Higher dagger structures

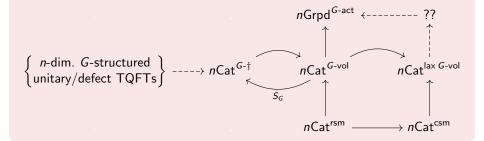
Tim Lüders

University of Vienna

October 25, 2025

Motivation

The big picture (very conjectural)



Dagger categories

Definition (Dagger category, evil version)

Let $\mathcal C$ be a category. A *dagger structure* on $\mathcal C$ is a functor $\dagger\colon \mathcal C\to\mathcal C^{\mathsf{op}}$ satisfying $\dagger^2=\mathsf{id}$ and $\dagger(c)=c$ for all $c\in\mathcal C$. The pair $(\mathcal C,\dagger)$ is called a *dagger category*.

Example (Hilbert spaces)

The category of Hilbert spaces Hilb with dagger structure defined by

$$\langle Tx, y \rangle = \langle x, T^{\dagger}y \rangle$$

Example (Spans)

Let $\mathcal C$ be a category with pullbacks. Then $\mathsf{Span}(\mathcal C)$ is a dagger category with

$$\left(x \stackrel{f}{\longleftarrow} z \stackrel{g}{\longrightarrow} y \right)^{\dagger} = y \stackrel{g}{\longleftarrow} z \stackrel{f}{\longrightarrow} x$$

O(1)-volutive categories

Definition (O(1)-volutive categories)

Let $\mathcal C$ be a category. An O(1)-volution on $\mathcal C$ consists of a functor $d\colon \mathcal C\to \mathcal C^{\mathrm{op}}$ and a natural isomorphism $\eta\colon d^{\mathrm{op}}\circ d\Rightarrow \mathrm{id}_{\mathcal C}$ such that $d(\eta_a)=\eta_{d(a)}^{-1}$ for all $a\in \mathcal C$.

Example (Dagger categories)

Any dagger category (C,\dagger) defines an O(1)-volutive category (C,\dagger,id) .

Lemma

Any rigid symmetric monoidal category admits an O(1)-volutive structure.

Sketch of Proof.

Define a functor $\mathcal{C} \to \mathcal{C}^{\mathsf{op}}$ by assigning $a \mapsto a^*$ and $X \colon a \to b$ to

$$X^* = \left(\begin{array}{c} b^* \xrightarrow{\mathsf{coev_a} \otimes \mathsf{id}} a^* \otimes a \otimes b^* \xrightarrow{\mathsf{id} \otimes X \otimes \mathsf{id}} a^* \otimes b \otimes b^* \xrightarrow{\mathsf{id} \otimes \mathsf{ev_b}} a^* \end{array}\right).$$

The natural isomorphism is induced by the symmetric braiding.

O(1)-volutive categories and dagger categories

Lemma (Stehouwer-Steinebrunner, 23')

The forgetful functor $\mathsf{Cat}^\dagger \to \mathsf{Cat}^{\mathsf{O}(1)\text{-}\mathit{vol}}$ admits a right adjoint $S_{\mathsf{O}(1)}.$

Sketch of Proof.

Let (\mathcal{C},d,η) be an O(1)-volutive category. Consider the category

$$\hat{\mathcal{C}} := \begin{cases} (a, \theta_a \colon a \xrightarrow{\cong} d(a)) & \text{s.t.} \quad \theta_a^{-1} d(\theta_a) = \eta_a \\ X \colon a \to b \end{cases}$$

together with the dagger structure assigning X: $(a, \theta_a) o (b, \theta_b)$ to

$$\dagger(X) = \left(b \xrightarrow{\theta_b} d(b) \xrightarrow{d(X)} d(a) \xrightarrow{\theta_a^{-1}} a\right)$$

Coherent dagger categories

Remark

$$\mathsf{Cat}^{\mathsf{O}(1)\operatorname{-vol}} = \mathsf{Cat}^{\mathsf{O}(1)\operatorname{-hfp}}_{(2,1)}$$

where

$$\mathsf{O}(1) \curvearrowright \mathsf{Cat}_{(2,1)}, \; \mathcal{C} \mapsto \mathcal{C}^\mathsf{op}$$

Remark

O(1)-volutive structure (d,η) on $\mathcal{C}\Rightarrow$ O(1)-action $((-)^{-1}\circ d,\eta)$ on $\mathcal{C}^{ imes}\cong (\mathcal{C}^{ imes})^{\operatorname{op}}$

Definition (Dagger category, non-evil version)

A coherent dagger category is an O(1)-involutive category (\mathcal{C},d,η) together with a fully faithful subgroupoid $\mathcal{C}_0\hookrightarrow (\mathcal{C}^\times)^{\mathrm{O}(1)\text{-hfp}}$ such that the induced functor $\mathcal{C}_0\hookrightarrow (\mathcal{C}^\times)^{\mathrm{O}(1)}\to \mathcal{C}^\times$ is essentially surjective.

Remark

Lax O(1)-volutive categories

Definition (Lax O(1)-volutive categories)

Let $\mathcal C$ be a category. A lax O(1)-volution on $\mathcal C$ consists of a functor $d:\mathcal C\to\mathcal C^{\operatorname{op}}$ and a natural transformation $\eta\colon\operatorname{id}_{\mathcal C}\Rightarrow d^{\operatorname{op}}\circ d$ such that $d(\eta_a)\circ\eta_{d(a)}=\operatorname{id}_{d(a)}$ for all $a\in\mathcal C$.

Example (O(1)-volutive categories)

Any O(1)-volutive category (C, d, η) defines a lax O(1)-volutive category.

Lemma (L, 25')

Any closed symmetric monoidal category admits a lax O(1)-volutive structure.

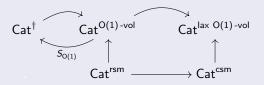
Remark

Any lax O(1)-volutive category (\mathcal{C},d,η) gives rise to an O(1)-volutive category $(\hat{\mathcal{C}},\hat{d},\hat{\eta})$ where $\hat{\mathcal{C}}\subseteq\mathcal{C}$ is the largest full subcategory s.t. η_a is invertible for all $a\in\hat{\mathcal{C}}$. This does not immediately extend to a 2-functor.

One-dimensional dagger category theory

Remark

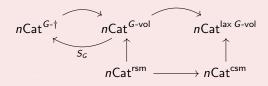
We have a diagram of functors



Conjectures on higher dagger categories

Conjecture

We have a diagram of functors



Conjecture/Definition

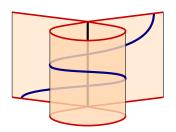
- $\operatorname{Aut}(\operatorname{Cat}^{\operatorname{adj}}_n) \cong \operatorname{O}(n)$, and $G \to \operatorname{O}(n)$ induces $G \to \operatorname{Aut}(\operatorname{Cat}^{\operatorname{adj}}_n)$.
- $n\mathsf{Cat}^{G\mathsf{-vol}} = n\mathsf{Cat}^{G\mathsf{-hfp}}_{(n+1,1)}$, and have functor $n\mathsf{Cat}^{G\mathsf{-vol}} o n\mathsf{Grpd}^{G\mathsf{-act}}$
- A (coherent) *G-dagger n-category* consists of a *G*-volutive *n*-category $\mathcal C$ together with a fully faithful subgroupoid $\mathcal C_0 \hookrightarrow (\mathcal C^\times)^{G-hfp}$ such that the induced functor $\mathcal C_0 \hookrightarrow (\mathcal C^\times)^{G-hfp} \to \mathcal C^\times$ is essentially surjective.

Higher dagger category theory in two dimensions

Remark

What is known for n = 2, G = SO(2)?

- SO(2)-volutive structure: $S: id_{\mathcal{B}} \stackrel{\cong}{\Longrightarrow} (-)^{RR} + coherence$
- $\mathcal{B} \in 2\mathsf{Cat}^{\mathsf{rsm}} \Rightarrow \mathsf{Serre}$ isomorphism \mathcal{S} defines $\mathsf{SO}(2)$ -volutive structure
- $\bullet \ \mathcal{B} \in 2\mathsf{Cat}^\mathsf{csm} \Rightarrow \mathsf{lax} \ \mathsf{Serre} \ \mathsf{morphism} \ \mathcal{S} \ \mathsf{defines} \ \mathsf{lax} \ \mathsf{SO(2)}\text{-volutive structure}$



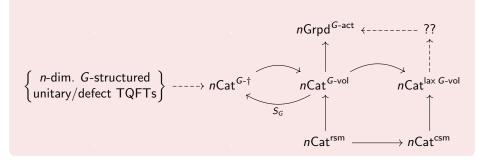
Remark

What about $O(2) = O(1) \times SO(2)$?

- O(2)-volution = O(1)-volution + SO(2)-volution + interaction
- $2Cat^{rsm} \Rightarrow Dualization + Serre$
- Lax case: work in progress

Summary/Outlook

The big picture (very conjectural)



Thank you for your attention!