COMONADS ON SET

with Aaron Fairbanks

<u>Algebra</u>

Space

<u>Algebra</u>

Space

Monads on Set

<u>Algebra</u>

Space

Monads on Set

Comonads on Set

Comonads on Set strictly generalize topological spaces.

$\mathrm{Sh}(\mathbf{X})$

```
sheaf of tunctions sheaf of sum of stalks
```

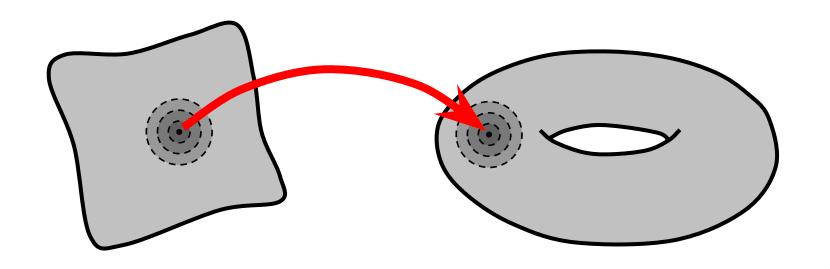
Set

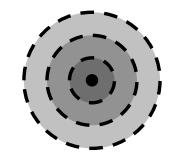
Sh(X) comonadic sheaf of tunctions | sum of stalks Set

What is a general comonad on Set?

What is a generalized space?

A continuous map of spaces "sends infinitesimal neighborhoods to infinitesimal neighborhoods"





"infinitesimal neighborhood" =

formal limit of sets

formal limit of sets =* object of (Set Set)op

Definition

The **halo** of a point x in a topological space \mathbf{X}

$$\mathrm{Halo}_x \in (\mathbf{Set}^{\mathbf{Set}})^{\mathrm{op}}$$

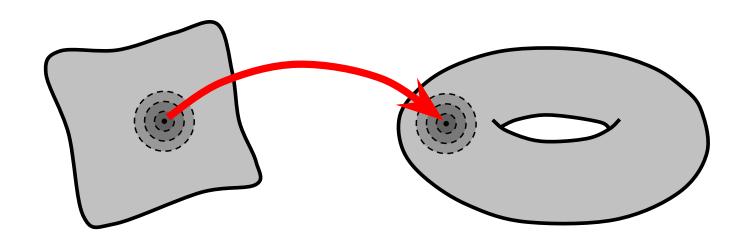
is the limit of the diagram

$$\mathcal{N}_x \xrightarrow{\text{points}} \mathbf{Set} \xrightarrow{\text{Yoneda}} (\mathbf{Set}^{\mathbf{Set}})^{\mathrm{op}}$$

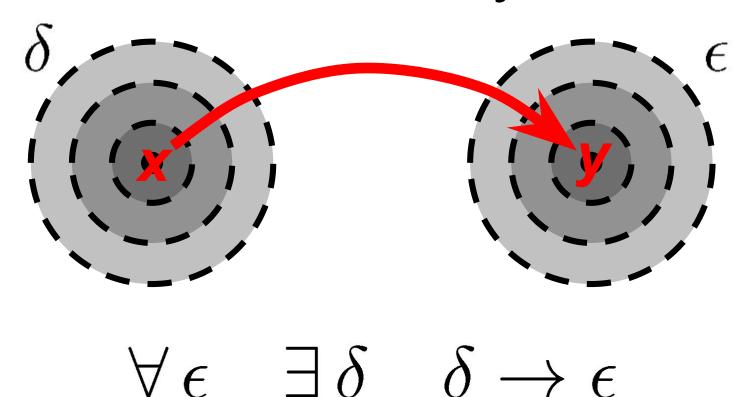
where \mathcal{N}_x is the poset of neighborhoods of x.

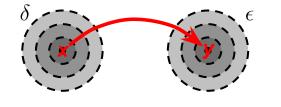
It is the *formal limit* of neighborhoods of x.

A function $f\colon \mathbf{X} \to \mathbf{Y}$ is **continuous** when it induces a map of formal limits of sets $\mathrm{Halo}_x \to \mathrm{Halo}_{f(x)}$ for each x in \mathbf{X} .



Continuity





(CalSet)op(II-1- II-1-

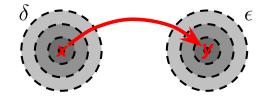
$$(\mathbf{Set}^{\mathbf{Set}})^{\mathrm{op}}(\mathrm{Halo}_x,\mathrm{Halo}_y)$$

$$=$$

$$(\mathbf{Set}^{\mathbf{Set}})^{\mathrm{op}}(\lim_{\delta \in \mathcal{N}_x} \sharp \delta, \lim_{\epsilon \in \mathcal{N}_y} \sharp \epsilon)$$

$$\cong$$

$$\lim_{\epsilon \in \mathcal{N}_y} \operatorname{colim}_{\delta \in \mathcal{N}_x} \mathbf{Set}(\delta, \epsilon)$$
" $orall \epsilon \cap \mathcal{S}$ $\delta \to \epsilon$ "



(SatSet)op(Hala Hala

 $(\mathbf{Set}^{\mathbf{Set}})^{\mathrm{op}}(\mathrm{Halo}_x,\mathrm{Halo}_y) =$

$$(\mathbf{Set}^{\mathbf{Set}})^{\mathrm{op}}(\lim_{\delta \in \mathcal{N}_x} \sharp \delta, \lim_{\epsilon \in \mathcal{N}_y} \sharp \epsilon) \\ \cong$$

$$\lim_{\epsilon \in \mathcal{N}_y} \operatorname{colim}_{\delta \in \mathcal{N}_x} \mathbf{Set}(\delta, \epsilon)$$
" $orall \epsilon \in \mathcal{N}_y \delta \in \mathcal{N}_x$

Spaces may be defined in terms of their halos.

1) a formal limit of sets

$$\mathcal{X} = \prod_{x \in X} \operatorname{Halo}_x \in (\mathbf{Set}^{\mathbf{Set}})^{\operatorname{op}}$$

or equivalently a formal product of formal connected limits ("halos")

2) a distinguished point (per "halo")

(e)
$$e: * \rightarrow \mathcal{X} = \prod_{x \in X} \operatorname{Halo}_x$$

defined as a map in $(\mathbf{Set}^{\mathbf{Set}})^{\mathrm{op}}$ where * is represented by the set with one point

3) "for every neighborhood U(set in the diagram that defines the formal limit \mathcal{X}) there is some neighborhood V and for every v in Vthere is some neighborhood W_{ν} mapping back to $\,U\,"$

3) a map

$$m: \mathcal{X} \circ \mathcal{X} \to \mathcal{X}$$

in $(\mathbf{Set}^{\mathbf{Set}})^{\mathrm{op}}$

where \circ is composition of functors $\mathbf{Set} \to \mathbf{Set}$

- 1) $\mathcal{X} \in (\mathbf{Set}^{\mathbf{Set}})^{\mathrm{op}}$
- 2) $e: * \rightarrow \mathcal{X}$
- 3) $m: \mathcal{X} \circ \mathcal{X} \to \mathcal{X}$
 - + associativity and unit laws

a monoid in formal limits of sets

"space" = monoid in formal limits of sets

```
"space"
=
monoid in formal limits of sets
=
monoid in (Set<sup>Set</sup>)<sup>op</sup>
```

```
"space"
monoid in formal limits of sets
      monoid in (Set<sup>Set</sup>)<sup>op</sup>
      comonoid in Set<sup>Set</sup>
```

```
"space"
monoid in formal limits of sets
      monoid in (Set<sup>Set</sup>)<sup>op</sup>
     comonoid in Set<sup>Set</sup>
      comonad on Set
```

More examples

besides topological spaces

monoids =

representable comonads on Set

Computer Science > Logic in Computer Science

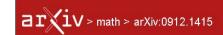
(Submitted on 5 Apr 2016)

Directed Containers as Categories

Danel Ahman, Tarmo Uustalu

categories

polynomial comonads on Set



Mathematics > Category Theory

[Submitted on 8 Dec 2009 (v1), last revised 15 Oct 2011 (this version, v3)]

lonads

Richard Garner

ionads

(a.k.a. toposes equipped with enough points)

pullback-preserving comonads on Set

Topological spaces	Comonads on Set	Categories
Basis	$B \colon \mathbf{C}^{\mathrm{op}} \to \mathbf{Set}$	$\sum_{x \in \mathbf{C}} \operatorname{Hom}(-, x)$
Space \mathbf{X}	Density comonad \mathcal{C} of \mathcal{B}	Category C
Point x of \mathbf{X}	$x \in C(1) \ (= \operatorname{colim} B)$	Object x of \mathbf{C}
Basic open neighborhoods of point x	Connected component $\operatorname{El}_x(B)$ of $\operatorname{El}(B)$	Arrows into object x
Halo of x	Formal limit of $\operatorname{El}_x \to \mathbf{C}^{\operatorname{op}} \xrightarrow{B} \mathbf{Set}$	Arrows out of object x
Sheaf	Coalgebra	C-set

Let \mathcal{B} be a basis of a topological space.

The corresponding comonad on Set is the *density comonad* of

 $\mathcal{B} \xrightarrow{\text{points}} \mathbf{Set}$

More examples

besides topological spaces

Let **Surj** be the category of sets and surjections.

The density comonad of $\mathbf{Surj} \hookrightarrow \mathbf{Set}$ has partitioned sets as coalgebras.

Let **Int** be the category of open intervals of \mathbb{R} and distance + orientation preserving maps.

The density comonad (ionad) of

 $\mathbf{Int} \subseteq \mathbf{Set}$

is a "continuous analogue of the monoid \mathbb{Z} ".

What are comonad morphisms?

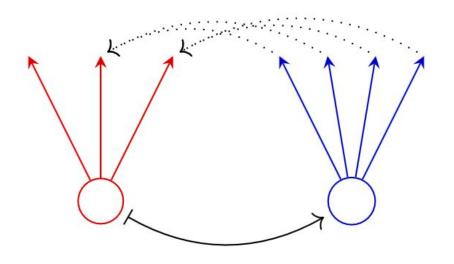
Continuous maps?

Continuous maps?

Functors?

Comonad morphisms map points forward, but map halos backward.

Retrofunctors



A retrofunctor from a category \mathbf{C} to the monoid \mathbb{Z} is a "vector field" on \mathbf{C} :

for each c in ${\bf C}$ and n in ${\mathbb Z}$, an arrow $c \to d$ with suitable compatibilities.

A comonad morphism from a space \mathbf{X} to the *continuous analogue of* \mathbb{Z} (mentioned earlier) is a "local flow" on \mathbf{X} :

for each x in X, a map from an open interval about 0 in $\mathbb R$ to X with suitable compatibilities.

There is a second kind of map between comonads on **Set**.

There is a second kind of map between comonads on **Set**.

Functors?

Continuous maps?

There is a second kind of map between comonads on Set.

"Continuous map"

forward on points, forward on halos

"Continuous map"

Mathematics > Category Theory

[Submitted on 8 Dec 2009 (v1), last revised 15 Oct 2011 (this version, v3)]

lonads

Richard Garner

Comonad morphisms and continuous maps form a double category of comonads on Set.

Comonad morphisms and continuous maps form a double category of comonads on Set.

Includes a (non-flat) double category of categories, functors, and retrofunctors.

Stay tuned for upcoming paper

COMONADS ON SET

by Kevin Carlson, Aaron Fairbanks, and David Spivak

Thank you