

Introduction to medial linearly distributive categories

Rose Kudzman-Blais

Supervised by Dr Richard Blute
University of Ottawa

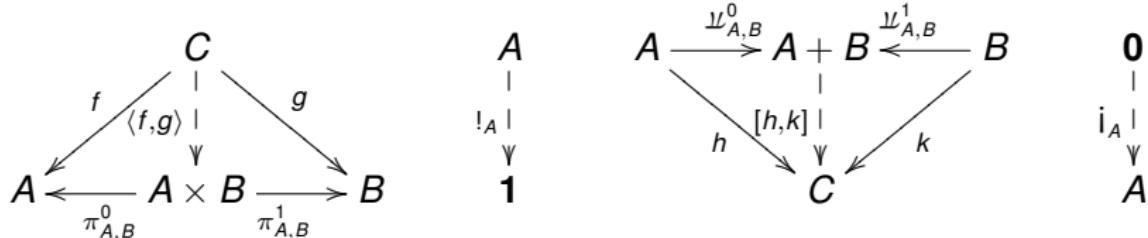
Logic Seminar
October 8, 2024

Cartesian and cocartesian categories

Definition

Consider a symmetric monoidal category, or SMC, \mathcal{X} .

- \mathcal{X} is *cartesian* if its monoidal structure is given by the binary categorical product and the terminal object, and
- \mathcal{X} is *cocartesian* if its monoidal structure is given by the binary categorical coproduct and the initial object.



Comonoids

Definition

Consider a symmetric monoidal category, or SMC, $(\mathcal{X}, \otimes, I, \alpha, \rho, \gamma)$.

- A *cocommutative comonoid* is a triple $\langle A, \Delta_A, t_A \rangle$ of an object A in \mathcal{X} equipped with two morphisms, the *diagonal* $\Delta_A : A \rightarrow A \otimes A$ and the *counit* $t_A : A \rightarrow I$ such that

$$\Delta_A; (1_A \otimes \Delta_A) = \Delta_A; (\Delta_A \otimes 1_A); \alpha_{A,A,A}$$

$$\Delta_A; (1_A \otimes t_A) = \rho_A \quad \Delta_A; \gamma_{A,A} = \Delta_A$$

- A *comonoid morphism* $f : \langle A, \Delta_A, t_A \rangle \rightarrow \langle B, \Delta_B, t_B \rangle$ is a morphism $f : A \rightarrow B$ in \mathcal{X} such that

$$f; \Delta_B = \Delta_A; (f \otimes f) \quad f; t_B = t_A$$

Fox's theorem

Let $C(\mathcal{X})$ denote the category of cocommutative comonoids and comonoid morphisms.

Proposition (Fox [7])

Given cocommutative comonoids $\langle A, \Delta_A, t_A \rangle$ and $\langle B, \Delta_B, t_B \rangle$, then $\langle A \oslash B, \Delta_{A \oslash B}, t_{A \oslash B} \rangle$ defined by

$$\Delta_{A \oslash B} = A \oslash B \xrightarrow{\Delta_A \oslash \Delta_B} (A \oslash A) \oslash (B \oslash B) \xrightarrow{s_{A,A,B,B}^\oslash} (A \oslash B) \oslash (A \oslash B)$$
$$t_{A \oslash B} = A \oslash B \xrightarrow{t_A \oslash t_B} I \oslash I \xrightarrow{\sim} I$$

is a cocommutative comonoid and $C(\mathcal{X})$ is a cartesian category with this monoidal product.

$$s_{A,B,C,D}^\oslash: (A \oslash B) \oslash (C \oslash D) \xrightarrow{\sim} A \oslash (B \oslash (C \oslash D)) \xrightarrow{\sim} A \oslash ((B \oslash C) \oslash D) \xrightarrow{\sim} A \oslash ((C \oslash B) \oslash D) \xrightarrow{\sim} A \oslash (C \oslash (B \oslash D)) \xrightarrow{\sim} (A \oslash C) \oslash (B \oslash D)$$

Fox's theorem

Lemma (Fox [7])

Given a symmetric strong monoidal functor $F: \mathcal{X} \rightarrow \mathcal{Y}$ and a commutative comonoid $\langle A, \Delta_A, t_A \rangle$ in \mathcal{X} , the triple $\langle F(A), \Delta_{F(A)}, t_{F(A)} \rangle$ defined by

$$\Delta_{F(A)} = F(A) \xrightarrow{F(\Delta_A)} F(A \otimes A) \xrightarrow{m_{\emptyset, A, A}^{-1}} F(A) \otimes F(A)$$

$$t_{F(A)} = F(A) \xrightarrow{F(t_A)} F(I) \xrightarrow{m_I^{-1}} I$$

is a cocommutative comonoid. As such, F canonically extends to a cartesian functor $C(F): C(\mathcal{X}) \rightarrow C(\mathcal{X})$.

Theorem (Fox [7])

The functor $C(-): \underline{\text{SMON}} \rightarrow \underline{\text{CART}}$ is right adjoint to the inclusion.

Fox's theorem

Corollary (Fox [7])

A SMC \mathcal{X} is cartesian if and only if it is isomorphic to its category of cocommutative comonoids $C(\mathcal{X})$.

Corollary (Heunen, Vicary [10])

A SMC \mathcal{X} is cartesian if and only if there are natural transformations

$$t_A: A \rightarrow I \quad \Delta_A: A \rightarrow A \oslash A$$

such that (A, Δ_A, t_A) is cocommutative comonoid and

$$t_{A \oslash B} = (t_A \oslash t_B); \rho_I^{-1} \quad t_I = 1,$$

$$\Delta_{A \oslash B} = (\Delta_A \oslash \Delta_B); s_{A, A, B, B}^{\oslash} \quad \Delta_I = \rho_I.$$

Linearly distributive categories

Definition (Cockett, Seely [5])

A *linearly distributive category*, or LDC, $(\mathbb{X}, \otimes, \top, \oplus, \perp)$ consists of:

- a category $(\mathbb{X}, ;, 1_A)$,
- a *tensor* monoidal structure $(\mathbb{X}, \otimes, \top, \alpha_\otimes, u_\otimes^R, u_\otimes^L)$,
- a *par* monoidal structure $(\mathbb{X}, \oplus, \perp, \alpha_\oplus, u_\oplus^R, u_\oplus^L)$, and
- left and right *linear distributivity* natural transformations

$$\delta_{A,B,C}^R : (A \oplus B) \otimes C \rightarrow A \oplus (B \otimes C)$$

$$\delta_{A,B,C}^L : A \otimes (B \oplus C) \rightarrow (A \otimes B) \oplus C$$

satisfying coherence conditions.

Symmetric and cartesian linearly distributive categories

Definition (Cockett, Seely [5])

A linearly distributive category $(\mathbb{X}, \otimes, \top, \oplus, \perp)$ is *symmetric* if

- $(\mathbb{X}, \otimes, \top)$ is a symmetric monoidal category with \otimes -braiding γ_\otimes ,
- $(\mathbb{X}, \oplus, \perp)$ is a symmetric monoidal category with \oplus -braiding γ_\oplus ,

such that

$$\delta_{A,B,C}^R = \gamma_{\otimes_{A \oplus B, C}}; (\mathbf{1}_C \otimes \gamma_{\oplus_{A,B}}); \delta_{C,B,A}^L; (\gamma_{\otimes_{C,B}} \oplus \mathbf{1}_A); \gamma_{\oplus_{B \otimes C, A}}$$

A linearly distributive category $(\mathbb{X}, \otimes, \top, \oplus, \perp)$ is *cartesian* if

- the tensor monoidal structure is cartesian $(\mathbb{X}, \times, \mathbf{1})$, and
- the par monoidal structure is cocartesian $(\mathbb{X}, +, \mathbf{0})$.

Example (Cockett, Seely [5])

A category with finite biproducts is a compact cartesian linearly distributive category.

Cartesian linearly distributive categories with negation

Definition (Cockett, Seely [5])

A linearly distributive category has *negation* if there are object functions $\perp(-)$ and $(-)^{\perp}$, together with the following parametrized family of maps

$$\perp A \otimes A \rightarrow \perp \quad A \otimes A^{\perp} \rightarrow \perp \quad \top \rightarrow A^{\perp} \oplus A \quad \top \rightarrow A \oplus^{\perp} A$$

satisfying coherence conditions.

Proposition (Joyal's Paradox, Girard [9])

A cartesian linearly distributive category has negation and only if it is a poset.

- 1 $\text{Hom}(\mathbf{0} \times A, B) \cong \text{Hom}(\mathbf{0}, B + A^{\perp}) \Rightarrow \mathbf{0} \times A$ is initial
- 2 If $\text{Hom}(A, \mathbf{0}) \neq \emptyset$, then consider $f: A \rightarrow \mathbf{0}$ and any $g: A \rightarrow B$. Now, $g = \langle 1_A, f \rangle; \pi_{A,0}^1; g$ and $\pi_{A,0}^1 = !_B^{A \times \mathbf{0}}: A \times \mathbf{0} \rightarrow B$. So, $\text{Hom}(A, B) = \{\langle 1_A, f \rangle; !_B^{A \times \mathbf{0}}\}$
- 3 $\text{Hom}(A, B) \cong \text{Hom}(\mathbf{1} \times A, B) \cong \text{Hom}(\mathbf{1}, B + A^{\perp}) \cong \text{Hom}((B + A^{\perp})^{\perp}, \mathbf{0})$
If $\text{Hom}(A, B) \neq \emptyset$, then $(B + A^{\perp})^{\perp}$ initial, and $\text{Hom}(A, B)$ contains one element.

Distributive cartesian linearly distributive categories

Definition (Cockett [2])

A *distributive category* is a category with finite products and coproducts such that the canonical natural transformations

$$d_{A,B,C}^R = [\underline{\nu}_{A,B}^0 \times 1_C, \underline{\nu}_{A,B}^1 \times 1_C]: (A \times C) + (B \times C) \rightarrow (A + B) \times C$$

$$\rho_A = \langle 1_{\mathbf{0}}, i_A \rangle: \mathbf{0} \rightarrow \mathbf{0} \times A$$

are isomorphisms.

Proposition (Cockett, Seely [5])

A *distributive category* is a cartesian linearly distributive category if and only if it is a preorder.

Exception monad cartesian linearly distributive categories

Definition

Given a distributive category \mathcal{X} , define the exception monad by

$$(\quad) + \mathbf{1} : \mathcal{X} \rightarrow \mathcal{X} \quad \eta_A = \underline{\nu}_{A,1}^0 \quad \mu_A = [\mathbf{1}_{A+1}, \underline{\nu}_{A,1}^1]$$

Proposition (Cockett, Seely [5])

The Kleisli category \mathcal{X}_{+1} of the exception monad is an isomix cartesian linearly distributive category, with products, coproducts and zero object defined by

- Initial object and binary coproducts in \mathcal{X}_{+1} are the same as in \mathcal{X} ,
- Terminal object in \mathcal{X}_{+1} is the initial object $\mathbf{0}$ in \mathcal{X} , with unique arrows

$$!_A; \underline{\nu}_{0,1}^1 : A \rightarrow \mathbf{0} + \mathbf{1}$$

- Binary products in \mathcal{X}_{+1} are $A \vee B = (A + B) + (A \times B)$, with projections

$$\bar{\pi}_{A,B}^0 = [[\eta_A, !_B; \underline{\nu}_{A,1}^1], \pi_{A,B}^0; \eta_A] : (A + B) + (A \times B) \rightarrow A + \mathbf{1}$$

$$\bar{\pi}_{A,B}^1 = [[(!_A; \underline{\nu}_{B,1}^1, \eta_B], \pi_{A,B}^1; \eta_A] : (A + B) + (A \times B) \rightarrow B + \mathbf{1}$$

Cartesian Linearly Distributive Categories

The left linearly distributivity in \mathcal{X}_{+1} is the map in \mathcal{X}

$$\delta_{A,B,C}^L : (A + (B + C)) + (A \times (B + C)) \rightarrow (((A + B) + (A \times B)) + C) + \mathbf{1}$$

defined as the map induced by coproduct universal properties:

$$A \xrightarrow{\vee_{A,B}^0} A + B \xrightarrow{\vee_{A+B,A \times B}^0} A \vee B \xrightarrow{\vee_{A \vee B,C}^0} (A \vee B) + C \xrightarrow{\eta_{(A \vee B) + C}} ((A \vee B) + C) + \mathbf{1}$$

$$B \xrightarrow{\vee_{A,B}^1} A + B \xrightarrow{\vee_{A+B,A \times B}^0} A \vee B \xrightarrow{\vee_{A \vee B,C}^0} (A \vee B) + C \xrightarrow{\eta_{(A \vee B) + C}} ((A \vee B) + C) + \mathbf{1}$$

$$C \xrightarrow{\vee_{A \vee B,C}^1} (A \vee B) + C \xrightarrow{\eta_{(A \vee B) + C}} ((A \vee B) + C) + \mathbf{1}$$

$$A \times (B + C) \xrightarrow{d_{A,B,C}^{L-1}} (A \times B) + (A \times C) \xrightarrow{1_{A \times B} + !_{A \times C}} (A \times B) + \mathbf{1}$$

$$\xrightarrow{\pi_{A+B,A \times B}^1 + \mathbf{1}_1} (A \vee B) + \mathbf{1} \xrightarrow{\pi_{A \vee B,C}^0 + \mathbf{1}_1} ((A \vee B) + C) + \mathbf{1}$$

Distributive restriction categories

Definition (Cockett, Lemay [4])

- A *restriction category* is a category with a morphism functor $(\overline{})$, known as the restriction operator, satisfying 4 axioms.

$$\bar{f}; f = f \quad \bar{f}; \bar{g} = \bar{g}; \bar{f} \quad \overline{g; f} = \bar{g}; \bar{f} \quad f; \bar{g} = \overline{f; g}; f$$

- A morphism $f: A \rightarrow B$ in a restriction category is *total* if $\bar{f} = 1_A$.
- A restriction category is *cartesian* if it has a *restriction terminal object* $\mathbf{1}_R$ and binary *restriction product* $A \times_R B$
 - there exists a unique total map $t_A: A \rightarrow \mathbf{1}_R$ such that $f; t_A = \bar{f}; t_A$,
 - there are total maps $p_{A,B}^0: A \times_R B \rightarrow A$ and $p_{A,B}^1: A \times_R B \rightarrow B$ and there exist a unique maps $\langle f, g \rangle_R$ such that $\langle f, g \rangle_R; p_{A,B}^0 = \bar{g}; f$ and $\langle f, g \rangle_R; p_{A,B}^1 = \bar{f}; g$
- A restriction category is *cocartesian* if it has finite coproducts and all injection maps are total.
- A *distributive restriction category* is a cartesian and cocartesian restriction category such that the restriction products distribute over the coproducts.

Join restriction categories

Definition (Cockett, Lemay [4])

Consider a restriction category with zero maps such that $\bar{0} = 0$.

- Let $f, g: A \rightarrow B$ be parallel maps, then

$$f \leq g \iff \bar{f}; g = f \quad f \smile g \iff \bar{f}; g = \bar{g}; f$$

$$f \perp g \iff \bar{f}; g = 0$$

- The *join* of a finite family pair-wise compatible maps $f_i: A \rightarrow B$ is a map $\vee_i f_i: A \rightarrow B$ such that

$$f_j \leq \vee_i f_i \quad \text{and} \quad \text{if } f_i \leq g \Rightarrow \vee_i f_i \leq g$$

- A *join restriction category* is a restriction category with all joins of finite families of pairwise compatible maps and they are stable under pre-composition.

Classical restriction categories

Definition (Cockett, Lemay [4])

Consider a restriction category with zero maps such that $\bar{0} = 0$.

- Let $f \leq g: A \rightarrow B$, then the *relative complement* of f in g is a map $g \setminus f: A \rightarrow B$ such that

$$g \setminus f \perp f \quad \text{and} \quad g \setminus f \vee f = g$$

- A *classical restriction category* is a join restriction category such that all relative complements exists.

Classical distributive restriction categories

Proposition

Every classical distributive restriction category has classical products, i.e. binary products of the form $A \& B = (A + B) + (A \times_R B)$, with projections

$$\pi_{A,B}^0 = [[1_A, 0_{A,B}], p_{A,B}^0] \quad \pi_{A,B}^1 = [[0_{A,B}, 1_B], p_{A,B}^1]$$

Remark

$f \& g = \langle \pi_{A,A'}^0; f, \pi_{B,B'}^1; g \rangle \neq (f + g) + (f \times_R g)$ for $f: A \rightarrow B$ and $g: A' \rightarrow B'$

Lemma (Cockett, Lemay [4])

- Given a distributive restriction category \mathcal{X} , the subcategory of total maps $T[\mathcal{X}]$ is a distributive category.
- Given a distributive category \mathbb{X} , the Kleisli category \mathbb{X}_{+1} of its exception monad is a classical distributive restriction category.

Classical distributive restriction categories

Proposition (Cockett, Lemay [4])

Given a classical distributive restriction category \mathcal{X} , then we have a restriction isomorphism $\mathcal{X} \cong T[\mathcal{X}]_{+1}$.

Theorem

Every classical distributive restriction category is an isomix cartesian LDC.

Example (Cockett, Lemay [4])

- PAR, the category of sets and partial functions
- $k\text{-CALG}_{\bullet}^{op}$, the opposite category of commutative k -algebras and the non-unital k -algebra morphisms
- $\text{TOP}_{\bullet}^{c\text{lopen}}$, the category of topological spaces and partial continuous maps defined on clopen sets
- $\text{STONE}_{\bullet}^{c\text{lopen}}$, the category of Stone spaces and partial continuous functions defined on clopen sets \Rightarrow opposite category of Boolean algebras and maps which preserve meets, joins and the bottom.

Motivation

Is there a Fox-like theorem for cartesian LDCs?

By Fox's theorem and its dual statement:

Proposition

A SLDC \mathbb{X} is cartesian if and only if there are natural transformations

$$\Delta_A : A \rightarrow A \otimes A \quad t_A : A \rightarrow \top \quad \nabla_A : A \oplus A \rightarrow A \quad s_A : \perp \rightarrow A$$

such that, $\forall A, B \in \mathbb{X}$,

- $\langle A, \Delta_A, t_A \rangle$ determines a \otimes -cocommutative comonoid,
- $\langle A, \nabla_A, s_A \rangle$ determines a \oplus -commutative monoid, and

$$\Delta_{A \otimes B} = (\Delta_A \otimes \Delta_B); s_{A, A, B, B}^{\otimes} \quad t_{A \otimes B} = (t_A \otimes t_B); u_{\otimes \top}^{R^{-1}}$$

$$\nabla_{A \oplus B} = s_{A, B, A, B}^{\oplus}; (\nabla_A \oplus \nabla_B) \quad s_{A \oplus B} = u_{\oplus \perp}^{R^{-1}}; (s_A \oplus s_B)$$

$$\Delta_{\top} = u_{\otimes \top}^R \quad t_{\top} = 1_{\top} \quad \nabla_{\perp} = u_{\oplus \perp}^R \quad s_{\perp} = 1_{\perp}$$

Motivation

Given a cartesian linearly distributive category \mathbb{X} , there is a map

$$\nabla_{A \otimes B} : (A \otimes B) \oplus (A \otimes B) \rightarrow A \otimes B$$

$$\begin{array}{ccc} (A \otimes B) \oplus (A \otimes B) & \xrightarrow{\nabla_{A \otimes B}} & A \otimes B \\ \sim \downarrow & & \downarrow \sim \\ ((A \oplus \perp) \otimes (B \oplus \perp)) \oplus ((\perp \oplus A) \otimes (\perp \oplus B)) & & (A \oplus \perp) \otimes (B \oplus \perp) \\ \downarrow ((1_A \oplus s_A) \otimes (1_B \oplus s_B)) \oplus ((s_A \oplus 1_A) \otimes (s_B \oplus 1_B)) & & \downarrow (1_A \oplus s_A) \otimes (1_B \oplus s_B) \\ (A \oplus A) \otimes (B \oplus B) \oplus ((A \oplus A) \otimes (B \oplus B)) & \xrightarrow{\nabla_{(A \oplus A) \otimes (B \oplus B)}} & (A \oplus A) \otimes (B \oplus B) \xrightarrow{\nabla_{A \otimes B}} A \otimes B \end{array}$$

$$\Rightarrow \nabla_{A \otimes B} : (A \otimes B) \oplus (A \otimes B) \xrightarrow{\mu_{A, B, A, B}} (A \oplus A) \otimes (B \oplus B) \xrightarrow{\nabla_A \otimes \nabla_B} A \otimes B$$

Similarly for $s_{A \otimes B}$, $t_{A \oplus B}$ and $\Delta_{A \oplus B}$

Duoidal categories

We need a symmetric linearly distributive category \mathbb{X} with arrows

$$(A \otimes B) \oplus (C \otimes D) \rightarrow (A \oplus C) \otimes (B \oplus D)$$

$$\perp \rightarrow \perp \otimes \perp \qquad \top \oplus \top \rightarrow \top$$

Answer: **duoidal categories**

Definition (Aguiar, Mahajan [1])

A *duoidal category* $(\mathcal{X}, \diamond, I, \star, J, \circ)$ is category \mathcal{X} with two monoidal structures (\mathcal{X}, \star, J) and $(\mathcal{X}, \diamond, I)$ equipped with morphisms

$$\Delta_I : I \rightarrow I \star I \qquad \mu_J : J \diamond J \rightarrow J \qquad \iota : I \rightarrow J$$

and an *interchange* natural transformation

$$\zeta_{A,B,C,D} : (A \star B) \diamond (C \star D) \rightarrow (A \diamond C) \star (B \diamond D)$$

satisfying some coherence conditions.

Duoidal categories

Definition

A duoidal category $(\mathcal{X}, \diamond, I, \star, J)$ is *symmetric* if

- $(\mathcal{X}, \diamond, I)$ is a symmetric monoidal category with \diamond -braiding γ_\diamond ,
- (\mathcal{X}, \star, J) is a symmetric monoidal category with \oplus -braiding γ_\star ,

satisfying coherence conditions.

Example (Aguiar, Mahajan [1])

Consider a monoidal category $(\mathcal{X}, \otimes, I)$ with finite coproducts, then $(\mathcal{X}, +, \mathbf{0}, \otimes, I)$ is a duoidal category with structure maps

$$\Delta_0 = i_{\mathbf{0} \otimes \mathbf{0}}: \mathbf{0} \rightarrow \mathbf{0} \otimes \mathbf{0} \quad \mu_I = [1_I, 1_I]: I + I \rightarrow I \quad \iota = i_I: \mathbf{0} \rightarrow I$$

and interchange natural transformation

$$\zeta_{A,B,C,D} = [\underline{\nu}_{A,C}^0 \otimes \underline{\nu}_{B,D}^0, \underline{\nu}_{A,C}^1 \otimes \underline{\nu}_{B,D}^1]: (A \otimes B) + (C \otimes D) \rightarrow (A + C) \otimes (B + D)$$

Duoidal bimonoids

Definition (Aguiar, Mahajan [1])

A *bicommutative duoidal bimonoid* in \mathcal{X} is a quintuple $\langle A, \mu, \eta, \Delta, \epsilon \rangle$ where

- $\langle A, \mu, \eta \rangle$ is a commutative \diamond -monoid, and
- $\langle A, \Delta, \epsilon \rangle$ is a cocommutative \star -comonoid

such that

$$A \diamond A \xrightarrow{\mu} A \xrightarrow{\Delta} A \star A = A \diamond A \xrightarrow{\Delta \diamond \Delta} (A \star A) \diamond (A \star A) \xrightarrow{\zeta_{A, A, A, A}} (A \diamond A) \star (A \diamond A) \xrightarrow{\mu \star \mu} A \star A$$

$$A \diamond A \xrightarrow{\mu} A \xrightarrow{\epsilon} J = A \diamond A \xrightarrow{\epsilon \diamond \epsilon} J \diamond J \xrightarrow{\mu_J} J$$

$$I \xrightarrow{\eta} A \xrightarrow{\Delta} A \star A = I \xrightarrow{\Delta_I} I \star I \xrightarrow{\eta \star \eta} A \star A$$

$$I \xrightarrow{\eta} A \xrightarrow{\epsilon} J = I \xrightarrow{\iota} J$$

A *morphism of duoidal bimonoids* is a morphism of the underlying monoids and comonoids.

Medial linearly distributive categories

Definition

A *medial linearly distributive category*, or MLDC, $(\mathbb{X}, \otimes, \top, \oplus, \perp)$ consists of:

- a category $(\mathbb{X}, ;, 1_A)$,
- a *tensor* monoidal structure $(\mathbb{X}, \otimes, \top)$,
- a *par* monoidal structure $(\mathbb{X}, \oplus, \perp)$,
- *nullary medial, nullary comedial* and *mix* morphisms,

$$\nabla_{\top} : \top \oplus \top \rightarrow \top \quad \Delta_{\perp} : \perp \rightarrow \perp \otimes \perp \quad m : \perp \rightarrow \top$$

- a *medial* natural transformation,

$$\mu_{A,B,C,D} : (A \otimes B) \oplus (C \otimes D) \rightarrow (A \oplus C) \otimes (B \oplus D)$$

- left and right *linear distributivity* natural transformations

$$\delta_{A,B,C}^R : (A \oplus B) \otimes C \rightarrow A \oplus (B \otimes C) \quad \delta_{A,B,C}^L : A \otimes (B \oplus C) \rightarrow (A \otimes B) \oplus C$$

satisfying the coherence conditions on the next slide.

Medial linearly distributive categories

Definition

- $(\mathbb{X}, \otimes, \top, \oplus, \perp)$ is a linearly distributive category,
- $(\mathbb{X}, \oplus, \perp, \otimes, \top)$ is a duoidal category, and
- the *medial maps* interact coherently with the linear distributivities:

$$\begin{array}{ccccc} ((A \otimes B) \oplus (C \otimes D)) \otimes X & \xrightarrow{\mu \otimes 1} & ((A \oplus C) \otimes (B \oplus D)) \otimes X & \xrightarrow{\alpha \otimes} & (A \oplus C) \otimes ((B \oplus D) \otimes X) \\ \delta^R \downarrow & & & & \downarrow 1 \otimes \delta^R \\ (A \otimes B) \oplus ((C \otimes D) \otimes X) & \xrightarrow[1 \oplus \alpha \otimes]{} & (A \otimes B) \oplus (C \otimes (D \otimes X)) & \xrightarrow{\mu} & (A \oplus C) \otimes (B \oplus (D \otimes X)) \end{array}$$

and 3 other variations.

Definition

A MLDC $(\mathbb{X}, \otimes, \top, \oplus, \perp)$ is *symmetric* if

- $(\mathbb{X}, \otimes, \top, \oplus, \perp)$ is a symmetric LDC and
- $(\mathbb{X}, \oplus, \perp, \otimes, \top)$ is a symmetric duoidal category.

Examples of medial linearly distributive categories

Example

1 Symmetric monoidal categories $(\mathcal{X}, \otimes, I, \otimes, I)$

$$\nabla_I = \rho_I^{-1} = \lambda_I^{-1}: I \otimes I \rightarrow I \quad \Delta_I = \rho_I = \lambda_I: I \rightarrow I \otimes I \quad m = 1_I: I \rightarrow I$$

$$\mu_{A,B,C,D} = s_{A,B,C,D}^\otimes: (A \otimes B) \otimes (C \otimes D) \rightarrow (A \otimes C) \otimes (B \otimes D)$$

$$\delta_{A,B,C}^R = \alpha_{A,B,C}: (A \otimes B) \otimes C \rightarrow A \otimes (B \otimes C)$$

2 Cartesian linearly distributive category $(\mathbb{X}, \times, \mathbf{1}, +, \mathbf{0})$

$$\nabla_1 = !_{1+1}: \mathbf{1} + \mathbf{1} \rightarrow \mathbf{1} \quad \Delta_0 = i_{0 \times 0}: \mathbf{0} \rightarrow \mathbf{0} \times \mathbf{0} \quad m = !_0 = i_1: \mathbf{0} \rightarrow \mathbf{1}$$

$$\begin{aligned} \mu_{A,B,C,D} = [\underline{\nu}_{A,C}^0 \times \underline{\nu}_{B,D}^0, \underline{\nu}_{A,C}^1 \times \underline{\nu}_{B,D}^1] &= \langle \pi_{A,B}^0 + \pi_{C,D}^0, \pi_{A,B}^1 + \pi_{C,D}^1 \rangle: \\ (A \times B) + (C \times D) &\rightarrow (A + C) \otimes (B + D) \end{aligned}$$

Normal duoidal categories

Definition (Garner, Franco [8])

A duoidal category $(\mathcal{X}, \diamond, I, \star, J)$ is *normal* if $\iota: I \rightarrow J$ is invertible.

Proposition (Spivak, Srinivasan [12])

A normal duoidal category $(\mathcal{X}, \diamond, I, \star, J)$ determines an isomix linearly distributive category $(\mathcal{X}, \diamond, I, \star, J)$, with

$$\begin{aligned}\delta_{A,B,C}^L = A \diamond (B \star C) &\xrightarrow{\sim} (A \star J) \diamond (B \star C) \xrightarrow{\zeta_{A,J,B,C}} (A \diamond B) \star (J \diamond C) \\ &\xrightarrow{\sim} (A \diamond B) \star (I \diamond C) \xrightarrow{\sim} (A \diamond B) \star C\end{aligned}$$

Warning! Normal duoidal categories do not provide examples of medial linearly distributive categories.

Normal duoidal categories

Consider an isomix medial LDC $(\mathbb{X}, \otimes, \top, \oplus, \perp)$, there are maps

$$\alpha_{A,B,C}^L: A \oplus (B \otimes C) \rightarrow (A \oplus B) \otimes C \quad \alpha_{A,B,C}^R: (A \otimes B) \oplus C \rightarrow A \otimes (B \oplus C)$$

Are these inverses of the linearly distributivities δ^R and δ^L ?

Proposition (Cockett, Lack [3])

In any restriction category, every monomorphism (so in particular every isomorphism) is total.

Consider linear distributivities in PAR

$$\begin{aligned} \delta_{A,B,C}^L: (A + (B + C)) + (A \times (B + C)) &\rightarrow ((A + B) + (A \times B)) + C \\ a \mapsto a &\quad b \mapsto b \quad c \mapsto c \\ (a, b) \mapsto (a, b) &\quad (a, c) \mapsto \uparrow \end{aligned}$$

$\Rightarrow \delta_{A,B,C}^L$ is not a total map!

Distributive symmetric monoidal categories

Definition (Yau [11])

A symmetric monoidal category $(\mathcal{X}, \otimes, I)$ is *distributive* if

- \mathcal{X} has finite coproducts, and
- the following canonical natural transformations

$$d_{A,B,C}^L = [1_A \otimes \underline{\nu}_{B,C}^0, 1_A \otimes \underline{\nu}_{B,C}^1]: (A \otimes B) + (C \otimes D) \rightarrow A \otimes (B + C)$$

$$\lambda_A^\bullet = i_{\mathbf{0} \otimes A}: \mathbf{0} \rightarrow \mathbf{0} \otimes A$$

Lemma (Folklore)

Given a distributive symmetric monoidal category $(\mathcal{X}, \otimes, I)$, the functor, known as the “either-or-both” product,

$$- \vee - = (- + -) + (- \otimes -): \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X}$$

defines a symmetric monoidal category $(\mathcal{X}, \vee, \mathbf{0})$.

Examples of medial linearly distributive categories

Theorem

Given a distributive symmetric monoidal category $(\mathcal{X}, \otimes, I)$ with a zero object \emptyset , then $(\mathcal{X}, \vee, \emptyset, +, \emptyset)$ is an isomix symmetric medial linearly distributive category.

$$\delta_{A,B,C}^L : (A + (B + C)) + (A \times (B + C)) \rightarrow ((A + B) + (A \otimes B)) + C$$

is determined uniquely by the following maps and the universal properties of coproducts:

$$A \xrightarrow{\vee_A^0} A + B \xrightarrow{\vee_{A+B, A \otimes B}^0} A \vee B \xrightarrow{\vee_{A \vee B, C}^0} (A \vee B) + C$$

$$B \xrightarrow{\vee_A^1} A + B \xrightarrow{\vee_{A+B, A \otimes B}^0} A \vee B \xrightarrow{\vee_{A \vee B, C}^0} (A \vee B) + C$$

$$C \xrightarrow{\vee_{A \vee B, C}^1} (A \vee B) + C$$

$$A \otimes (B + C) \xrightarrow{1_A \otimes (1_B + !_C)} A \otimes (B + \emptyset) \xrightarrow{1_A \otimes u_{+B}^R} A \otimes B \xrightarrow{\vee_{A+B, A \otimes B}^1} A \vee B \xrightarrow{\vee_{A \vee B, C}^0} (A \vee B) + C$$

Examples of medial linearly distributive categories

Example

③ Distributive restriction category with zero object

⇒ Restriction product \times and restriction terminal object $\mathbf{1}$ determine a distributive symmetric monoidal category $(\mathcal{X}, \times, \mathbf{1})$.

- Classical distributive restriction categories, e.g. PAR, $k\text{-CALG}_\bullet^{\text{op}}$, $\text{TOP}_\bullet^{\text{clopen}}$ and STONE

Warning! these are not cartesian LDCs as \vee is not the categorical product & of classical distributive restriction categories

- TOP_\bullet , the category of topological spaces and partial continuous maps
→ distributive restriction category, which is not classical
(Cockett, Lemay [4])

Examples of medial linearly distributive categories

Example

④ Symmetric monoidal closed categories \mathcal{X} with finite coproducts and a zero object (Elgueta [6])

⇒ Closure ensures the monoidal product distributes over the coproducts

$$\begin{aligned} \text{Hom}((A + B) \otimes C, D) &\cong \text{Hom}(A + B, [C, D]) \cong \text{Hom}(A, [C, D]) \times \text{Hom}(B, [C, D]) \\ &\cong \text{Hom}(A \otimes C, D) \times \text{Hom}(B \otimes C, D) \cong \text{Hom}((A \otimes C) + (B \otimes C), D) \end{aligned}$$

Then, Yoneda Lemma implies $(A + B) \otimes C \cong (A \otimes C) + (B \otimes C)$.

- $\text{Mod}(R)$, the category of R -modules and module homomorphisms
→ \otimes is usual tensor product of R -modules and $+$ is the direct sum
- $Q\text{-Rel}$, the category of sets and Q -relations
→ \otimes is the cartesian product and $+$ is the disjoint union

⇒ in both $\text{Mod}(R)$ and $Q\text{-Rel}$, the coproduct is a biproduct

Medial bimonoids

Let \mathbb{X} be a symmetric medial linearly distributive category.

Definition

- A *bicommutative medial bimonoid* in \mathbb{X} is a bicommutative duoidal bimonoid in $(\mathbb{X}, \oplus, \perp, \otimes, \top)$, i.e. a quintuple $\langle A, \Delta_A, t_A, \nabla_A, s_A \rangle$ consisting of an object A and four morphisms

$$\Delta_A : A \rightarrow A \otimes A \quad t_A : A \rightarrow \top \quad \nabla_A : A \oplus A \rightarrow A \quad s_A : \perp \rightarrow A$$

satisfying coherence conditions.

- A *medial bimonoid morphism* in \mathbb{X} is a morphism of duoidal bimonoids in $(\mathbb{X}, \oplus, \perp, \otimes, \top)$.

Proposition

$\langle \top, u_{\otimes \top}^R, 1_\top, \nabla_\top, m \rangle$ and $\langle \perp, \Delta_\perp, m, u_{\oplus \perp}^R, 1_\perp \rangle$ are bicommutative medial bimonoids.

Medial bimonoids

Proposition

Given two bicommutative medial bimonoids $\langle A, \Delta_A, t_A, \nabla_A, s_A \rangle$ and $\langle B, \Delta_B, t_B, \nabla_B, s_B \rangle$ in \mathbb{X} , then $\langle A \otimes B, \Delta_{A \otimes B}, t_{A \otimes B}, \nabla_{A \otimes B}, s_{A \otimes B} \rangle$ defined by

$$\begin{array}{ll} \Delta_{A \otimes B} = (\Delta_A \otimes \Delta_B); s_{A,A,B,B}^{\otimes} & t_{A \otimes B} = (t_A \otimes t_B); u_{\otimes \top}^{R^{-1}} \\ \nabla_{A \otimes B} = \mu_{A,B,A,B}; (\nabla_A \otimes \nabla_B) & s_{A \otimes B} = \Delta_{\perp}; (s_A \otimes s_B), \end{array}$$

and $\langle A \oplus B, \Delta_{A \oplus B}, t_{A \oplus B}, \nabla_{A \oplus B}, s_{A \oplus B} \rangle$ defined by

$$\begin{array}{ll} \Delta_{A \oplus B} = (\Delta_A \oplus \Delta_B); \mu_{A,A,B,B} & t_{A \oplus B} = (t_A \oplus t_B); \nabla_{\top} \\ \nabla_{A \oplus B} = s_{A,B,A,B}^{\oplus}; (\nabla_A \oplus \nabla_B) & s_{A \oplus B} = u_{\oplus \perp}^{R^{-1}}; (s_A \oplus s_B), \end{array}$$

are bicommutative medial bimonoids.

Linearly distributive category of medial bimonoids

Definition

Define $B(\mathbb{X})$ to be the category of bicommutative medial bimonoids and bimonoid morphisms in \mathbb{X} .

Lemma

$B(\mathbb{X})$ is a linearly distributive category.

By our earlier characterization of cartesian LDCs:

Theorem

$B(\mathbb{X})$ is a cartesian linearly distributive category.

Linearly distributive category of medial bimonoids

Proposition (Aguiar, Mahajan [1])

Let $(\mathcal{X}, +, \mathbf{0}, \star, J)$ be a cocartesian duoidal category, then the category of duoidal bimonoids of \mathcal{X} is isomorphic to the category of \star -comonoids in \mathcal{X} .

Proposition

Consider a symmetric cocartesian medial LDC $(\mathbb{X}, \otimes, \top, +, \mathbf{0})$, then $B(\mathbb{X})$ is isomorphic to the cartesian LDC of cocommutative \otimes -comonoids $C_{\otimes}(\mathbb{X})$.

Proposition (Folklore)

Given a distributive symmetric monoidal category $(\mathcal{X}, \otimes, I)$ with biproducts, the category of cocommutative γ -comonoids $C_{\gamma}(\mathcal{X})$ is isomorphic to the category of cocommutative \otimes -cosemigroups $CSGp_{\otimes}(\mathcal{X})$.

Corollary

Consider a distributive symmetric monoidal categories $(\mathcal{X}, \otimes, I)$ with biproducts, then $B(\mathcal{X}) \cong CSGp_{\otimes}(\mathcal{X})$.

Linearly distributive Fox theorem

- Given a symmetric strong medial linear functor $F: \mathbb{X} \rightarrow \mathbb{Y}$, F canonically extends to a cartesian linear functor $B(F): B(\mathbb{X}) \rightarrow B(\mathbb{Y})$.
- Given a medial linear transformation $\alpha: F \Rightarrow G$, α canonically extends to a cartesian linear transformation $B(\alpha): B(F) \Rightarrow B(G)$.

Therefore, we get:

Theorem

$B(-): \mathbf{MLDC_s} \rightarrow \mathbf{CLDC}$ is right adjoint to the inclusion 2-functor.

Corollary

A symmetric medial linearly distributive category is cartesian if and only if it is isomorphic to its category of bicommutative medial bimonoids.

References I

- [1] M. Aguiar, S. Mahajan, *Monoidal functors, species and Hopf algebras*, CRM Monograph Series, vol. 29, American Mathematical Society, Providence, RI, 2010.
- [2] J.R.B. Cockett, *Introduction to distributive categories*, Math. Structures Comput. Sci. **3** (1993), no. 3, 277–307.
- [3] J.R.B. Cockett, S. Lack, *Restriction categories. I. Categories of partial maps*, Theoret. Comput. Sci. **270** (2002), no. 1-2, 223–259.
- [4] J.R.B. Cockett, J.-S. Lemay, *Classical distributive restriction categories*, Theory Appl. Categ. **42** (2024), no. 6, 102–144.
- [5] J.R.B. Cockett, R.A.G. Seely, *Weakly distributive categories*, J. Pure Appl. Algebra **114** (1997), no. 2, 133–173.
- [6] J. Elgueta, *The groupoid of finite sets is biinitial in the 2-category of rig categories*, J. Pure Appl. Algebra **225** (2021), no. 11, 39 pp.
- [7] T. Fox, *Coalgebras and Cartesian categories*, Comm. Algebra **4** (1976), no. 7, 665–667.
- [8] R. Garner, I. López Franco, *Commutativity*, J. Pure Appl. Algebra **220**, no. 5, 1707–1751.
- [9] J.-Y. Girard, *A new constructive logic: classical logic*, Math. Structures Comput. Sci. **1** (1991), no. 3, 255–296

References II

- [10] C. Heunen, J. Vicary, *Categories for quantum theory*, Oxford Graduate Texts in Mathematics, vol. 28, Oxford University Press, Oxford, 2019.
- [11] D. Yau, *Bimonoidal Categories, E_n -Monoidal Categories, and Algebraic K-Theory (Volume I: Symmetric Bimonoidal Categories and Monoidal Bicategories)*, Mathematical Surveys and Monographs, vol. 283, American Mathematical Society, Rhode Island, 2024.
- [12] D.I. Spivak, P.V. Srinivasan, *What kind of linearly distributive category do polynomial functors form?*, preprint, 2024.