What's wrong with higher-order derivatives?

Octoberfest 2024

Jean-Baptiste Vienney

Supervisor: Rick Blute

Introduction

We will discuss two questions related to higher-order derivatives:

- (1) How to deal with the derivative of polynomials in positive characteristic? (and Hasse-Schmidt differential categories)
- (2) Can we define an extension of tangent categories with functors T_n which differentiate n times?

We'll see four clues towards the existence of a notion of higher-order tangent category.

1. Derivatives of polynomials in positive characteristic

Differentiating polynomials

Let R be a commutative ring. We can define the derivative of a polynomial $f \in R[x]$. We start with:

$$1' := 0$$

 $(x^n)' := x^{n-1} \quad (n \ge 1)$

Then, we extend to an *R*-linear map:

$$R[x] \longrightarrow R[x]$$

 $f \longmapsto f'$

We get the usual properties $(r \in R)$:

- (r)' = 0,
- (rx)' = r,
- (fg)' = f'g + fg',
- $(f \circ g)' = (f' \circ g)g'.$

Derivative in positive characteristic. What's wrong?

Let R be a commutative ring of positive characteristic (i.e. there exists $n \in \mathbb{N} \setminus \{0\}$ such that $n.1_R = 0$).

It is false that $f \in R[x]$ is a constant $\Leftrightarrow f' = 0$! (consider $f(x) = x^n$ with $n = \operatorname{char} R$).

We will not solve this issue, but we can still improve a bit the derivative in this context.

Theorem (Taylor expansion for polynomials over a \mathbb{Q} -algebra) Let R be a commutative ring with a ring homomorphism $\mathbb{Q} \to R$, let

 $f \in R[x]$ and let $a \in R$. Then:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}}{n!} (a)(x-a)^n$$

A nonzero ring of positive characteristic certainly does not have a ring homomorphism $\mathbb{Q} \to R$, so we can't make sense of this theorem in positive characteristic.

This theorem seems to tell us that $\frac{f^{(n)}}{n!}$ is more important than $f^{(n)}$ alone... How can we write this in positive characteristic?

We can't divide by n! in positive characteristic. But we can still **not multiply** by n!.

We have
$$(x^{n+p})^{(n)} = (p+n)\dots(p+1)x^{(p)} = n!\binom{n+p}{n}x^{(p)}$$
.

If we have a ring homomorphism $\mathbb{Q} \to R$, we can write:

$$\frac{(x^{n+p})^{(n)}}{n!} = \frac{(p+n)\dots(p+1)}{n!}x^{(p)} = \binom{n+p}{n}x^{(p)}$$

If we don't have a ring homomorphism $\mathbb{Q} \to R$, we can still define:

$$D^{n}(x^{n+p}) = \binom{n+p}{n} x^{p} \qquad D^{n}(x^{k}) = 0 \quad (k < n)$$

In some cases, it will resurrect some higher-derivatives which were equal to 0!

For instance if
$$char(R) = 2$$
, then $(x^3)^{(2)} = 3.2.x = 0$ but $D^2(x^3) = \binom{3}{2}x = 3x$.

We extend D^n to an R-linear map $D^{(n)}: R[x] \to R[x]$.

 $D^n(f)$ is called the Hasse-Schmidt derivative of order n of f.

Theorem (Taylor expansion for polynomials over a com. ring) Let R be a commutative ring, let $f \in R[x]$ and let $a \in R$. Then:

$$f(x) = \sum_{n=0}^{\infty} D^n(f)(a)(x-a)^n$$

Corollary

Let $f \in R[x]$ and let $a \in R$. Then:

f is a constant
$$\Leftrightarrow D^n(f)(a) = 0$$
 for every $n \ge 1$

Multivariate Hasse-Schmidt derivative

Let R be a commutative ring. We define

$$D^{(r_1,\ldots,r_p)}:R[x_1,\ldots,x_p]\to R[x_1,\ldots,x_p]$$

as the unique R-linear map such that

$$D^{(n_1, \dots, n_p)}(x_1^{n_1 + r_1} \dots x_p^{n_p + r_p}) = \binom{n_1 + r_1}{n_1} \dots \binom{n_p + r_p}{n_p} x_1^{n_1} \dots x_p^{r_p}$$
$$D^{(n_1, \dots, n_p)}(x_1^{k_1} \dots x_p^{k_p}) = 0 \quad (k_1 < n_1 \text{ or } \dots \text{ or } k_p < n_p)$$

Differential categories

An algebraic differential category is an additive (i.e. enriched over commutative monoids) symmetric monoidal category $(\mathcal{C}, \otimes, I)$ together (in particular) with a monad $S: \mathcal{C} \to \mathcal{C}$ and a natural transformation

$$d_A:SA o SA\otimes A$$

which has properties similar to the R-linear map given by:

$$x_1 \otimes_s \cdots \otimes_s x_{p+1} \mapsto \sum_{1 \leq i \leq p} (x_1 \otimes_s \cdots \otimes_s \hat{x}_i \otimes_s \cdots \otimes_s x_p) \otimes x_i$$

when A is an R-module and SA is the symmetric algebra over A.

If $A \stackrel{\psi}{\simeq} R^p$ as an R-module, then we have $SA \stackrel{\phi}{\simeq} R[x_1, \dots, x_p]$ and ϕ^{-1} ; d_A ; $(\phi \otimes \psi)$ is given by

$$R[x_1, \dots, x_p] \to R[x_1, \dots, x_p] \otimes R^p$$

$$f \mapsto \sum_{1 \le i \le p} \frac{\partial f}{\partial x_i} \otimes e_i$$

Hasse-Schmidt differential categories

An (algebraic) Hasse-Schmidt differential category is an additive symmetric monoidal category together (in particular) with a monad $S:\mathcal{C}\to\mathcal{C}$, symmetric powers¹ and a family of natural transformations

$$D_A^n: SA \to SA \otimes S^nA$$

which behave like

$$R[x_1, \dots, x_p] \to R[x_1, \dots, x_p] \otimes R_n[x_1, \dots, x_p]$$
$$f \mapsto \sum_{I \in \mathbb{N}^n} D^I f \otimes x_I$$

where $R_n[x_1, \ldots, x_p]$ is the set of homogeneous polynomials of degree $n \subset R[x_1, \ldots, x_p]$.

Theorem

Every Hasse-Schmidt differential category is a differential category.

Theorem

Every $\mathbb{Q}_{\geq 0}$ -linear ² differential category is a Hasse-Schmidt differential category.

²i.e. enriched over $\mathbb{Q}_{\geq 0}$ -modules

¹we define S^nA as the coequalizer of all the permutations $\sigma:A^{\otimes n}\to A^{\otimes n}$

2. Higher-order tangent categories?

Tangent categories

A tangent category is a category $\mathcal C$ with a functor $T:\mathcal C\to\mathcal C$ which behaves like the tangent functor on smooth manifolds. More precisely, we ask for:

- ▶ a natural transformation $p_A : TA \rightarrow A$,
- ▶ for each $A \in \mathcal{C}$ and $n \geq 0$, the pullback $T_n A$ of n copies of p_A exists and is preserved by every T^m , $m \geq 0$,
- ▶ natural transformations $m_A: T_2A \to TA$, $e_A: A \to TA$, $l_A: TA \to T^2A$, $c_A: T^2A \to T^2A$ which satisfy a bunch of identities. In particular every (TA, m_A, e_A) must be a commutative monoid, $e_A^2 = \operatorname{id}_{T^2A}$ and $e_A^2: TA \to TA$.

The category of smooth manifolds is an example.

Clue 1 (ft. commutative rings)

A simpler example is given by the category of commutative rings. If R is a commutative ring, we define $TR = R[x]/(x^2) \simeq R[\epsilon]$ with $\epsilon^2 = 0$.

The idea is that an element $a+b\epsilon\in TR$ is an infinitesimal vector starting from a and pointing in the direction b. We have $T_nR=R[x_1,\ldots,x_n]/(x_ix_j)\simeq R[\epsilon_1,\ldots,\epsilon_n]$ with $\epsilon_i\epsilon_j=0$ and $T^2R\simeq R[x,y]/(x^2,y^2)\simeq R[\epsilon,\eta]$ with $\epsilon^2=\eta^2=0$.

We have
$$p_R(a+b\epsilon)=a$$
, $m_R(a+b\epsilon_1+c\epsilon_2)=a+b\epsilon_1$, $e_R(r)=r$, $I_R(a+b\epsilon)=a+b\epsilon\eta$, $c_R(a+b\epsilon+(c+d\epsilon)\eta)=a+c\epsilon+(b+d\epsilon)\eta$.

We would like to define ${}_{n}TR = R[x]/(x^{n}) \simeq R[\epsilon]$ with $\epsilon^{n} = 0$. We have projections ${}_{n}p_{R}: {}_{n}TR \to R$. Of course we have the pullbacks of ${}_{n_{1}}p_{R}, \ldots, {}_{n_{r}}p_{R}$. Do we have canonical flips $({}_{n}T)^{2}R \to ({}_{n}T)^{2}R$? etc. . .

The idea would be that an element $a_0 + a_1\epsilon + \cdots + a_n\epsilon^{n-1}$ is an infinitesimal curve starting from a_0 and going in the direction given by $x \mapsto a_0 + a_1x + \cdots + a_nx^{n-1}$.

Clue 2 (ft. coEilenberg-Moore categories)

Theorem

The coEilenberg-Moore category of a coalgebraic differential category is a tangent category.

We would like to write:

The coEilenberg-Moore category of a coalgebraic Hasse-Schmidt differential category 3 is a \dots ? \dots

³i.e. the opposite of an algebraic Hasse-Schmidt differential category ≥ ► + ≥ ► ≥ ∞ < ○

Clue 3 (ft. higher-order tangent bundles)

We have functors ${}_nT: \mathbf{SMan} \to \mathbf{SMan}$ such that ${}_nTM$ gives the approximations of M by polynomials curves of degree n around every point $a \in M$, and ${}_nTf$, the n^{th} derivative of f sends an approximation of order n around a to a polynomial curve of order n around f(a), in the best possible way.

SMan together with the functors ${}_{n}\mathcal{T}$ should give a higher-order tangent category!

Clue 4 (ft. Poon Leung)

From "Classifying tangent structures using Weil algebras":

Theorem

If $\mathcal C$ is a category, then a tangent structure on $\mathcal C$ is equivalent (up to isomorphism) to a strong monoidal functor $F:\mathbb N-\text{Weil}_1\to\operatorname{End}(\mathcal C)$ satisfying two additional conditions.

We would like to have a definition of higher-order tangent category of order n such that we have a similar theorem where we replace $\mathbb{N}-\mathbf{Weil}_1$ by some category $\mathbb{N}-\mathbf{Weil}_n$.