Double Orthogonal Factorization Systems

In fibrant double categories

Ruben Maldonado

Posgrado Conjunto en Ciencias Matemáticas Universidad Nacional Autónoma de México

October 24, 2025

Joint work with: Dorette Pronk, Luca Mesiti, Elena Caviglia, Matthew Kukla, C. B. Aberlé, Tanjona Ralaivaosaona

Outline

- Preliminaries and Notation
- 2 Basics on DOFS
- Monadicity
- 4 DOFS in Fibrant Double Categories
- Conclusion

A orthogonal factorization system (OFS) in a category C is a pair of classes of morphisms (L,R) satisfying:

A orthogonal factorization system (OFS) in a category C is a pair of classes of morphisms (L, R) satisfying:

• L and R are closed under composition and contain all isomorphisms.

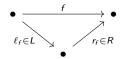
A orthogonal factorization system (OFS) in a category C is a pair of classes of morphisms (L, R) satisfying:

- L and R are closed under composition and contain all isomorphisms.
- Every morphism f factors through L and R:

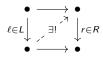


A orthogonal factorization system (OFS) in a category C is a pair of classes of morphisms (L, R) satisfying:

- L and R are closed under composition and contain all isomorphisms.
- Every morphism f factors through L and R:



• The lifting property:



• A morphism between $(C, (L_C, R_C))$ to $(D, (L_D, R_D))$ is a functor $F: C \to D$ that preserves **both** the **left** and the **right** classes.

- A morphism between $(C, (L_C, R_C))$ to $(D, (L_D, R_D))$ is a functor $F: C \to D$ that preserves **both** the **left** and the **right** classes.
- The functor F is a lax morphism if it preserves only the right class.

- A morphism between $(C, (L_C, R_C))$ to $(D, (L_D, R_D))$ is a functor $F: C \to D$ that preserves **both** the **left** and the **right** classes.
- The functor F is a lax morphism if it preserves only the right class.
- The functor F is a **colax morphism** if it preserves only the **left** class.

- A morphism between $(C, (L_C, R_C))$ to $(D, (L_D, R_D))$ is a functor $F : C \to D$ that preserves **both** the **left** and the **right** classes.
- The functor *F* is a **lax morphism** if it preserves only the **right** class.
- The functor F is a **colax morphism** if it preserves only the **left** class.
- If $(C, (L_C, R_C))$ to $(D, (L_D, R_D))$ have a choice of factorizations each, then the functor F is a **strict morphism** if it preserves the chosen factorizations on the nose.

A double category $\mathbb D$ is an internal pseudo-category in Cat

$$D_1 \times_{D_0} D_1 \longrightarrow D_1 \stackrel{\longrightarrow}{\longleftrightarrow} D_0$$

with constraints for the associativity and units.

A double category $\mathbb D$ is an internal pseudo-category in Cat

$$D_1 \times_{D_0} D_1 \longrightarrow D_1 \stackrel{\longrightarrow}{\longleftrightarrow} D_0$$

with constraints for the associativity and units.

Notation:

A double category $\mathbb D$ is an internal pseudo-category in Cat

$$D_1 \times_{D_0} D_1 \longrightarrow D_1 \stackrel{\longrightarrow}{\longleftrightarrow} D_0$$

with constraints for the associativity and units.

Notation:

 D_0 the object category

A double category $\mathbb D$ is an internal pseudo-category in Cat

$$D_1 \times_{D_0} D_1 \, \longrightarrow \, D_1 \, \stackrel{\longleftarrow}{\longleftrightarrow} \, D_0$$

with constraints for the associativity and units.

Notation:

 D_0 the object category

 D_1 the proarrow category

A double category $\mathbb D$ is an internal pseudo-category in Cat

$$D_1\times_{D_0}D_1 \, \longrightarrow \, D_1 \, \stackrel{\longleftarrow}{\longleftarrow} \, D_0$$

with constraints for the associativity and units.

Notation:

 D_0 the object category

 D_1 the proarrow category

Definition (Double Orthogonal Factorization System)

A **Double Orthogonal Factorization System (DOFS)** on a double category $\mathbb D$ consists of:

Definition (Double Orthogonal Factorization System)

A **Double Orthogonal Factorization System (DOFS)** on a double category $\mathbb D$ consists of:

• An OFS (L_0, R_0) in D_0 and an OFS (L_1, R_1) in D_1 ;

Definition (Double Orthogonal Factorization System)

A **Double Orthogonal Factorization System (DOFS)** on a double category $\mathbb D$ consists of:

- An OFS (L_0, R_0) in D_0 and an OFS (L_1, R_1) in D_1 ;
- Source, target, and unit functors are morphisms of categories with an OFS;

Definition (Double Orthogonal Factorization System)

A **Double Orthogonal Factorization System (DOFS)** on a double category $\mathbb D$ consists of:

- An OFS (L_0, R_0) in D_0 and an OFS (L_1, R_1) in D_1 ;
- Source, target, and unit functors are morphisms of categories with an OFS;
- The vertical composition functor is a morphism of categories with an OFS.

Definition (Double Orthogonal Factorization System)

A **Double Orthogonal Factorization System (DOFS)** on a double category $\mathbb D$ consists of:

- An OFS (L_0, R_0) in D_0 and an OFS (L_1, R_1) in D_1 ;
- Source, target, and unit functors are morphisms of categories with an OFS;
- The vertical composition functor is a morphism of categories with an OFS.

Definition (Lax and Colax DOFS)

Definition (Double Orthogonal Factorization System)

A **Double Orthogonal Factorization System (DOFS)** on a double category $\mathbb D$ consists of:

- An OFS (L_0, R_0) in D_0 and an OFS (L_1, R_1) in D_1 ;
- Source, target, and unit functors are morphisms of categories with an OFS;
- The vertical composition functor is a morphism of categories with an OFS.

Definition (Lax and Colax DOFS)

 A lax DOFS is a DOFS where the vertical composition functor is only a lax morphism of categories with an OFS.

Definition (Double Orthogonal Factorization System)

A **Double Orthogonal Factorization System (DOFS)** on a double category $\mathbb D$ consists of:

- An OFS (L_0, R_0) in D_0 and an OFS (L_1, R_1) in D_1 ;
- Source, target, and unit functors are morphisms of categories with an OFS;
- The vertical composition functor is a morphism of categories with an OFS.

Definition (Lax and Colax DOFS)

- A lax DOFS is a DOFS where the vertical composition functor is only a lax morphism of categories with an OFS.
- A colax DOFS is a DOFS where the vertical composition functor is only a colax morphism of categories with an OFS.

Definition (Double Orthogonal Factorization System)

A **Double Orthogonal Factorization System (DOFS)** on a double category $\mathbb D$ consists of:

- An OFS (L_0, R_0) in D_0 and an OFS (L_1, R_1) in D_1 ;
- Source, target, and unit functors are morphisms of categories with an OFS;
- The vertical composition functor is a morphism of categories with an OFS.

Definition (Lax and Colax DOFS)

- A lax DOFS is a DOFS where the vertical composition functor is only a lax morphism of categories with an OFS.
- A colax DOFS is a DOFS where the vertical composition functor is only a colax morphism of categories with an OFS.

Definition (DOFS with chosen factorizations)

A **DOFS with chosen factorizations** is a DOFS where the OFS in D_0 and D_1 have chosen factorizations, and the source, target, and unit functors are **strict morphisms**.

Notation: In a DOFS, the OFS (L_0, R_0) in D_0 and (L_1, R_1) in D_1 give rise to two classes of cells:

Notation: In a DOFS, the OFS (L_0, R_0) in D_0 and (L_1, R_1) in D_1 give rise to two classes of cells:

ullet The class ${\mathbb L}$ consisting of cells

Notation: In a DOFS, the OFS (L_0, R_0) in D_0 and (L_1, R_1) in D_1 give rise to two classes of cells:

ullet The class ${\mathbb L}$ consisting of cells

$$\begin{array}{ccc}
\bullet & \xrightarrow{\ell \in L_0} \bullet \\
\downarrow & \xrightarrow{\lambda \in L_1} \downarrow \\
\bullet & \xrightarrow{\ell' \in L_0} \bullet
\end{array}$$

ullet The class ${\mathbb R}$ consisting of cells

$$\begin{array}{ccc}
\bullet & \xrightarrow{r \in R_0} \bullet \\
\downarrow & \xrightarrow{\rho \in R_1} \downarrow \\
\bullet & \xrightarrow{r' \in R_0} \bullet
\end{array}$$

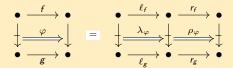
200

Observation

ullet L and $\Bbb R$ are closed under horizontal composition, and contain all horizontally invertible cells.

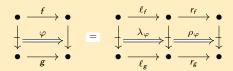
Observation

- ullet L and $\mathbb R$ are closed under horizontal composition, and contain all horizontally invertible cells.
- Every cell φ factors as a cell in $\mathbb L$ followed by a cell in $\mathbb R$.



Observation

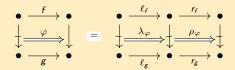
- ullet L and $\mathbb R$ are closed under horizontal composition, and contain all horizontally invertible cells.
- Every cell φ factors as a cell in $\mathbb L$ followed by a cell in $\mathbb R$.



• A version for cells of the lifting property (and all its equivalences) holds.

Observation

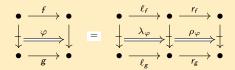
- ullet L and $\mathbb R$ are closed under horizontal composition, and contain all horizontally invertible cells.
- Every cell φ factors as a cell in $\mathbb L$ followed by a cell in $\mathbb R$.



- A version for cells of the lifting property (and all its equivalences) holds.
- \bullet On a DOFS, both classes $\mathbb L$ and $\mathbb R$ are closed under vertical composition.

Observation

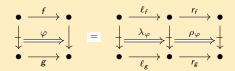
- ullet L and $\mathbb R$ are closed under horizontal composition, and contain all horizontally invertible cells.
- Every cell φ factors as a cell in $\mathbb L$ followed by a cell in $\mathbb R$.



- A version for cells of the lifting property (and all its equivalences) holds.
- \bullet On a DOFS, both classes $\mathbb L$ and $\mathbb R$ are closed under vertical composition.
- \bullet In a lax DOFS only the one right class $\mathbb R$ is closed under vertical composition.

Observation

- ullet L and $\mathbb R$ are closed under horizontal composition, and contain all horizontally invertible cells.
- Every cell φ factors as a cell in $\mathbb L$ followed by a cell in $\mathbb R$.



- A version for cells of the lifting property (and all its equivalences) holds.
- ullet On a DOFS, both classes $\mathbb L$ and $\mathbb R$ are closed under vertical composition.
- \bullet In a lax DOFS only the one right class $\mathbb R$ is closed under vertical composition.
- ullet In a colax DOFS only the left class ${\mathbb L}$ is closed under vertical composition.

Double categories with DOFS

Double categories with DOFS

• The double category of quartets $\mathbb{S}q(C)$ over a category C with an OFS (L,R). The class \mathbb{L} consists of cells whose horizontal arrows are in L and the class \mathbb{R} consists of cells whose horizontal arrows are in R.

Double categories with DOFS

- The double category of quartets $\mathbb{S}q(C)$ over a category C with an OFS (L,R). The class \mathbb{L} consists of cells whose horizontal arrows are in L and the class \mathbb{R} consists of cells whose horizontal arrows are in R.
- The double category of quintets $\mathbb{Q}(\mathbf{Cat})$. The class \mathbb{L} consists of natural transformations whose horizontal arrows are final functors and the class \mathbb{R} consists of natural isomorphisms whose horizontal arrows are discrete fibrations.

Double categories with DOFS

- The double category of quartets $\mathbb{S}q(C)$ over a category C with an OFS (L,R). The class \mathbb{L} consists of cells whose horizontal arrows are in L and the class \mathbb{R} consists of cells whose horizontal arrows are in R.
- The double category of quintets $\mathbb{Q}(\mathbf{Cat})$. The class \mathbb{L} consists of natural transformations whose horizontal arrows are final functors and the class \mathbb{R} consists of natural isomorphisms whose horizontal arrows are discrete fibrations.
- The double category of paths $\mathbb{P}ath(\mathbb{Q}(\mathcal{B}))$ over a 2-category \mathcal{B} with DOFS in $\mathbb{Q}(\mathcal{B})$. The class \mathbb{L} and \mathbb{R} are defined from the DOFS in $\mathbb{Q}(\mathcal{B})$.

Double categories with lax DOFS

Double categories with lax DOFS

• The double category of spans $\operatorname{\mathbb{S}pan}(C)$ over a category C with an OFS (L,R) and pullbacks. The left class $\mathbb L$ consists of cells in L with arrow horizontal arrows also in L. The right class $\mathbb R$ consists of cells in R with arrow horizontal arrows also in R.

Double categories with lax DOFS

- The double category of spans $\operatorname{\mathbb{S}pan}(C)$ over a category C with an OFS (L,R) and pullbacks. The left class $\mathbb L$ consists of cells in L with arrow horizontal arrows also in L. The right class $\mathbb R$ consists of cells in R with arrow horizontal arrows also in R.
- ullet The double category of relations $\mathbb{R}\mathrm{el}(\mathcal{C})$ over a regular category \mathcal{C} . The left class \mathbb{L} consists of cells with regular epimorphisms as horizontal arrows and a regular epimorphism for the arrow between the relations. The right class \mathbb{R} consists of cells with monomorphisms as horizontal arrows and a monomorphism for the arrow between the relations.

Double categories with colax DOFS

Double categories with colax DOFS

ullet The double category of bimodules $\mathbb{M}od$ over associative unital rings. The class \mathbb{L} consists of a surjective morphism as the arrow between the bimodules with surjective morphisms as horizontal arrows. The class \mathbb{R} consists of an injective morphism as the arrow between the bimodules with injective morphisms as horizontal arrows.

Double categories with colax DOFS

- The double category of bimodules $\mathbb{M}od$ over associative unital rings. The class \mathbb{L} consists of a surjective morphism as the arrow between the bimodules with surjective morphisms as horizontal arrows. The class \mathbb{R} consists of an injective morphism as the arrow between the bimodules with injective morphisms as horizontal arrows.
- The double category of profunctors $\mathbb{P}\mathrm{rof}$. The class $\mathbb L$ consists of surjective natural transformations with compositionally surjective functors as horizontal arrows. The class $\mathbb R$ consists of injective natural transformations with faithful functors that are injective on objects as horizontal arrows.

Normal pseudo-algebras for the 2-monad $(-)^{\rightarrow}$: **Cat** \rightarrow **Cat** are categories with an OFS with **chosen factorizations** [Korostenski and Tholen JPAA 1993].

Normal pseudo-algebras for the 2-monad $(-)^{\rightarrow}$: **Cat** \rightarrow **Cat** are categories with an OFS with **chosen factorizations** [Korostenski and Tholen JPAA 1993].

There is similar version of a 2-monad on **DblCat** denoted by $(-)^{\rightarrow}$: **DblCat** \rightarrow **DblCat**.

Normal pseudo-algebras for the 2-monad $(-)^{\rightarrow}: \mathbf{Cat} \rightarrow \mathbf{Cat}$ are categories with an OFS with **chosen factorizations** [Korostenski and Tholen JPAA 1993].

There is similar version of a 2-monad on **DblCat** denoted by $(-)^{\rightarrow}: \mathbf{DblCat} \rightarrow \mathbf{DblCat}.$

Theorem

Normal pseudo-algebras for the 2-monad $(-)^{\rightarrow}$ on **DblCat** (with oplax/lax double functors) are double categories with (lax/colax) DOFS with **chosen** factorizations.

Normal pseudo-algebras for the 2-monad $(-)^{\rightarrow}$: **Cat** \rightarrow **Cat** are categories with an OFS with **chosen factorizations** [Korostenski and Tholen JPAA 1993].

There is similar version of a 2-monad on **DblCat** denoted by $(-)^{\rightarrow}$: **DblCat** \rightarrow **DblCat**.

Theorem

Normal pseudo-algebras for the 2-monad $(-)^{\rightarrow}$ on **DblCat** (with oplax/lax double functors) are double categories with (lax/colax) DOFS with **chosen** factorizations.

Notice that in an OFS it is straight forward to choose factorizations.

Normal pseudo-algebras for the 2-monad $(-)^{\rightarrow}$: **Cat** \rightarrow **Cat** are categories with an OFS with **chosen factorizations** [Korostenski and Tholen JPAA 1993].

There is similar version of a 2-monad on **DblCat** denoted by $(-)^{\rightarrow}$: **DblCat** \rightarrow **DblCat**.

Theorem

Normal pseudo-algebras for the 2-monad $(-)^{\rightarrow}$ on **DblCat** (with oplax/lax double functors) are double categories with (lax/colax) DOFS with **chosen** factorizations.

Notice that in an OFS it is straight forward to choose factorizations. However, in a DOFS it is not always immediate, because the source, target, and unit functors must be strict respect to the chosen factorizations in (L_0,R_0) and (L_1,R_1) .

Proposition

Let $\mathbb D$ be a double category with a DOFS such that both (L_0,R_0) and (L_1,R_1) have chosen factorizations.

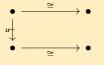
Proposition

Let $\mathbb D$ be a double category with a DOFS such that both (L_0,R_0) and (L_1,R_1) have chosen factorizations. If either:

Proposition

Let $\mathbb D$ be a double category with a DOFS such that both (L_0,R_0) and (L_1,R_1) have chosen factorizations. If either:

ullet for every diagram as in the left there is a horizontally invertible cell heta as on the right:



or

Proposition

Let $\mathbb D$ be a double category with a DOFS such that both (L_0,R_0) and (L_1,R_1) have chosen factorizations. If either:

ullet for every diagram as in the left there is a horizontally invertible cell heta as on the right:

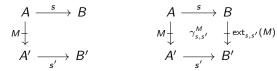
or

ullet for every diagram as in the left there is a horizontally invertible cell heta as on the right:



Then the factorizations in (L_1, R_1) can be adjusted to obtain a DOFS with chosen factorizations for \mathbb{D}

• A double category has a **extension**, for the diagram on the left below if there is a cell $\gamma^M_{s,s'}$ as on the right,



with the following universal property:

• A double category has a **extension**, for the diagram on the left below if there is a cell $\gamma^M_{s,s'}$ as on the right,

$$\begin{array}{cccc}
A & \xrightarrow{s} & B & & A & \xrightarrow{s} & B \\
M \downarrow & & & & M \downarrow & \gamma^{M}_{s,s'} & \downarrow \operatorname{ext}_{s,s'}(M) \\
A' & \xrightarrow{s'} & B' & & A' & \xrightarrow{s'} & B'
\end{array}$$

with the following universal property: for each double cell θ there is a unique cell θ' such that

• A double category has a **extension**, for the diagram on the left below if there is a cell $\gamma^M_{s,s'}$ as on the right,

$$\begin{array}{cccc}
A & \xrightarrow{s} & B & & A & \xrightarrow{s} & B \\
M \downarrow & & & & \downarrow & \gamma^{M}_{s,s'} & \downarrow \operatorname{ext}_{s,s'}(M) \\
A' & \xrightarrow{s'} & B' & & A' & \xrightarrow{s'} & B'
\end{array}$$

with the following universal property: for each double cell θ there is a unique cell θ' such that

The definition of a restriction is dual to that of extensions.

A double category \mathbb{D} is **fibrant** if it has all extension (equivalently all restriction).

A double category \mathbb{D} is **fibrant** if it has all extension (equivalently all restriction).

In a fibrant double category, the extension of a diagram as below is a horizontally invertible cell

$$\begin{array}{ccc}
A & \xrightarrow{\cong} & B \\
M \downarrow & \\
A' & \xrightarrow{\cong} & B'
\end{array}$$

$$\begin{array}{cccc}
A & \xrightarrow{\cong} & B & & A & \xrightarrow{\cong} & B \\
M \downarrow & & & M \downarrow & \gamma^M & \downarrow \operatorname{ext}(M) \\
A' & \xrightarrow{\cong} & B' & & A' & \xrightarrow{\cong} & B'
\end{array}$$

A double category $\mathbb D$ is **fibrant** if it has all extension (equivalently all restriction).

In a fibrant double category, the extension of a diagram as below is a horizontally invertible cell

$$\begin{array}{cccc}
A & \xrightarrow{\cong} & B & & A & \xrightarrow{\cong} & B \\
M \downarrow & & & M \downarrow & \gamma^M & \downarrow \text{ext}(M) \\
A' & \xrightarrow{\cong} & B' & & A' & \xrightarrow{\cong} & B'
\end{array}$$

Analogously, the restriction of a diagram with horizontal isomorphisms is also a horizontally invertible cell.

A double category \mathbb{D} is **fibrant** if it has all extension (equivalently all restriction).

In a fibrant double category, the extension of a diagram as below is a horizontally invertible cell

$$\begin{array}{cccc}
A & \xrightarrow{\cong} & B & & A & \xrightarrow{\cong} & B \\
M \downarrow & & & M \downarrow & \gamma^M & \downarrow \operatorname{ext}(M) \\
A' & \xrightarrow{\cong} & B' & & A' & \xrightarrow{\cong} & B'
\end{array}$$

Analogously, the restriction of a diagram with horizontal isomorphisms is also a horizontally invertible cell.

In a fibrant double category with a DOFS we can always choose factorizations so that source, target, and unit functors are strict, and therefore, to use the monadicity.

Proposition

Let $\mathbb D$ be a fibrant double category with an OFS (L,R) on D_0 . Then,

Proposition

Let \mathbb{D} be a fibrant double category with an OFS (L, R) on D_0 . Then,

lacktriangledown $\mathbb D$ has a lax DOFS denoted by $(L_{\text{extn}},R_{\text{all}}).$ Where

Proposition

Let \mathbb{D} be a fibrant double category with an OFS (L, R) on D_0 . Then,

- D has a lax DOFS denoted by (L_{extn}, R_{all}) . Where
 - L_{extn} consists of all extension cells with horizontal boundaries in L, and

Proposition

Let \mathbb{D} be a fibrant double category with an OFS (L, R) on D_0 . Then,

- D has a lax DOFS denoted by (L_{extn}, R_{all}) . Where
 - Lextn consists of all extension cells with horizontal boundaries in L, and
 - R_{all} consists of all double cells with horizontal boundaries in R.

Proposition

Let \mathbb{D} be a fibrant double category with an OFS (L, R) on D_0 . Then,

- **1** \mathbb{D} has a lax DOFS denoted by $(L_{\text{extn}}, R_{\text{all}})$. Where
 - Lextn consists of all extension cells with horizontal boundaries in L, and
 - Rall consists of all double cells with horizontal boundaries in R.
- ullet D has a colax DOFS ($L_{\text{all}}, R_{\text{restr}}$). Where

Proposition

Let \mathbb{D} be a fibrant double category with an OFS (L, R) on D_0 . Then,

- **1** \mathbb{D} has a lax DOFS denoted by $(L_{\text{extn}}, R_{\text{all}})$. Where
 - Lextn consists of all extension cells with horizontal boundaries in L, and
 - Rall consists of all double cells with horizontal boundaries in R.
- ullet D has a colax DOFS ($L_{\text{all}}, R_{\text{restr}}$). Where
 - ullet L_{all} consists of all double cells with horizontal boundaries in L, and

Proposition

Let \mathbb{D} be a fibrant double category with an OFS (L, R) on D_0 . Then,

- **1** \mathbb{D} has a lax DOFS denoted by $(L_{\text{extn}}, R_{\text{all}})$. Where
 - Lextn consists of all extension cells with horizontal boundaries in L, and
 - Rall consists of all double cells with horizontal boundaries in R.
- lacktriangledown has a colax DOFS ($L_{\text{all}}, R_{\text{restr}}$). Where
 - L_{all} consists of all double cells with horizontal boundaries in L, and
 - R_{restr} consists of restriction cells with horizontal boundaries in R.

Theorem

Let $\mathbb D$ be a fibrant double category with an OFS (L,R) on its object category. Then,

Theorem

Let $\mathbb D$ be a fibrant double category with an OFS (L,R) on its object category. Then,

• for any lax DOFS (\mathbb{L}, \mathbb{R}) on \mathbb{D} with (L, R) as the arrow part, there is a unique morphism $(\mathbb{L}, \mathbb{R}) \to (L_{\text{extn}}, R_{\text{all}})$ of DOFS on \mathbb{D} ;

Theorem

Let $\mathbb D$ be a fibrant double category with an OFS (L,R) on its object category. Then,

- for any lax DOFS (\mathbb{L}, \mathbb{R}) on \mathbb{D} with (L, R) as the arrow part, there is a unique morphism $(\mathbb{L}, \mathbb{R}) \to (L_{\mathsf{extn}}, R_{\mathsf{all}})$ of DOFS on \mathbb{D} ;
- **②** for any colax DOFS (\mathbb{L}, \mathbb{R}) on \mathbb{D} with (L, R) as the arrow part, there is a unique morphism $(L_{all}, R_{restr}) \to (\mathbb{L}, \mathbb{R})$ of DOFS on \mathbb{D} .

• The double category of Q-valued relations over a quantale Q, Q- \mathbb{R} el. Taking the pair (L,R) of surjective-injective OFS in **Set**.

$$(L,R)_{\mathsf{restr}} o (L,R)_{\mathsf{extn}}.$$

• The double category of Q-valued relations over a quantale Q, Q- \mathbb{R} el. Taking the pair (L,R) of surjective-injective OFS in **Set**.

$$(L,R)_{\mathsf{restr}} \to (L,R)_{\mathsf{extn}}.$$

 The double categories of spans Span. Taking the pair (L, R) of surjective-injective OFS in Set.

• The double category of Q-valued relations over a quantale Q, Q- \mathbb{R} el. Taking the pair (L,R) of surjective-injective OFS in **Set**.

$$(L,R)_{\mathsf{restr}} \to (L,R)_{\mathsf{extn}}.$$

• The double categories of spans \mathbb{S} pan. Taking the pair (L,R) of surjective-injective OFS in **Set**. In this case, the DOFS (\mathbb{L},\mathbb{R}) of our initial example sits in between the restriction and extension DOFS, that is, there are morphisms of DOFS

$$(L,R)_{\mathsf{restr}} \to (\mathbb{L},\mathbb{R}) \to (L,R)_{\mathsf{extn}}.$$

• The double category of Q-valued relations over a quantale Q, Q- \mathbb{R} el. Taking the pair (L,R) of surjective-injective OFS in **Set**.

$$(L,R)_{\mathsf{restr}} \to (L,R)_{\mathsf{extn}}.$$

• The double categories of spans \mathbb{S} pan. Taking the pair (L,R) of surjective-injective OFS in **Set**. In this case, the DOFS (\mathbb{L},\mathbb{R}) of our initial example sits in between the restriction and extension DOFS, that is, there are morphisms of DOFS

$$(L,R)_{\mathsf{restr}} o (\mathbb{L},\mathbb{R}) o (L,R)_{\mathsf{extn}}.$$

• The double categories of modules Mod. Taking the pair (L, R) of surjective-injective OFS in **Ring**.

• The double category of Q-valued relations over a quantale Q, Q- \mathbb{R} el. Taking the pair (L,R) of surjective-injective OFS in **Set**.

$$(L,R)_{\mathsf{restr}} \to (L,R)_{\mathsf{extn}}.$$

• The double categories of spans \mathbb{S} pan. Taking the pair (L,R) of surjective-injective OFS in **Set**. In this case, the DOFS (\mathbb{L},\mathbb{R}) of our initial example sits in between the restriction and extension DOFS, that is, there are morphisms of DOFS

$$(L,R)_{\mathsf{restr}} \to (\mathbb{L},\mathbb{R}) \to (L,R)_{\mathsf{extn}}.$$

• The double categories of modules \mathbb{M} od. Taking the pair (L,R) of surjective-injective OFS in **Ring**. In this case, the DOFS (\mathbb{L},\mathbb{R}) of our initial example sits in between the restriction and extension DOFS, that is, there are morphisms of DOFS

 $(L,R)_{\mathrm{restr}} o (\mathbb{L},\mathbb{R}) o (L,R)_{\mathrm{extn}}.$

Key Takeaways

 A double category with a DOFS consists of an OFS in the object category, an OFS in the proarrow category, compatible with the double category structure functors.

Key Takeaways

- A double category with a DOFS consists of an OFS in the object category, an OFS in the proarrow category, compatible with the double category structure functors.
- There is a monadicity result for DOFS with chosen factorizations similar to that of OFS in categories.

Key Takeaways

- A double category with a DOFS consists of an OFS in the object category, an OFS in the proarrow category, compatible with the double category structure functors.
- There is a monadicity result for DOFS with chosen factorizations similar to that of OFS in categories.
- In a fibrant double category, we can go from DOFS to DOFS with chosen factorizations.

Key Takeaways

- A double category with a DOFS consists of an OFS in the object category, an OFS in the proarrow category, compatible with the double category structure functors.
- There is a monadicity result for DOFS with chosen factorizations similar to that of OFS in categories.
- In a fibrant double category, we can go from DOFS to DOFS with chosen factorizations.
- A OFS in the object category of a fibrant double category induces two canonical DOFS, which are universal among DOFS.

Key Takeaways

- A double category with a DOFS consists of an OFS in the object category, an OFS in the proarrow category, compatible with the double category structure functors.
- There is a monadicity result for DOFS with chosen factorizations similar to that of OFS in categories.
- In a fibrant double category, we can go from DOFS to DOFS with chosen factorizations.
- A OFS in the object category of a fibrant double category induces two canonical DOFS, which are universal among DOFS.

Future Work

Understanding the DOFS in a fibrant double category from the DOFS in their vertical bicategory and the OFS in their object category.

Thank You!

Questions?

Institutional: rubasmh@matmor.unam.mx

Personal: rub.maler.22@gmail.com