

Different flavours of partiality

Matina M.

Postial Functions $f(x) = \frac{1}{x} \quad ln(x)$ corctg(x)

Different flavours of partiality

Portial Functions

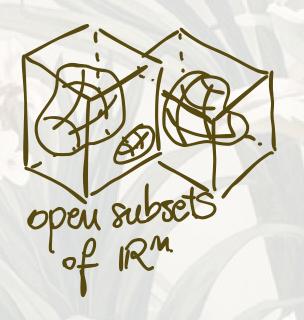
$$f(x) = \frac{1}{x}$$

Mathan

eu(x)

ouctg(x)

Postial Resources



Mathan

Different flavours of partiality

Portial Functions

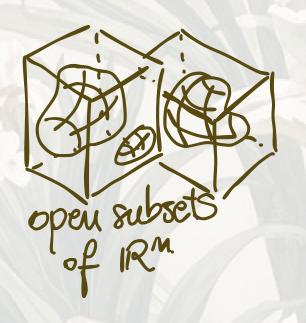
$$f(x) = \frac{1}{x}$$

eu(x)

couctg(x)

Control on Access of Resources

Postial Resources



Matinal

Different flavours of partiality

Portial Functions

$$f(x) = \frac{1}{x}$$

Pu(x)

ouctg(x)

Control on Access of Resources

Postial Resources

Being part of Something Bigger...

ASB



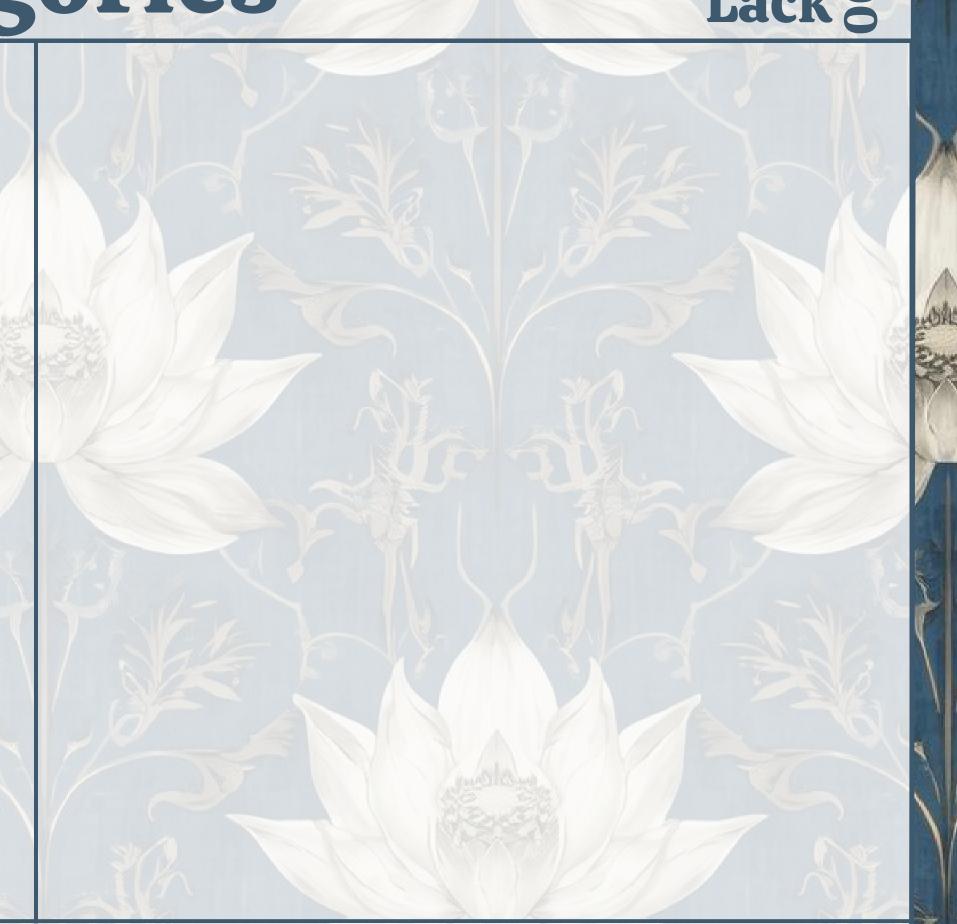
Different flavours of partiality

Restriction categories capture well partiality on functions

What about the other flavours?

Cockett 8
Lack 8

$$\frac{\beta:A \rightarrow B}{\overline{\beta}:A \rightarrow A}$$



Suition !

$$\frac{f:A \rightarrow B}{\overline{F}:A \rightarrow A}$$
[R.1] $f:A \rightarrow B$, $\overline{f}f = f$

Cockett 8 Lack 8

Suitain)

$$\frac{f:A \rightarrow B}{F:A \rightarrow A}$$

$$\frac{f:A \rightarrow B}{\overline{F}:A \rightarrow A}$$

$$[R.1] f:A \rightarrow B, \overline{f}f = f$$

Cuttion P

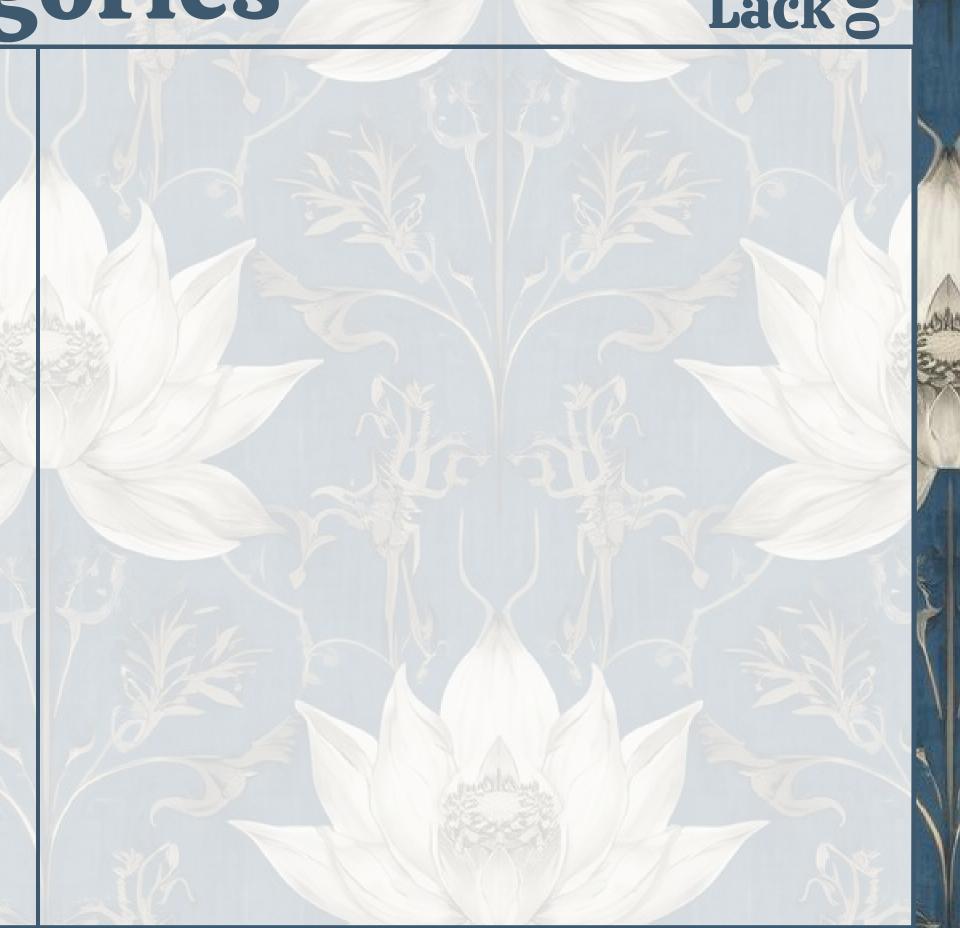
$$\frac{f:A \rightarrow B}{\overline{F}:A \rightarrow A}$$

$$\frac{f:A \rightarrow B}{\overline{F}:A \rightarrow A}$$

$$[R.1] f:A \rightarrow B, \overline{f}f = f$$

$$[R.2] A f B \overline{g} = \overline{g} \overline{f}$$

$$g > C$$



Cockett 8 Lack 8

$$\overline{f}:A \rightarrow A$$

[R.1] $f:A \rightarrow B$, $\overline{f}f = f$

$$[R.2] A f_{7}B \bar{f} \bar{g} = \bar{g}\bar{f}$$

[R.3]
$$A^{\beta}$$
 B $\overline{fg} = \overline{fg}$

Cockett 8
Lack 8

$$\frac{f:A \rightarrow B}{\overline{F}:A \rightarrow A}$$

$$[R.2] A f_{3}B = \overline{g}$$

$$g > C$$

$$[R.4]A$$

$$S_{C}, fg = fgf$$

Cockett 8
Lack 8

Cockett 8
Lack 8

2 Suample

Category of SETS and PARTIAL functions:

Objects: sets

Cockett 8 Lack 8

Category of SETS and PARTIAL functions:

Objects: sets

Morphisous: partially olef-incol
functions

Cockett 8
Lack 8

Category of SETS and PARTIAL functions:

Objects: sets

Morphisus: partially olefined functions

Restriction:

$$f:A \rightarrow B$$

$$\overline{f(\alpha)} := \begin{cases} \alpha & \text{if } f(\alpha) \text{ defined} \\ \text{undefined else} \end{cases}$$

Category of SETS and PARTIAL functions:

Objects: sets

Morphisus: partially olefined
functions

Restriction:

$$f:A \rightarrow B$$

$$\overline{f(\alpha)} := \begin{cases} \alpha & \text{if } f(\alpha) \text{ defined} \\ \text{undefined} & \text{else} \end{cases}$$

Opposite category of RINGS and NON-UNITAL morphisms:

Category of SETS and PARTIAL functions:

Objects: sets

Morphismus: partiolly offined functions

Restriction:

$$f:A \rightarrow B$$

$$\overline{f(\alpha)} := \begin{cases} \alpha & \text{if } f(\alpha) \text{ defined} \\ \text{undefined else} \end{cases}$$

Opposite category of RINGS and NON-UNITAL morphisms:

Objects: Unital Rings

Category of SETS and PARTIAL functions:

Objects: sets

Morphistus: partially offined functions

Restriction:

Opposite category of RINGS and NON-UNITAL morphisms:

Objects: Unital Rings

Morphisms: $R \rightarrow S$ $f:S \rightarrow R$ s.t. f(ab) = f(a)f(b)

Category of SETS and PARTIAL functions:

Restriction:

Opposite category of RINGS and NON-UNITAL morphisms:

Morphisms:
$$R \rightarrow S$$

 $f:S \rightarrow R$ s.t.
 $f(ab) = f(a)f(b)$

In a restriction category:

•
$$f:A \rightarrow B$$
 total if $f = id_A$

In a restriction category:

•
$$f:A \rightarrow B$$
 total if $f = id_A$

•
$$f,g:A \rightarrow B$$
, $f \rightarrow g:$

$$\overline{f}g = \overline{g}f$$

In a restriction category:

$$f: A \rightarrow B \text{ total if } \overline{f} = id_A$$

$$\overline{f}g = \overline{g}f$$

In a restriction category:

•
$$f,g:A \rightarrow B$$
, $f \rightarrow g:$

$$\overline{f}g = \overline{g}f$$

In a restriction category:

•
$$f,g:A \rightarrow B$$
, $f \rightarrow g:$

$$\overline{f}g = \overline{g}f$$

$$\cdot \beta, g: A \rightarrow B, \ \beta \leq g:$$

$$\beta, g = \beta$$

positive isomorphism:

$$f:A \supseteq B: f^{\circ}, ff^{\circ} = \overline{f}$$

 $f^{\circ}f = \overline{f^{\circ}}$

Cockett 8
Lack 8

Every restriction category embeds in a split restriction category.

Split (X):

Every restriction category embeds in a split restriction

category. $Split_{R}(X)$:

Objects: $(A, \alpha) A \in X$ $\alpha: A \rightarrow A, \overline{\alpha} = \alpha$

Cockett 8 Lack 2

Every restriction category embeds in a split restriction category. Splite(X):

Objects: (A, α) $A \in X$ $\alpha: A \rightarrow A, \overline{\alpha} = \alpha$

Morphisms: f:(A,a) -> (B,b)

Cockett 8 Lack 2

Every restriction category embeds in a split restriction category. Splite(X):

Objects: (A, a) $A \in X$ $a:A \rightarrow A, \overline{a} = a$

Morphisms: f:(A,a) -> (B,b)

Identities:

$$id_{(A,\alpha)}:(A,\alpha) \xrightarrow{\alpha}(A,\alpha)$$

Cockett 8 Lack 2

Every restriction category embeds in a split restriction category. Splite(X):

Objects: (A, α) $A \in X$ $\alpha: A \rightarrow A, \overline{\alpha} = \alpha$

Morphisus: f:(A,a) -> (B,b)

Identities:
$$a \rightarrow (A,a) \rightarrow (A,a)$$
 $id(A,a) \rightarrow (A,a)$

Restriction:
$$\frac{1}{\beta}$$
 (A,a) $\frac{1}{\beta}$ (A,a) $\frac{1}{\beta}$ (A,F)

The L construction

Take total maps of Split_R:

L[X]:=Tot[Split_R[X]]

Objects:
$$(A, \alpha), A \in X$$
 $\alpha: A \rightarrow A \ \overline{\alpha} = \alpha$

Take total maps of Split_R:

Objects:
$$(A, a), A \in X$$

 $a: A \rightarrow A \bar{a} = a$
Morphisus: $f: (A, a) \rightarrow (B, b)$

$$\int_{a}^{b} = \delta c$$

Take total maps of Split_R:

$$a:A \rightarrow A \bar{a} = a$$

Morphisus:
$$f:(A,a) \rightarrow (B,b)$$

$$\beta = \alpha$$

$$\beta b = \beta$$

The local structure:

$$(A, \alpha) \sim L(A, \alpha) := (A, id_A)$$

Take total maps of Split_R:

$$a:A \rightarrow A \bar{a} = a$$

Morphisus:
$$f:(A,a) \rightarrow (B,b)$$

$$\int_{a}^{b} = \delta$$

The local structure:

$$(A,\alpha) \sim L(A,\alpha) := (A,id_A)$$

$$\eta(A,\alpha):(A,\alpha)\longrightarrow(A,id_A)=L(A,\alpha)$$

Take total maps of Split_R:

$$a:A \rightarrow A \bar{a} = a$$

Morphisus:
$$f:(A,a) \rightarrow (B,b)$$

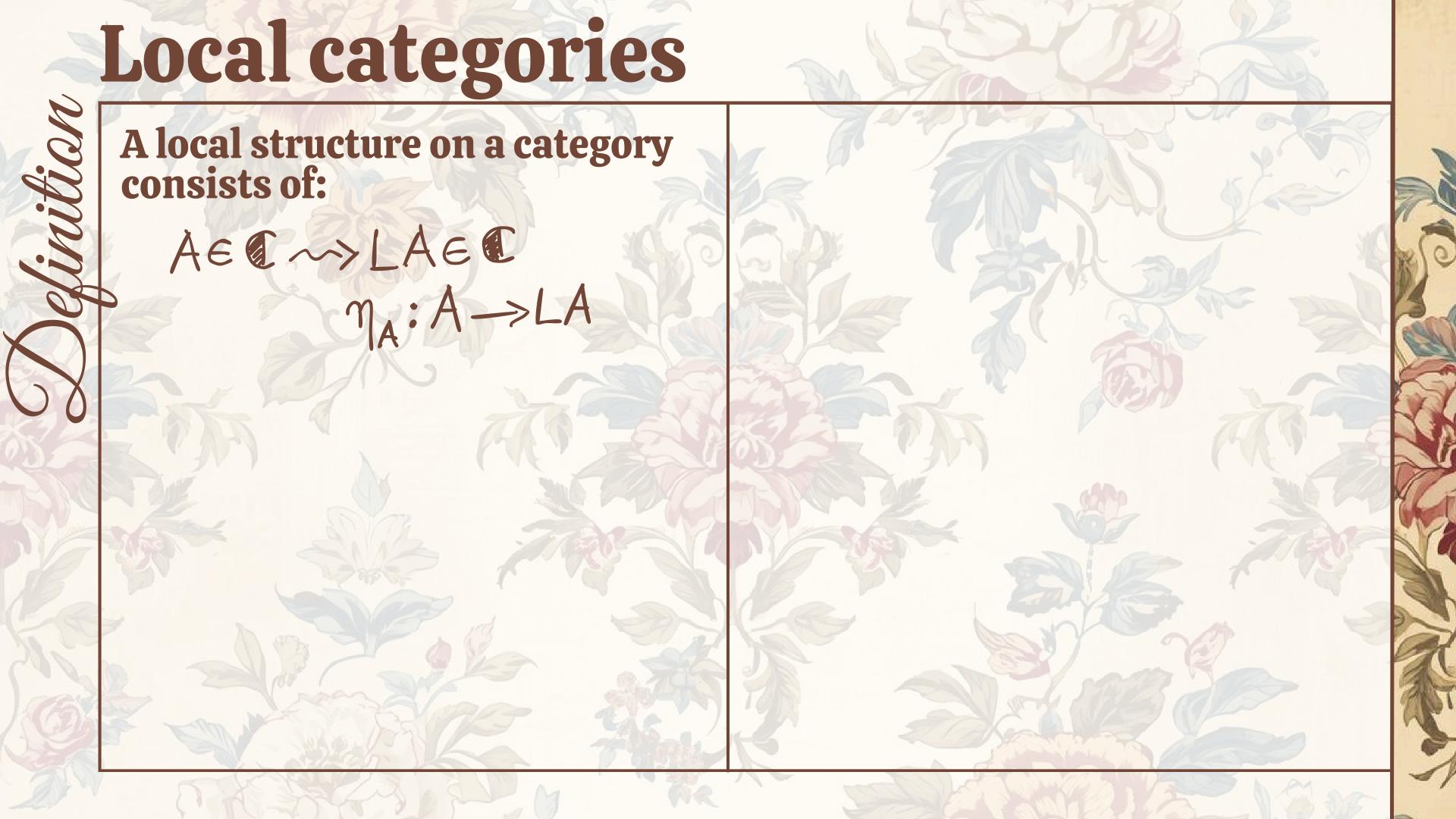
$$\int_{a}^{b} = \delta$$

The local structure:

$$(A,\alpha) \sim L(A,\alpha) := (A,id_A)$$

$$\eta(A,\alpha):(A,\alpha)\xrightarrow{\alpha}(A,id_A)=L(A,\alpha)$$

L:(A, a) H) (A, idA) NOT functorial
M(A,a) NOT natural

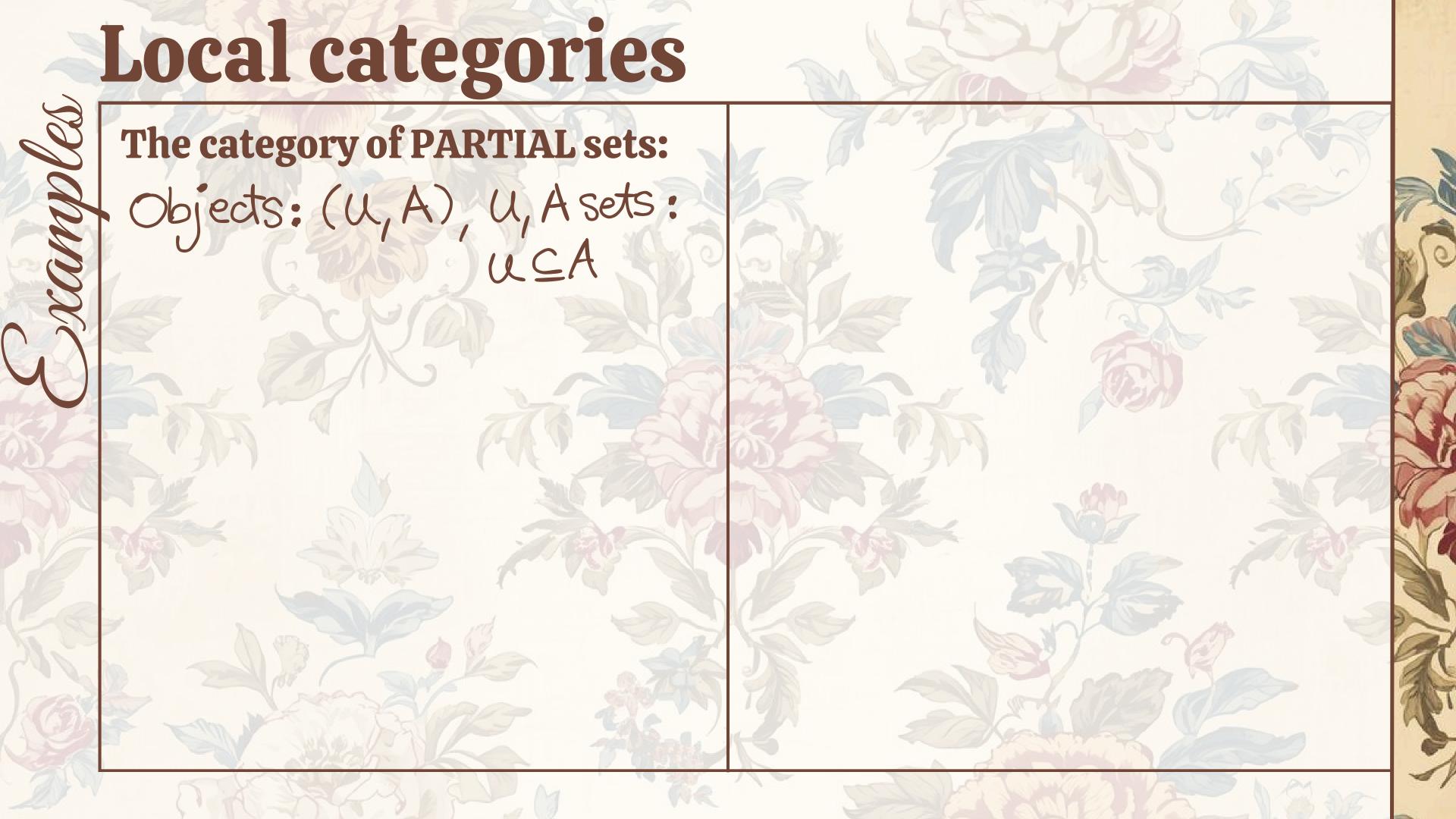


A local structure on a category consists of:

A local structure on a category consists of:

[L2.] MA morrie in 1

A local structure on a category consists of:



The category of PARTIAL sets:

Objects: (U, A), U, A sets: U ⊆ A Morphisms: f:(U, A) ->(V, B)

The category of PARTIAL sets:

$$L(u,A) := (A,A)$$

$$m:(U,A) \longrightarrow (A,A)$$

Summer

The category of PARTIAL sets:

$$L(u,A):=(A,A)$$

$$M:(U,A) \longrightarrow (A,A)$$

The opposite category of Rings with idempotents:

Somme

The category of PARTIAL sets:

Morphisms: f:(U,A)->(V,B)

$$L(u,A) := (A,A)$$

$$M:(u,A) \longrightarrow (A,A)$$

$$U \longrightarrow A$$

The opposite category of Rings with idempotents:

Morphisms:
$$\beta:(R_le_R) \rightarrow (S_le_S)$$

$$\beta(ab) = \beta(a)\beta(b) \beta(1_s) = e_R = \beta(e_s)$$

The category of PARTIAL sets:

Morphisms: f:(U,A)-)(V,B)

$$L(u,A) := (A,A)$$

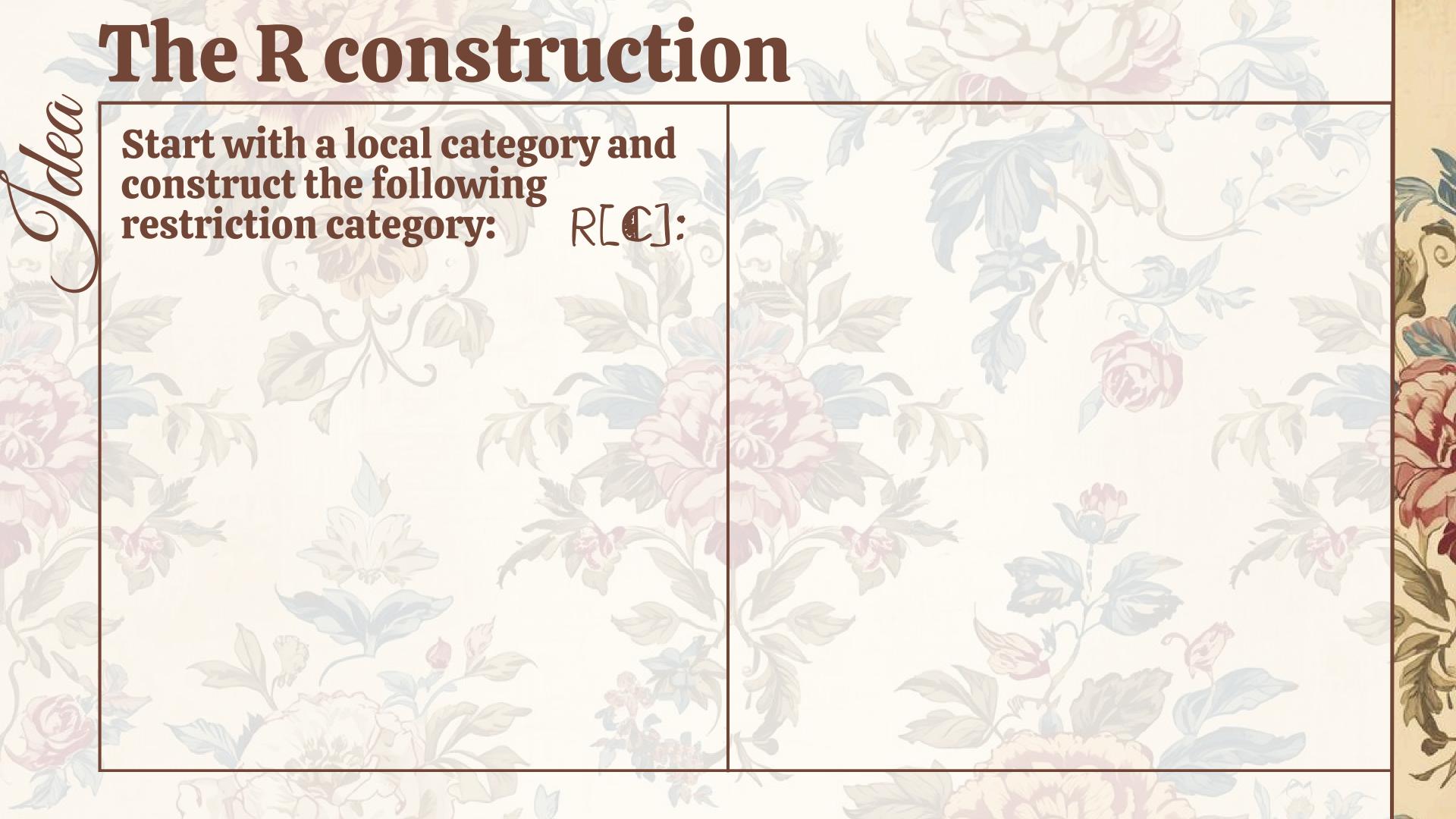
$$M:(u,A) \longrightarrow (A,A)$$

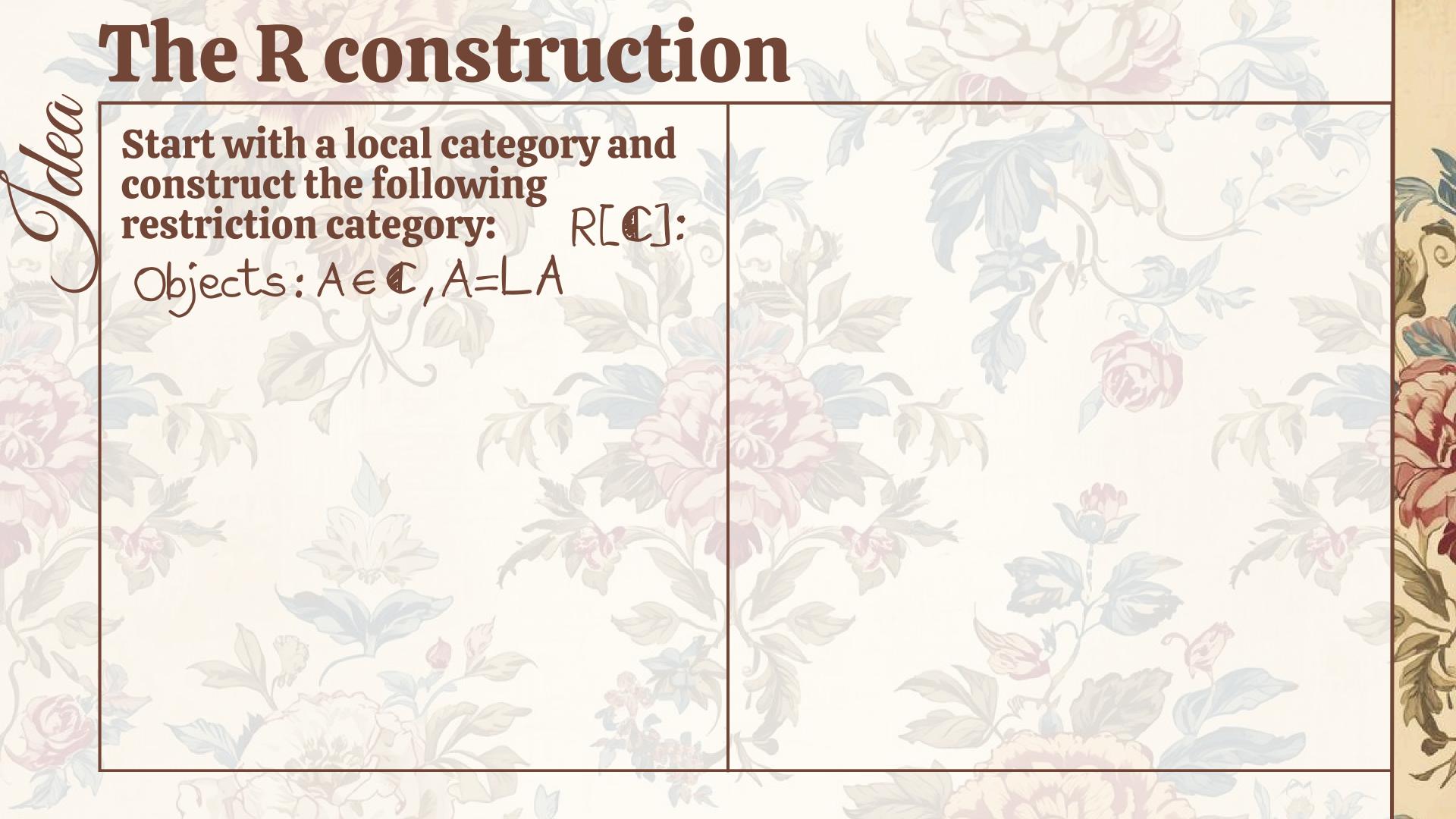
$$U \hookrightarrow A$$

The opposite category of Rings with idempotents:

$$\beta(\alpha b) = \beta(\alpha)\beta(b)$$
 $\beta(1_s) = e_R = \beta(e_s)$
 $L(R,e_R) = (R,1_R)$

$$m:(R,e_R) \rightarrow (R,1_R):R \longrightarrow R$$
 $n\mapsto e_R \pi$





Start with a local category and construct the following restriction category: R[C]:

Objects: A = C, A = LA

Morphisms: A - +> B

us.t. Lu=A

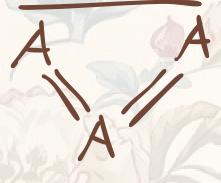
Start with a local category and construct the following restriction category: R[C]:

Objects: A = C, A = LA

Morphisms: A - +> B

ust. Lu=A

Identities: A-1>A



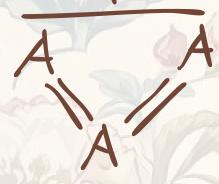
Start with a local category and construct the following restriction category: R[C]:

Objects: A = C, A = LA

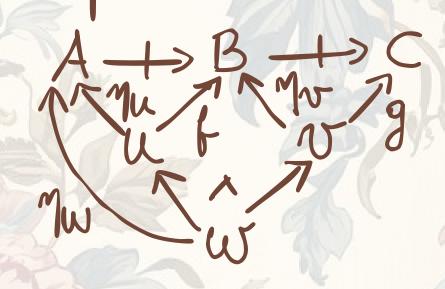
Morphisms: A -+> B

ust. Lu=A

Identities: A-+>A



Composition:



Start with a local category and construct the following restriction category: R[C]:

Objects: AEC, A=LA

Morphisms: A +> B

ust. Lu=A

AMURE

Identities: A +> A

Composition:

A HO B HO TO

Restriction:

Lanfranchi Local = Restriction Lemay Medicen There is a 2-equivalence RCATZLCAT between the 2-category of restriction categories and the 2-category of local categories.

Lanfranchi & Lemay &

Lanfranchi Lemay

Medhem Restriction categories

Lanfranchi Lemay

Restriction categories

Restriction categories

Total maps
$$f$$
 s.t. f =id

 f = g , f = g =

Lanfranchi & Lemay &

Mediem

Restriction categories

Lanfranchi & Lemay &

Medhem

Restriction categories

Lanfranchi & Lemay &

Restriction categories

Lanfranchi & Lemay &

Restriction categories

Restriction Terminal Object

Local categories

Torminal Object

Lanfranchi & Lemay &

Restriction categories

Restriction Terminal Object

Restriction Broducts

Local categories

Torminal Object

Products

Medhem

Local = Restriction

Lanfranchi & Lemay &

Restriction categories

Restriction Terminal Object

Restriction Broducts

Restriction Limits

Local categories

Touminal Object

Products

999

Partial categories

In a local category we can define two operations:

RESTRICTION:

Partial categories

In a local category we can define two operations:

RESTRICTION:

CONTRACTION:

Partial categories

A partial structure on a category consists of a partial order on the objects, and two operators:

RESTRICTION:

A partial structure on a category consists of a partial order on the objects, and two operators:

RESTRICTION:

CONTRACTION:

$$\frac{f:A \rightarrow B, v \leq B}{A!_{p}v \leq A, f!v:A!_{p}v \rightarrow v}$$

A partial structure on a category consists of a partial order on the objects, and two operators:

RESTRICTION:

d Restricts the access of f at U. A

CONTRACTION:

$$f:A \rightarrow B, V \leq B$$

 $A!_{p}V \leq A, f!V:A!_{p}V \rightarrow V$
! contracts f s.t. its image lands
in $V \leq B$

A partial structure on a category consists of a partial order on the objects, and two operators:

RESTRICTION:

d Restricts the access of f at U. A

CONTRACTION:

+Axioms

Partial categories Manylles

Every local category:

Partial categories Manuelles

Every local category:

$$\langle : U \leq A \rangle = LU = LA \text{ and}$$

 $\exists m: U \rightarrow A \text{ s.t. } mm_A = mu$
 $\delta: f: A \rightarrow B, U \leq A$
 $u \stackrel{m}{\rightarrow} A \stackrel{F}{\rightarrow} B$

Every local category:

Manyles

Every local category:

The category of SETS:

Summles

Every local category:

$$<: U < A (=) LU = LA and$$
 $\exists m: U \rightarrow A s:t. mm_A = mu$
 $b: f: A \rightarrow B, U < A$
 $u \xrightarrow{m} A \xrightarrow{f} B$
 $f: A \rightarrow B, V < B$
 $A: f \xrightarrow{f} V \xrightarrow{f} V$
 $J \xrightarrow{m} A \xrightarrow{g} B$

The category of SETS:

Suamples

Every local category:

$$\leq: U \leq A \Rightarrow LU = LA \text{ and}$$
 $\exists m: U \Rightarrow A \text{ s.t. } mm_A = mu$
 $\delta: f: A \Rightarrow B, U \leq A$
 $U \xrightarrow{m} A \xrightarrow{f} B$
 $f: A \to B, V \leq B$
 $A^{\circ}_{g}U \xrightarrow{f} U \xrightarrow{g} U$
 $A \xrightarrow{g} B$

The category of SETS:

$$\leq: U \leq A \Leftrightarrow U \subseteq A$$

$$J: P: A \rightarrow B, U \subseteq A$$

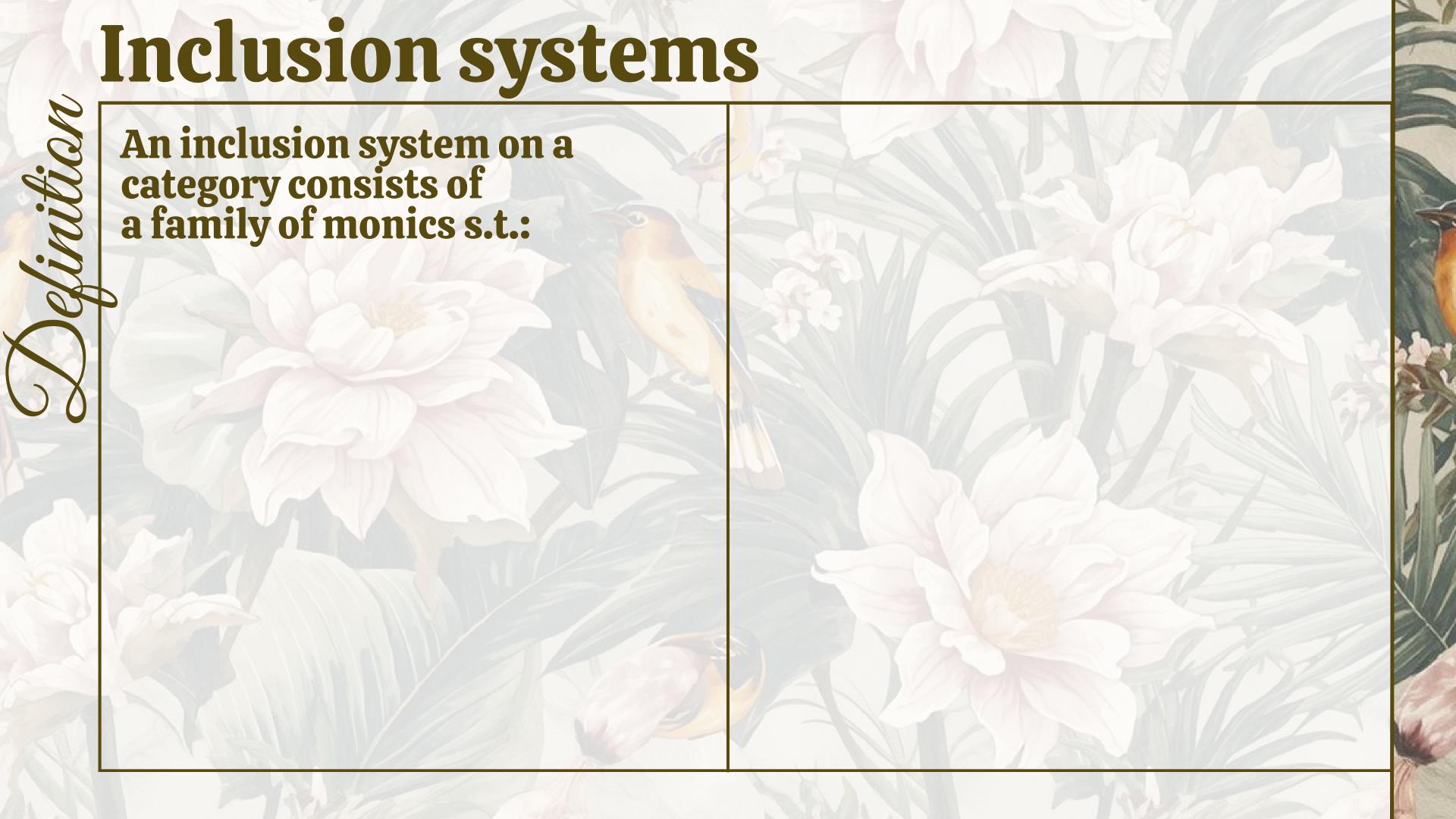
$$P|_{U}: U \rightarrow B$$

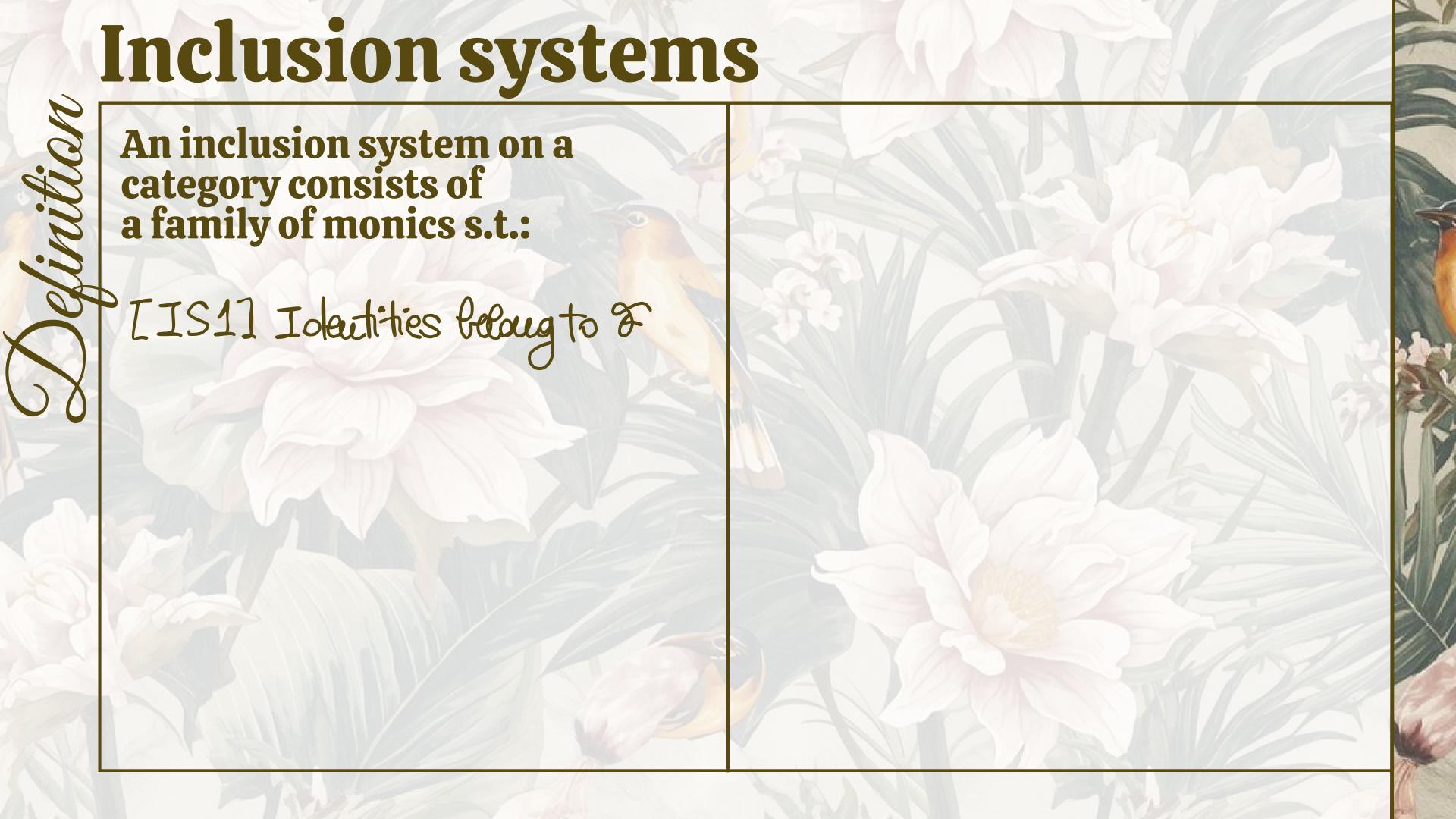
P:
$$A \rightarrow B$$
, $V \leq B$
 $A \neq V := \{a \in A \text{ s.t. } f(a) \in V\}$
 $P \neq V := \{a \in A \text{ s.t. } f(a) \in V\}$

In a partial category we can define a family of monics:

In a partial category we can define a family of monics:

Stable under pullbacks:





Inclusion systems Guittion.

An inclusion system on a category consists of a family of monics s.t.:

IIS17 Identities belong to F

[IS2] F stable under composition

An inclusion system on a category consists of a family of monics s.t.:

Willian Man

IIS17 Identities belong to F

[IS2] F stable under composition

[IS3] F stable under publicals

An inclusion system on a category consists of a family of monics s.t.:

IIS17 Identities belong to F

[IS2] F stable under composition

[IS3] F stable under publicals

Every partial category admits an inclusion system:

Lanfranchi & Lemay &

Every partial category admits an inclusion system:

Every inclusion system defines a partial structure where:

Lanfranchi & Lemay &

Every partial category admits an inclusion system:

Every inclusion system defines a partial structure where:

Lanfranchi & Lemay &

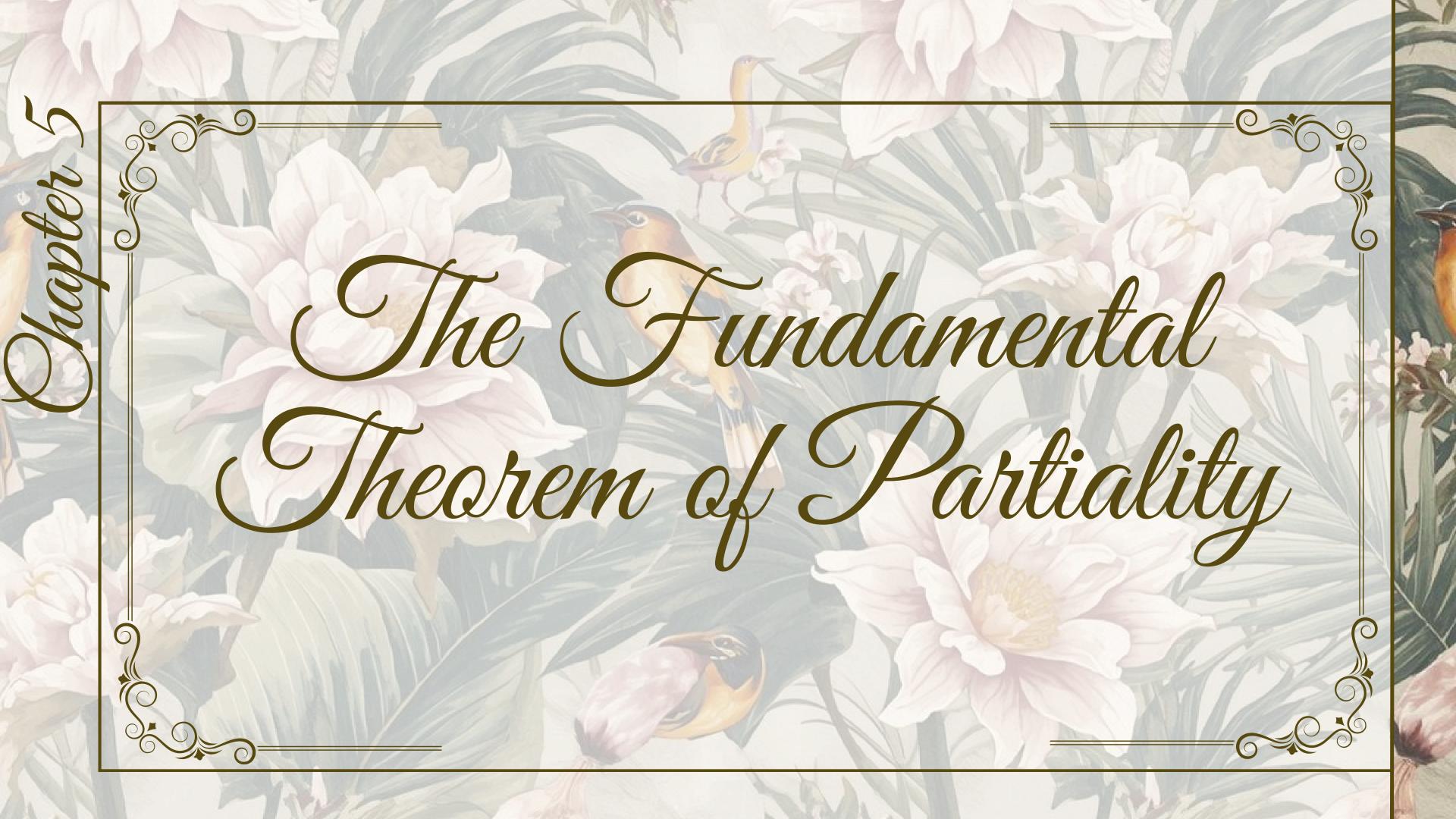
Every partial category admits an inclusion system:

Every inclusion system defines a partial structure where:

Lanfranchi 🖰 Lemay

Every partial category admits an inclusion system:

Every inclusion system defines a partial structure where:



The 2-equivalences

Lanfranchi & Lemay &

Cheorem

Restriction Categories

Partiality on morphisms

Lacal Categories

Partiality on objects

Partial Categories
Operational partiality

Inclusion Systems

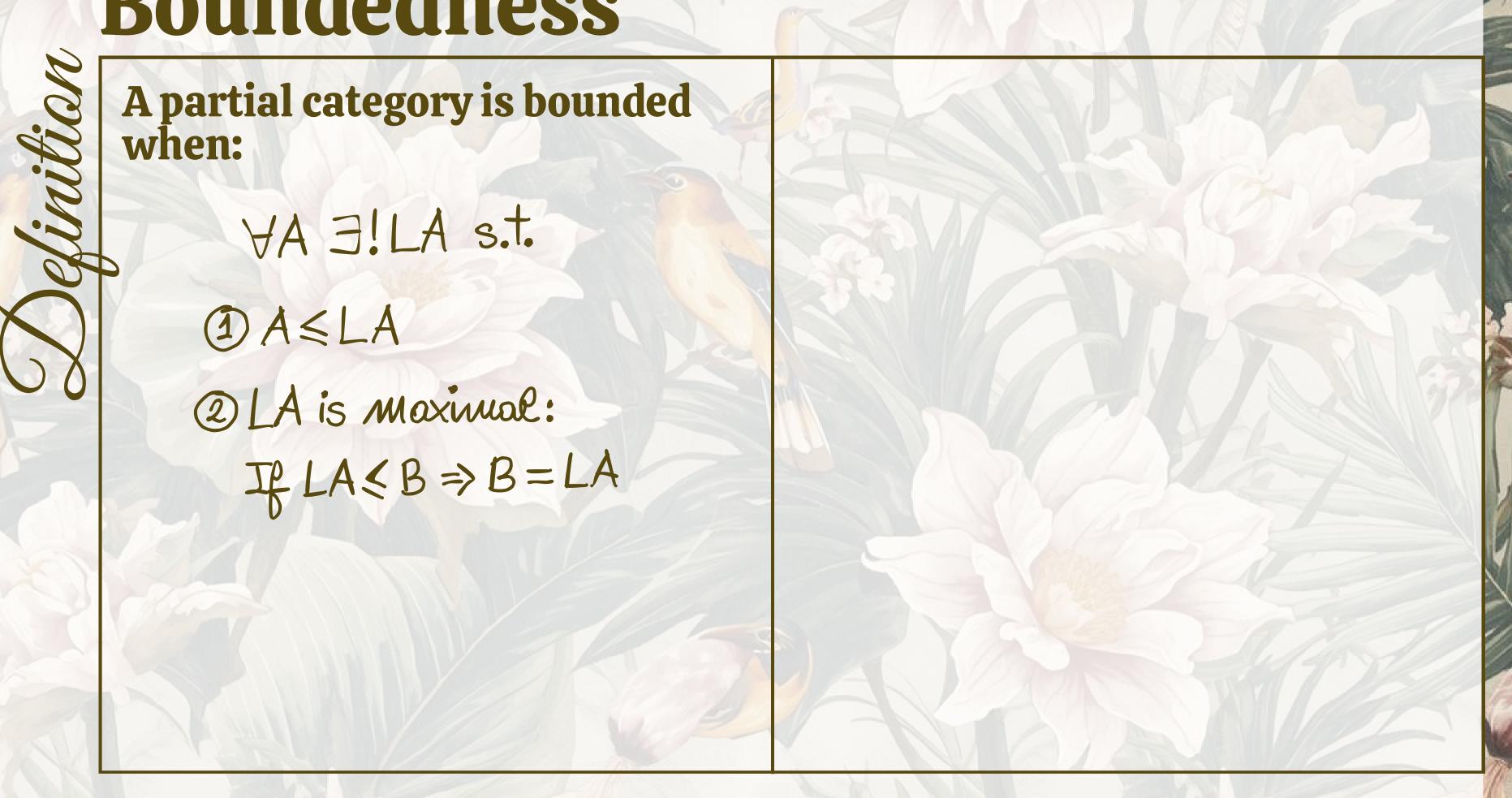
Partiality via inclusions

Local to inclusion

Every local category admits an inclusion system:

$$\mathcal{F} := \{ m : \mathcal{U} \rightarrow A, L\mathcal{U} = LA, \\ m_A = m_{\mathcal{U}} \}$$

Boundedness



Boundedness

) Chillian

A partial category is bounded when:

VA 3!LA s.t.

- 1 A < LA
- 2 LA is maximal:

An inclusion system is bounded when:

$$A \xrightarrow{m} B$$
 and $x \in \mathcal{F}$
 LA

$$\Rightarrow B = LA$$
.

The 2-equivalences

Lanfranchi & Lemay &

