Life in Johnstone's Topological Topos

Chris Grossack (they/them)

CT Octoberfest 2024

A Topos is an "alternative universe of sets" in which we can do math.

- A Topos is an "alternative universe of sets" in which we can do math.
- Informally, we know how to "compile" mathematical statements down to statements about pure sets

- A Topos is an "alternative universe of sets" in which we can do math.
- Informally, we know how to "compile" mathematical statements down to statements about pure sets
- A topos is a different "implementation" of the same "interface"

- A Topos is an "alternative universe of sets" in which we can do math.
- Informally, we know how to "compile" mathematical statements down to statements about pure sets
- A topos is a different "implementation" of the same "interface"
- Except for choice and excluded middle

- A Topos is an "alternative universe of sets" in which we can do math.
- Informally, we know how to "compile" mathematical statements down to statements about pure sets
- A topos is a different "implementation" of the same "interface"
- Except for choice and excluded middle
- It often comes with a mechanical procedure for translating statements interpreted in the topos into statements about "the real world"

- A Topos is an "alternative universe of sets" in which we can do math.
- Informally, we know how to "compile" mathematical statements down to statements about pure sets
- A topos is a different "implementation" of the same "interface"
- Except for choice and excluded middle
- It often comes with a mechanical procedure for translating statements interpreted in the topos into statements about "the real world"
- Why care about this...?

We can interpet *Old Theorems* in these *New Worlds* in order to prove new theorems without much work!

We can interpet *Old Theorems* in these *New Worlds* in order to prove new theorems without much work!

Punchline: (Slightly Harder)

Given a problem, we can also try to cook up a topos in which that problem is particularly easy to study! Then we work Synthetically until the very last step

We can interpet *Old Theorems* in these *New Worlds* in order to prove new theorems without much work!

Punchline: (Slightly Harder)

Given a problem, we can also try to cook up a topos in which that problem is particularly easy to study! Then we work Synthetically until the very last step

eg.

Synthetic Differential Geometry (Kock-Lawvere)

We can interpet *Old Theorems* in these *New Worlds* in order to prove new theorems without much work!

Punchline: (Slightly Harder)

Given a problem, we can also try to cook up a topos in which that problem is particularly easy to study! Then we work Synthetically until the very last step

eg.

- Synthetic Differential Geometry (Kock-Lawvere)
- Synthetic Probability Theory (Simpson)

We can interpet *Old Theorems* in these *New Worlds* in order to prove new theorems without much work!

Punchline: (Slightly Harder)

Given a problem, we can also try to cook up a topos in which that problem is particularly easy to study! Then we work Synthetically until the very last step

eg.

- Synthetic Differential Geometry (Kock-Lawvere)
- Synthetic Probability Theory (Simpson)
- Synthetic Homotopy Theory* (HoTT)

We can interpet *Old Theorems* in these *New Worlds* in order to prove new theorems without much work!

Punchline: (Slightly Harder)

Given a problem, we can also try to cook up a topos in which that problem is particularly easy to study! Then we work Synthetically until the very last step

eg.

- Synthetic Differential Geometry (Kock-Lawvere)
- Synthetic Probability Theory (Simpson)
- Synthetic Homotopy Theory* (HoTT)
- Many others

lacktriangle Today we'll be interested in Johnstone's Topological Topos ${\mathcal T}$

- lacktriangle Today we'll be interested in Johnstone's Topological Topos ${\mathcal T}$
- A world for Synthetic (Sequential) Topology

- lacksquare Today we'll be interested in Johnstone's Topological Topos ${\mathcal T}$
- A world for Synthetic (Sequential) Topology
- (Compare with the Condensed Topos, a setting for synthetic compact hausdorff topology)

- lacktriangle Today we'll be interested in Johnstone's Topological Topos ${\mathcal T}$
- A world for Synthetic (Sequential) Topology
- (Compare with the Condensed Topos, a setting for synthetic compact hausdorff topology)
- The topological topos satisfies the bonus axiom that every function $\mathbb{R} \to \mathbb{R}$ is continuous.

- lacktriangle Today we'll be interested in Johnstone's Topological Topos ${\mathcal T}$
- A world for Synthetic (Sequential) Topology
- (Compare with the Condensed Topos, a setting for synthetic compact hausdorff topology)
- The topological topos satisfies the bonus axiom that every function $\mathbb{R} \to \mathbb{R}$ is continuous.
- Sometimes called "Brouwer's Axiom" in the literature.

lacksquare First, we'll say how ${\mathcal T}$ is defined

- lacksquare First, we'll say how ${\mathcal T}$ is defined
- \blacksquare Then we'll say how objects of ${\mathcal T}$ relate to topological spaces "in the real world"

- First, we'll say how \mathcal{T} is defined
- \blacksquare Then we'll say how objects of ${\mathcal T}$ relate to topological spaces "in the real world"
- We'll talk about *truth* in \mathcal{T} , and various subobject classifiers

- First, we'll say how \mathcal{T} is defined
- lacktriangleright Then we'll say how objects of ${\mathcal T}$ relate to topological spaces "in the real world"
- lacktriangle We'll talk about *truth* in \mathcal{T} , and various subobject classifiers
- lacktriangle We'll give some quality-of-life axioms that $\mathcal T$ satisfies, and explain why certain other quality-of-life axioms are false

- First, we'll say how \mathcal{T} is defined
- lacktriangle Then we'll say how objects of ${\mathcal T}$ relate to topological spaces "in the real world"
- lacktriangle We'll talk about *truth* in \mathcal{T} , and various subobject classifiers
- lacktriangle We'll give some quality-of-life axioms that $\mathcal T$ satisfies, and explain why certain other quality-of-life axioms are false
- lacktriangle We'll give two proofs that Brouwer's Axiom holds in \mathcal{T} .

Let's get to it!

Write $\{1, \mathbb{N}_{\infty}\}$ for the full subcategory of Top consisting of the objects 1 and $\mathbb{N}_{\infty} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, 0\}$ (the one point compactification of \mathbb{N})

Write $\{1, \mathbb{N}_{\infty}\}$ for the full subcategory of Top consisting of the objects 1 and $\mathbb{N}_{\infty} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, 0\}$ (the one point compactification of \mathbb{N})

The Topological Topos $\mathcal T$ is presented as sheaves on $\{1,\mathbb N_\infty\}$ with the canonical (grothendieck) topology

The Topological Topos $\mathcal T$ is presented as sheaves on $\{1,\mathbb N_\infty\}$ with the canonical (grothendieck) topology

The Topological Topos $\mathcal T$ is presented as sheaves on $\{1,\mathbb N_\infty\}$ with the canonical (grothendieck) topology

The Topological Topos $\mathcal T$ is presented as sheaves on $\{1,\mathbb N_\infty\}$ with the canonical (grothendieck) topology

If $F\in\mathcal{T}$ is a sheaf, it's in particular a presheaf, so we get sets F(1) and $F(\mathbb{N}_{\infty})$

 $lue{F}(1)$ should be thought of as the set of *points* of F

The Topological Topos $\mathcal T$ is presented as sheaves on $\{1,\mathbb N_\infty\}$ with the canonical (grothendieck) topology

- ullet F(1) should be thought of as the set of *points* of F
- $F(\mathbb{N}_{\infty})$ should be thought of as the set of *convergent sequences* in F...

The Topological Topos $\mathcal T$ is presented as sheaves on $\{1,\mathbb N_\infty\}$ with the canonical (grothendieck) topology

- ullet F(1) should be thought of as the set of *points* of F
- $F(\mathbb{N}_{\infty})$ should be thought of as the set of *convergent sequences* in F...
- Better to say witnesses to convergence. In particular, there might be multiple elements $p, q \in F(\mathbb{N}_{\infty})$ showing that the same sequence converges!

The Topological Topos $\mathcal T$ is presented as sheaves on $\{1,\mathbb N_\infty\}$ with the canonical (grothendieck) topology

- ullet F(1) should be thought of as the set of *points* of F
- $F(\mathbb{N}_{\infty})$ should be thought of as the set of *convergent sequences* in F...
- Better to say witnesses to convergence. In particular, there might be multiple elements $p, q \in F(\mathbb{N}_{\infty})$ showing that the same sequence converges!
- The canonical topology says, roughly, that if every subsequence has a further subsequence converging to a limit, then the whole sequence converges to the same limit.

The Topological Topos $\mathcal T$ is presented as sheaves on $\{1,\mathbb N_\infty\}$ with the canonical (grothendieck) topology

- ullet F(1) should be thought of as the set of *points* of F
- $F(\mathbb{N}_{\infty})$ should be thought of as the set of *convergent sequences* in F...
- Better to say witnesses to convergence. In particular, there might be multiple elements $p, q \in F(\mathbb{N}_{\infty})$ showing that the same sequence converges!
- The canonical topology says, roughly, that if every subsequence has a further subsequence converging to a limit, then the whole sequence converges to the same limit.
- So F is a "generalized sequential space"!

Note that in Set a topological space is a set equipped with the bonus data of a topology.

- Note that in Set a topological space is a set equipped with the bonus data of a topology.
- When doing constructions we have to come up with the "right topology" to put on the new gadget

- Note that in Set a topological space is a set equipped with the bonus data of a topology.
- When doing constructions we have to come up with the "right topology" to put on the new gadget
- Moreover, when building maps we have to check by hand that they respect the topology (are continuous).

- Note that in Set a topological space is a set equipped with the bonus data of a topology.
- When doing constructions we have to come up with the "right topology" to put on the new gadget
- Moreover, when building maps we have to check by hand that they respect the topology (are continuous).
- In \mathcal{T} , though, every set is a space! Intrinsically!

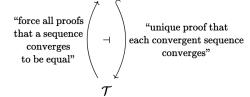
- Note that in Set a topological space is a set equipped with the bonus data of a topology.
- When doing constructions we have to come up with the "right topology" to put on the new gadget
- Moreover, when building maps we have to check by hand that they respect the topology (are continuous).
- In \mathcal{T} , though, every set *is* a space! *Intrinsically*!
- No need to check continuity or to build new topologies from old. The topological structure is automatic and comes along for the ride! Our sets themselves are (possibly generalized) spaces!

 \blacksquare With this context, you might ask how objects of ${\mathcal T}$ relate to "honest" sequential spaces.

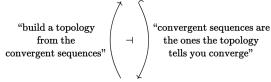
- \blacksquare With this context, you might ask how objects of ${\mathcal T}$ relate to "honest" sequential spaces.
- They're *extremely* closely related!

- \blacksquare With this context, you might ask how objects of ${\mathcal T}$ relate to "honest" sequential spaces.
- They're *extremely* closely related!



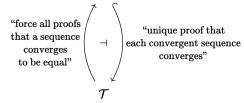


- lacktriangle With this context, you might ask how objects of ${\mathcal T}$ relate to "honest" sequential spaces.
- They're *extremely* closely related!



embeddings

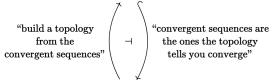
Kuratowski Limit Spaces

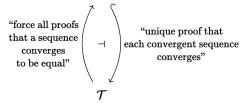


The downwards

arrows are

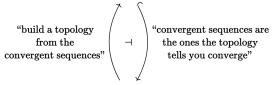
- \blacksquare With this context, you might ask how objects of ${\mathcal T}$ relate to "honest" sequential spaces.
- They're *extremely* closely related!

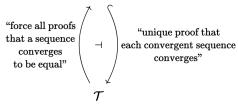




- The downwards arrows are embeddings
- They preserve "nice" colimits

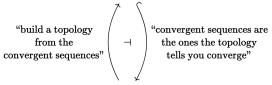
- With this context, you might ask how objects of $\mathcal T$ relate to "honest" sequential spaces.
- They're *extremely* closely related!

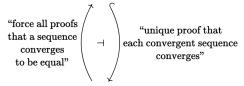




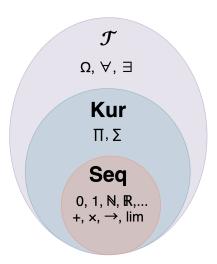
- The downwards arrows are embeddings
- They preserve "nice" colimits
- The upwards arrows preserve finite products

- \blacksquare With this context, you might ask how objects of ${\mathcal T}$ relate to "honest" sequential spaces.
- They're *extremely* closely related!





- The downwards arrows are embeddings
- They preserve "nice" colimits
- The upwards arrows preserve finite products
- More structure as we move down



The object $2=\{\top,\bot\}$ with the discrete topology is the Clopen Subobject Classifier.

The object $2=\{\top,\bot\}$ with the discrete topology is the Clopen Subobject Classifier.

The object $2=\{\top,\bot\}$ with the discrete topology is the Clopen Subobject Classifier.

Sometimes written $\Delta 2$ and called the Complemented Subobject Classifier or Decidable Subobject Classifier

■ Maps $f: X \to 2$ are in natural bijection with clopen subsets of X.

The object $2=\{\top,\bot\}$ with the discrete topology is the Clopen Subobject Classifier.

- Maps $f: X \rightarrow 2$ are in natural bijection with clopen subsets of X.
- Look at $f^{-1}(\top)$, which is clopen since $\{\top\}$ is

The object $2=\{\top,\bot\}$ with the discrete topology is the Clopen Subobject Classifier.

- Maps $f: X \to 2$ are in natural bijection with clopen subsets of X.
- Look at $f^{-1}(\top)$, which is clopen since $\{\top\}$ is
- Note 2 is not a complete lattice! We have finite ∧ and ∨ but not even countable ∧ and ∨!

The object $2=\{\top,\bot\}$ with the discrete topology is the Clopen Subobject Classifier.

- Maps $f: X \to 2$ are in natural bijection with clopen subsets of X.
- Look at $f^{-1}(\top)$, which is clopen since $\{\top\}$ is
- Note 2 is not a complete lattice! We have finite ∧ and ∨ but not even countable ∧ and ∨!
- After all, $\bigvee : 2^{\mathbb{N}} \to 2$ is not continuous!

The object $2=\{\top,\bot\}$ with the discrete topology is the Clopen Subobject Classifier.

- Maps $f: X \to 2$ are in natural bijection with clopen subsets of X.
- Look at $f^{-1}(\top)$, which is clopen since $\{\top\}$ is
- Note 2 is not a complete lattice! We have finite ∧ and ∨ but not even countable ∧ and ∨!
- After all, $\bigvee : 2^{\mathbb{N}} \to 2$ is not continuous!
- lacksquare $1^n0^\omega o 1^\omega$ but $\bigwedge 1^n0^\omega o \bigwedge 1^\omega$

The object $\Sigma = \{\top, \bot\}$ with the topology where $\{\top\}$ is open and $\{\bot\}$ isn't is called Sierpinski Space.

■ Maps $f: X \to \Sigma$ are in natural bijection with open subsets of X

- Maps $f: X \to \Sigma$ are in natural bijection with open subsets of X
- Again, look at $f^{-1}(\top)$. This is open since $\{1\}$ is, but need not be closed (since $\{\bot\}$ isn't open).

- Maps $f: X \to \Sigma$ are in natural bijection with open subsets of X
- Again, look at $f^{-1}(\top)$. This is open since $\{1\}$ is, but need not be closed (since $\{\bot\}$ isn't open).
- This forms a V-lattice, since arbitrary joins of open subsets are open (yoneda).

- Maps $f: X \to \Sigma$ are in natural bijection with open subsets of X
- Again, look at $f^{-1}(\top)$. This is open since $\{1\}$ is, but need not be closed (since $\{\bot\}$ isn't open).
- This forms a V-lattice, since arbitrary joins of open subsets are open (yoneda).
- This is also easy to check by hand, if you prefer.

The object Ω has two points \top and \bot , and for any sequence ω_n

■ There's exactly one proof $\omega_n \to \bot$ in $\Omega(\mathbb{N}_{\infty})$

- There's exactly one proof $\omega_n \to \bot$ in $\Omega(\mathbb{N}_{\infty})$
- There's *lots* of proofs $\omega_n \to \top$

- There's exactly one proof $\omega_n \to \bot$ in $\Omega(\mathbb{N}_{\infty})$
- There's *lots* of proofs $\omega_n \to \top$
- Maps $f: X \to \Omega$ are in natural bijection with subobjects of X as computed in \mathcal{T}

- There's exactly one proof $\omega_n \to \bot$ in $\Omega(\mathbb{N}_{\infty})$
- There's *lots* of proofs $\omega_n \to \top$
- Maps $f: X \to \Omega$ are in natural bijection with subobjects of X as computed in $\mathcal T$
- This is a complete lattice, of course.

Arbitrary \overline{S} ubobjects = Arbitrary \overline{P} ropositions

- There's exactly one proof $\omega_n \to \bot$ in $\Omega(\mathbb{N}_{\infty})$
- There's *lots* of proofs $\omega_n \to \top$
- Maps $f: X \to \Omega$ are in natural bijection with subobjects of X as computed in $\mathcal T$
- This is a complete lattice, of course.
- Its power comes from all the data stored in the proofs of convergence!

- There's exactly one proof $\omega_n \to \bot$ in $\Omega(\mathbb{N}_{\infty})$
- There's *lots* of proofs $\omega_n \to \top$
- Maps $f: X \to \Omega$ are in natural bijection with subobjects of X as computed in $\mathcal T$
- This is a complete lattice, of course.
- Its power comes from all the data stored in the proofs of convergence!
- This is a common pattern...which we won't explore in this talk.

 $\ensuremath{\mathcal{T}}$ doesn't satisfy LEM or AC, but it gets pretty far!

 $\ensuremath{\mathcal{T}}$ doesn't satisfy LEM or AC, but it gets pretty far!

The Following Hold in \mathcal{T} : (Folklore/G.)

 $\ensuremath{\mathcal{T}}$ doesn't satisfy LEM or AC, but it gets pretty far!

The Following Hold in \mathcal{T} : (Folklore/G.)

■ LLPO – $\forall x : \mathbb{R}.(x \ge 0) \lor (x \le 0)$

 ${\cal T}$ doesn't satisfy LEM or AC, but it gets pretty far!

The Following Hold in \mathcal{T} : (Folklore/G.)

- LLPO $\forall x : \mathbb{R}.(x \geq 0) \lor (x \leq 0)$
- $MP \forall x : \mathbb{R}. \neg (x = 0) \rightarrow (x \# 0)$

 ${\mathcal T}$ doesn't satisfy LEM or AC, but it gets pretty far!

The Following Hold in \mathcal{T} : (Folklore/G.)

- LLPO $\forall x : \mathbb{R}.(x \ge 0) \lor (x \le 0)$
- $\blacksquare \mathsf{MP} \forall x : \mathbb{R}. \neg (x = 0) \to (x \# 0)$
- These are weak versions of excluded middle

The Following Hold in \mathcal{T} : (Folklore/G.)

- LLPO $\forall x : \mathbb{R}.(x \ge 0) \lor (x \le 0)$
- $\blacksquare \mathsf{MP} \forall x : \mathbb{R}. \neg (x = 0) \to (x \# 0)$
- These are weak versions of excluded middle

The Following Holds in \mathcal{T} : (Shulman-Simpson)

The Following Hold in \mathcal{T} : (Folklore/G.)

- LLPO $\forall x : \mathbb{R}.(x \ge 0) \lor (x \le 0)$
- $\blacksquare \mathsf{MP} \forall x : \mathbb{R}. \neg (x = 0) \to (x \# 0)$
- These are weak versions of excluded middle

The Following Holds in \mathcal{T} : (Shulman-Simpson)

■ DC – "recursive definitions work"

The Following Hold in \mathcal{T} : (Folklore/G.)

- LLPO $\forall x : \mathbb{R}.(x \ge 0) \lor (x \le 0)$
- $\blacksquare \mathsf{MP} \forall x : \mathbb{R}. \neg (x = 0) \to (x \# 0)$
- These are weak versions of excluded middle

The Following Holds in \mathcal{T} : (Shulman-Simpson)

- DC "recursive definitions work"
- This is a weak version of the axiom of choice

The Following Hold in \mathcal{T} : (Folklore/G.)

- LLPO $\forall x : \mathbb{R}.(x \ge 0) \lor (x \le 0)$
- $\blacksquare \mathsf{MP} \forall x : \mathbb{R}. \neg (x = 0) \to (x \# 0)$
- These are weak versions of excluded middle

The Following Holds in \mathcal{T} : (Shulman-Simpson)

- DC "recursive definitions work"
- This is a weak version of the axiom of choice

The Following Holds in \mathcal{T} : (Folklore/G. again)

The Following Hold in \mathcal{T} : (Folklore/G.)

- LLPO $\forall x : \mathbb{R}.(x \ge 0) \lor (x \le 0)$
- $\blacksquare \mathsf{MP} \forall x : \mathbb{R}. \neg (x = 0) \to (x \# 0)$
- These are weak versions of excluded middle

The Following Holds in \mathcal{T} : (Shulman-Simpson)

- DC "recursive definitions work"
- This is a weak version of the axiom of choice

The Following Holds in \mathcal{T} : (Folklore/G. again)

■ Every function $\mathbb{R} \to \mathbb{R}$ is continuous!

The Following Hold in \mathcal{T} : (Folklore/G.)

- LLPO $\forall x : \mathbb{R}.(x \ge 0) \lor (x \le 0)$
- $\blacksquare \mathsf{MP} \forall x : \mathbb{R}. \neg (x = 0) \to (x \# 0)$
- These are weak versions of excluded middle

The Following Holds in \mathcal{T} : (Shulman-Simpson)

- DC "recursive definitions work"
- This is a weak version of the axiom of choice

The Following Holds in \mathcal{T} : (Folklore/G. again)

■ Every function $\mathbb{R} \to \mathbb{R}$ is continuous!

This makes \mathcal{T} like a strong version of Solovay's Model

In fact there's another nonconstructive theorem that makes life in \mathcal{T} particularly nice:

- In fact there's another nonconstructive theorem that makes life in \mathcal{T} particularly nice:
- You may know that constructively it's preferable to work with locales rather than spaces.

- In fact there's another nonconstructive theorem that makes life in \mathcal{T} particularly nice:
- You may know that constructively it's preferable to work with locales rather than spaces.
- lacksquare But also in $\mathcal T$ everything is automatically a space. . .

- In fact there's another nonconstructive theorem that makes life in \mathcal{T} particularly nice:
- You may know that constructively it's preferable to work with locales rather than spaces.
- lacksquare But also in $\mathcal T$ everything is automatically a space. . .
- $lue{}$ Can we say that the intrinsic topology on the points of a locale in \mathcal{T} agrees with the topology coming from the locale?

Let X be a regular locale. Let X^T be the T-object of points of X (as computed in T).

Then the intrinsic topology on X^T agrees with the "extrinsic" topology coming from the locale structure! In particular...

Let X be a regular locale. Let X^T be the T-object of points of X (as computed in T).

Then the intrinsic topology on X^T agrees with the "extrinsic" topology coming from the locale structure! In particular...

lacktriangleright The object of dedekind reals in $\mathcal T$ is represented by the reals with its usual topology

Let X be a regular locale. Let X^T be the T-object of points of X (as computed in T).

Then the intrinsic topology on X^T agrees with the "extrinsic" topology coming from the locale structure! In particular...

- \blacksquare The object of dedekind reals in ${\mathcal T}$ is represented by the reals with its usual topology
- lacktriangleright The object of infinite binary sequences in $\mathcal T$ is represented by the cantor space with its usual topology

Let X be a regular locale. Let X^T be the T-object of points of X (as computed in T).

Then the intrinsic topology on X^T agrees with the "extrinsic" topology coming from the locale structure! In particular...

- \blacksquare The object of dedekind reals in ${\mathcal T}$ is represented by the reals with its usual topology
- lacktriangleright The object of infinite binary sequences in $\mathcal T$ is represented by the cantor space with its usual topology
- lacktriangleright The object of infinite sequences of naturals in $\mathcal T$ is represented by the baire space with its usual topology

Let X be a regular locale. Let X^T be the T-object of points of X (as computed in T).

Then the intrinsic topology on X^T agrees with the "extrinsic" topology coming from the locale structure! In particular...

- \blacksquare The object of dedekind reals in ${\mathcal T}$ is represented by the reals with its usual topology
- \blacksquare The object of infinite binary sequences in ${\mathcal T}$ is represented by the cantor space with its usual topology
- lacktriangleright The object of infinite sequences of naturals in $\mathcal T$ is represented by the baire space with its usual topology

This says, basically, that these objects behave the way you would expect!

Internal to $\ensuremath{\mathcal{T}},$ the dedekind reals, cantor space, and baire space all have enough points!

Internal to \mathcal{T} , the dedekind reals, cantor space, and baire space all have enough points!

In particular, the fan theorem and the monotone bar theorems hold in ${\mathcal T}$

Internal to \mathcal{T} , the dedekind reals, cantor space, and baire space all have enough points!

In particular, the fan theorem and the monotone bar theorems hold in ${\mathcal T}$

Corollary: Brouwer's Axiom for $\mathbb R$

In \mathcal{T} , every function $\mathbb{R} \to \mathbb{R}$ is $(\epsilon - \delta)$ -continuous

Internal to \mathcal{T} , the dedekind reals, cantor space, and baire space all have enough points!

In particular, the fan theorem and the monotone bar theorems hold in ${\mathcal T}$

Corollary: Brouwer's Axiom for $\mathbb R$

In \mathcal{T} , every function $\mathbb{R} \to \mathbb{R}$ is $(\epsilon \text{-} \delta)$ -continuous

This is suddenly easy, since if $f: \mathbb{R} \to \mathbb{R}$ is a function in \mathcal{T} , it's intrinsically continuous. But the previous theorem tells us that intrinsic continuity agrees with localic continuity, which is the usual ϵ - δ notion.

■ Here, you might wonder how we know that "f is intrinsically continuous", or indeed what that even means.

- Here, you might wonder how we know that "f is intrinsically continuous", or indeed what that even means.
- \blacksquare Recall that open subsets on a object of ${\mathcal T}$ are in natural bijection with maps into $\Sigma.$

- Here, you might wonder how we know that "f is intrinsically continuous", or indeed what that even means.
- \blacksquare Recall that open subsets on a object of ${\mathcal T}$ are in natural bijection with maps into $\Sigma.$
- Then if $f: X \to Y$ and $U: Y \to \Sigma$ is an open, pulling back along f always gives an open of X, called $U \circ f: X \to \Sigma$.

In fact, this idea lets us prove a souped-up version of Brouwer's Axiom:

In fact, this idea lets us prove a souped-up version of Brouwer's Axiom:

Cor: Brouwer's Axiom for Metric Spaces

If X and Y are any (external) metric spaces, they're regular locales, so the interpretation of X and Y in \mathcal{T} (as locales) agrees with their metric topology, thus every function $f: X \to Y$ is ϵ - δ continuous!

In fact, this idea lets us prove a souped-up version of Brouwer's Axiom:

Cor: Brouwer's Axiom for Metric Spaces

If X and Y are any (external) metric spaces, they're regular locales, so the interpretation of X and Y in \mathcal{T} (as locales) agrees with their metric topology, thus every function $f:X\to Y$ is ϵ - δ continuous!

But why stop there?

Let (X, d) be an *internal* metric space. That is, $d: X \times X \to \mathbb{R}_{\geq 0}$ satisfying the usual axioms (as interpreted in the internal logic).

Let (X, d) be an *internal* metric space. That is, $d: X \times X \to \mathbb{R}_{\geq 0}$ satisfying the usual axioms (as interpreted in the internal logic).

■ It's always true that open balls $B(x,\epsilon)$ are intrinsically open in X

Let (X, d) be an *internal* metric space. That is, $d: X \times X \to \mathbb{R}_{\geq 0}$ satisfying the usual axioms (as interpreted in the internal logic).

- It's always true that open balls $B(x,\epsilon)$ are intrinsically open in X
- Say that d Intrinsically Metrizes X whenever every intrinsic open is a union of open balls.

Let (X, d) be an *internal* metric space. That is, $d: X \times X \to \mathbb{R}_{\geq 0}$ satisfying the usual axioms (as interpreted in the internal logic).

- It's always true that open balls $B(x,\epsilon)$ are intrinsically open in X
- Say that d Intrinsically Metrizes X whenever every intrinsic open is a union of open balls.

Theorem: (4.58 in Lešnik's thesis, independently G.)

If (X,d) and (Y,d') are internal metric spaces and d intrinsically metrizes X, then $\mathcal T$ proves that every function $X\to Y$ is $(\epsilon-\delta)$ continuous.

Thank You! ^ ^

- Grossack's Blog Post "Life in Johnstone's Topological Topos (pts. 1,2,3)
- Johnstone's Paper "On a Topological Topos"
- Lešnik's PhD Thesis "Synthetic Topology and Constructive" Metric Spaces