{-1}
- $ightharpoonup \alpha \circ 0_R = 0_R.$

Replaces ε - δ stuff: $\alpha(\varepsilon) = \delta$.



Stable Equilibria

An equilibrium point $x^* \in M$ is **stable** if there is a class \mathcal{K} function α such that for any solution curve c:

$$||c(t) - x^*|| \le \alpha(||c(0) - x^*||)$$

Definition

An equilibrium point $x^* : 1 \to X$ is **stable** if there is a class K morphism α such that the following diagram lax commutes for any solution curve c:

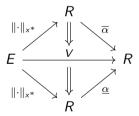
$$\begin{array}{cccc}
1 & \xrightarrow{c_0} & E & \xrightarrow{\|\cdot\|_{x^*}} & R \\
\downarrow \uparrow & & \lor \downarrow & & \downarrow \alpha \\
I & \xrightarrow{c} & E & \xrightarrow{\|\cdot\|_{x^*}} & R
\end{array}$$

$$||c(t) - x^*|| \le \alpha(||c(0) - x^*||), \ \forall t \in I$$

Lyapunov morphisms

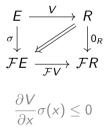
A **Lyapunov morphism** $V: M \to R$ for flow ϕ and equilibrium x^* if:

1. (positive definite) V is bounded by class $\mathcal K$ morphisms



$$V(x) \ge 0, V(x) = 0 \text{ iff } x = x^*.$$

2. (decrescent) the following diagram lax commutes.



Lyapunov's Theorem

Theorem

Let $\mathcal{F}: \mathcal{C} \to \mathcal{C}$ be a functor. Let

 $x^* \colon 1 o X$ be an equilibrium point for a

 \mathcal{F} -coalgebra $f: X \to \mathcal{F}(X)$. Let

$$V\colon M o R$$
 be a morphism of $\mathcal C$ such that

- (positive definite) $\alpha \circ \| \cdot \|_{Y^*} < V < \overline{\alpha} \circ \| \cdot \|_{Y^*}.$
- $\underline{\alpha} \circ \| \cdot \|_{X^*} \leq \mathbf{v} \leq \alpha \circ \| \cdot \|_{X^*}.$
- $\qquad \qquad (decrescent) \ \mathcal{F}(V) \circ f \leq 0_R \circ V.$

Then x^* is a stable equilibrium point.

Examples

- ightharpoonup cts-time: $\frac{\partial V}{\partial x}f(x) \leq 0$
- discrete-time:

$$\nabla V(X) = V(f(x)) - V(x) \leq 0$$

► transition system: $\max_{s' \in f(s)} V(s') \le V(s)$

Stabilizing Control Systems

A control system has an extra variable

$$\dot{x} = f(x, u)$$

Stabilizing Control Systems

A control system has an extra variable

$$\dot{x} = f(x, u)$$

Control theory is all about finding a k(x) so the closed system $\dot{x} = f(x, k(x))$ has some desired property

Stabilizing Control Systems

A control system has an extra variable

$$\dot{x} = f(x, u)$$

Control theory is all about finding a k(x) so the closed system $\dot{x} = f(x, k(x))$ has some desired property

Theorem (Artstein-Sontag Theorem)

If you have a control Lyapunov function $V: M \to \mathbb{R}$

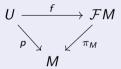
- ► V is positive definite w.r.t. x*
- ▶ for each $x \in M$, there exists $u \in U$ such that $\frac{\partial V}{\partial x} \cdot f(x, u) \leq 0$

then there exists a stabilizing controller k.

Control Coalgebras

Definition

Let $\mathcal C$ have finite products, $\mathcal F\colon \mathcal C\to \mathcal C$ an endofunctor, $\pi\colon \mathcal F\Rightarrow \mathrm{id}_{\mathcal C}$ a natural transformation. A control coalgebra:



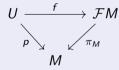
consists of

- ightharpoonup a state space object $M \in \mathcal{C}$
- ▶ a control bundle $p: U \rightarrow M$
- ightharpoonup an M-bundle map $f:U o\mathcal{F}M$

Control Coalgebras

Definition

Let C have finite products, $\mathcal{F} \colon C \to C$ an endofunctor, $\pi \colon \mathcal{F} \Rightarrow \mathrm{id}_{\mathcal{C}}$ a natural transformation. A **control coalgebra**:



consists of

- ightharpoonup a state space object $M \in \mathcal{C}$
- ▶ a control bundle $p: U \rightarrow M$
- ightharpoonup an M-bundle map $f:U o \mathcal{F}M$

Definition

A controller is a section of p.

Think of:

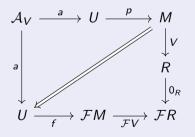
$$\begin{array}{ccc}
M \times U' & \xrightarrow{r} & \mathcal{F}M \\
\uparrow & & & & \\
\downarrow pr_{M} & & & & \\
k = \mathrm{id}_{M} \times k' & & & M
\end{array}$$

 $\dot{x} = f(x, k'(x))$ is an autonomous system

The Admissible Locus

Definition

Given a control coalgebra $(p: U \to M, f)$ and a map $V: M \to R$, the **admissible** locus of V is the lax equalizer of $\mathcal{F}V \circ f$ and $0_R \circ V \circ p$:



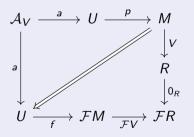
This is basically the subspace of points that make this classical condition holds

$$A_V = \{(x, u) \mid \frac{\partial V}{\partial x} \cdot f(x, u) \leq 0\}$$

The Admissible Locus

Definition

Given a control coalgebra $(p: U \to M, f)$ and a map $V: M \to R$, the admissible locus of V is the lax equalizer of $\mathcal{F}V \circ f$ and $0_R \circ V \circ p$:



This is basically the subspace of points that make this classical condition holds

$$A_V = \{(x, u) \mid \frac{\partial V}{\partial x} \cdot f(x, u) \leq 0\}$$

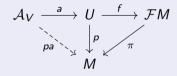
This lax equalizer can be realized as a pullback

$$M \times_{\mathbb{R}} \leq \longrightarrow \leq \downarrow \ell$$
 $M \xrightarrow{(\alpha, \beta)} \mathbb{R} \times \mathbb{R}$

Control Lyapunov Morphisms

Definition

A control Lyapunov morphism is a map $V: M \rightarrow R$ such that pa is epi.



Theorem (Moeller-Ames)

If $V: M \to R$ is a CLM, then any section $u: M \to \mathcal{A}_V$ of pa yields a stabilizing controller: $a \circ u: M \to U$.

Thanks!

A. Ames, J. Moeller, P. Tabuada, Categorical Lyapunov Theory I: Stability of Flows, arXiv:2502.15276

- systems are flows (monoid actions)
- notion of stability native to the setting
- Theorem: if a Lyapunov morphism exists for the flow, then the point is stable.

A. Ames, S. Mattenet, J. Moeller, Categorical Lyapunov theory II: Stability of systems, arXiv:2505.22968

- ightharpoonup systems are \mathcal{F} -coalgebras
- notion of stability induced from flows
- Theorem: if a Lyapunov morphism exists for the coalgebra, it is a Lyapunov morphism for the solution flow.