Logic in 2D, Metalogic in 3D: The Language of Category Theory

Christian Williams

Doctoral Thesis
UC Riverside

2023
https://sites.google.com/view/logic-in-color

The Language of Category Theory

Category theory is known as a language of mathematics.
Applied CT: developing a language for all kinds of science.
My thesis proposes that

category theory is the language of thinking.

Categories form a bifibrant double category, which can be seen as a logic: a system of "thoughts of a world".

We define the 3D language of all bifibrant double categories, which can be seen as metalogic: "thinking about thinking".

Logics

The fundamental notions of category theory
type and process, relation and transformation composition and identity, adjunction and representation are systematized in the language of a (bi)fibrant double category, also known as proarrow equipment, or framed bicategory. [3]

We understand this structure as a logic.
fib. dbl. cat. dim. logic

object	0	type
tight arrow	V	process
loose arrow	H	relation
square	2	inference

Logics

The "bifibrance" of a double category is the action of processes on relations, pushing forward or pulling backwards in "time".

This property-like structure is essential, both for the expressiveness of a logic, and the coherence and expressiveness of metalogic.

image

substitution

Metalogic

Logics form a three-dimensional multiverse (FDCs form a fibrant triple category w/o interchange)

which we can explore in both imagery and syntax.

Color syntax

Imagery is dual to syntax; so they unite in color syntax: a string diagram is a general concept, and substituting syntax determines a specific instance of the concept.

span category $\mathbb{A} \leftarrow \mathcal{R} \rightarrow \mathbb{B}$

fiber category
$\mathcal{R}(\mathrm{A}, \mathrm{B})$: Cat
"total" \simeq "fiberwise" is the basis of dependent category theory.

The metalogic of logics

The key to metalogic is to see a logic as like a category: a category is a matrix with composition and identity; a logic is a matrix category with composition and identity.

logic

composition

identity
"Matrix category" is a short name for two-sided bifibration, so a pseudomonad in MatCat is a bifibrant double category.

The metalogic of logics

Matrix categories are exponentiable, so metalogic is higher-order: the co/descent calculus is the higher co/end calculus. [2]

$$
\begin{array}{ll}
& \operatorname{MatCat}(\mathcal{R} \otimes \mathcal{S}, \mathcal{T}) \\
=\quad \vec{\Pi} \mathrm{A}, \mathrm{C} & \operatorname{Cat}((\mathcal{R} \otimes \mathcal{S})(\mathrm{A}, \mathrm{C}), \mathcal{T}(\mathrm{A}, \mathrm{C})) \\
=\vec{\Pi} \mathrm{A}, \mathrm{C} & \operatorname{Cat}(\tilde{\mathrm{~B}} \mathcal{R}(\mathrm{~A}, \mathrm{~B}) \times \mathcal{S}(\mathrm{B}, \mathrm{C}), \mathcal{T}(\mathrm{A}, \mathrm{C})) \\
\simeq \vec{\Pi} \mathrm{A}, \mathrm{C} \overrightarrow{\mathrm{~B}} & \operatorname{Cat}(\mathcal{R}(\mathrm{~A}, \mathrm{~B}) \times \mathcal{S}(\mathrm{B}, \mathrm{C}), \mathcal{T}(\mathrm{A}, \mathrm{C})) \\
\simeq \vec{\Pi} \mathrm{A}, \mathrm{~B}, \mathrm{C} & \operatorname{Cat}(\mathcal{S}(\mathrm{~B}, \mathrm{C}),[\mathcal{R}(\mathrm{A}, \mathrm{~B}) \rightarrow \mathcal{T}(\mathrm{A}, \mathrm{C})]) \\
\simeq \vec{\Pi}, \mathrm{C} & \operatorname{Cat}(\mathcal{S}(\mathrm{~B}, \mathrm{C}), \vec{\Pi} \mathrm{C}[\mathcal{R}(\mathrm{~A}, \mathrm{~B}) \rightarrow \mathcal{T}(\mathrm{A}, \mathrm{C})]) \\
= & \\
& \operatorname{MatCat}(\mathcal{S},[\mathcal{R} \rightarrow \mathcal{T}])
\end{array}
$$

A system for double weighted co/limits, and much more.

Outline

We develop the underlying structure of a logic; then metalogic is the monad completion of this structure.

- A span of categories $\mathbb{A} \leftarrow \mathcal{R} \rightarrow \mathbb{B}$ \simeq a matrix of categories $\mathcal{R}(\mathrm{A}, \mathrm{B})$.
- The weave double category is the equational logic of \mathbb{A}.

$$
\langle\mathbb{A}\rangle \equiv \overrightarrow{\mathbb{A}}+\overleftarrow{\mathbb{A}}
$$

- A matrix category is a bimodule of weave double categories.

A logic, or bifibrant double category,
is a matrix category $\mathbb{C} \leftarrow \mathbb{C} \rightarrow \mathbb{C}$ with comp. and identity.

Spans of categories

The basic data of a logic is a span of categories: relations and inferences, over pairs of types and processes.

A span of categories $\mathbb{A} \leftarrow \mathcal{R} \rightarrow \mathbb{B} \sim$ a matrix of categories: [4] a displayed category is a normal lax functor $\mathcal{R}: \mathbb{A} \times \mathbb{B} \rightarrow \mathbb{C}$ at.

Spans of categories

composition
$\overrightarrow{\mathcal{R}}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right) \circ \overrightarrow{\mathcal{R}}\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right) \Rightarrow \overrightarrow{\mathcal{R}}\left(\mathrm{a}_{1} \mathrm{a}_{2}, \mathrm{~b}_{1} \mathrm{~b}_{2}\right)$

identity

$$
\mathcal{R}(\mathrm{A}, \mathrm{~B}) \Rightarrow \overrightarrow{\mathcal{R}}(\mathrm{id} . \mathrm{A}, \mathrm{id} . \mathrm{B})
$$

Spans of profunctors

This idea generalizes to spans of profunctors $f \leftarrow i \rightarrow g$. A displayed profunctor is a map $i(f, g)$: Prof which forms a bimodule of lax functors $\mathcal{Q}(\mathbb{X}, \mathbb{Y})$ and $\mathcal{R}(\mathbb{A}, \mathbb{B})$.

precomposition
$\overrightarrow{\mathcal{Q}}(\mathrm{x}, \mathrm{y}) \circ i(\mathrm{f}, \mathrm{g}) \Rightarrow i(\mathrm{xf}, \mathrm{yg})$

postcomposition
$i(\mathrm{f}, \mathrm{g}) \circ \overrightarrow{\mathcal{R}}(\mathrm{a}, \mathrm{b}) \Rightarrow i(\mathrm{fa}, \mathrm{gb})$

Equivalence: spans are matrices

Inverse image is functorial, defining "displayed functors" and "displayed transformations".

Theorem
The double category of span categories is equivalent to the double category of displayed categories.

	Span C at	\simeq
0	DisCat	
0	span cat. $\mathbb{A} \leftarrow \mathcal{R} \rightarrow \mathbb{B}$	\sim
dis. cat. $\mathcal{R}(\mathrm{A}, \mathrm{B}):$ Cat		
V	span fun. $\llbracket \mathcal{R} \rrbracket: \mathcal{R}_{0} \rightarrow \mathcal{R}_{1}$	\sim dis. fun. $\llbracket \mathcal{R} \rrbracket: \mathcal{R}_{0}\left(\mathrm{~A}_{0}, \mathrm{~B}_{0}\right) \rightarrow \mathcal{R}_{1}\left(\llbracket \mathrm{~A}_{0} \rrbracket, \llbracket \mathrm{~B}_{0} \rrbracket\right)$
H	span prof. $f \leftarrow i \rightarrow g$	\sim
2	dis. prof. $i(f, g): \operatorname{Prof}$	
span trans. $\llbracket i \rrbracket: i_{0} \rightarrow i_{1}$	\sim	dis. trans. $\llbracket i \rrbracket: i_{0}\left(\mathrm{f}_{0}, \mathrm{~g}_{0}\right) \Rightarrow i_{1}\left(\llbracket \mathrm{f}_{0} \rrbracket, \llbracket \mathrm{~g}_{0} \rrbracket\right)$

Arrow double categories

If $\mathbb{A} \leftarrow \mathcal{R} \rightarrow \mathbb{B}$ is to be relations from \mathbb{A} to \mathbb{B}, then relations should vary over processes in \mathbb{A} and \mathbb{B}.
The arrow double category $\overrightarrow{\mathbb{A}}$ is that of commuting squares.

$$
\begin{gathered}
\mathrm{A}_{0}^{0} \longrightarrow \hat{\mathrm{a}}_{0}^{1} \longrightarrow \mathrm{~A}_{0}^{1} \\
\mid \\
{ }^{2} \\
\mathrm{a}_{1}^{0} \longrightarrow \hat{\mathrm{a}}_{1}^{1} \longrightarrow \mathrm{~A}_{1}^{1} \\
\left(\mathrm{a}_{0}, \mathrm{a}_{1}\right): \overrightarrow{\mathbb{A}}\left(\hat{\mathrm{a}}_{0}^{1} \rightarrow \hat{\mathrm{a}}_{1}^{1}\right)
\end{gathered}
$$

Now $\mathbb{A} \leftarrow \overrightarrow{\mathbb{A}} \rightarrow \mathbb{A}$ and $\mathbb{B} \leftarrow \overrightarrow{\mathbb{B}} \rightarrow \mathbb{B}$ can act on \mathcal{R}.

Fibered and opfibered categories

A fibered category over \mathbb{A} is a left $\overrightarrow{\mathbb{A}}$-module. [5] An opfibered category over \mathbb{B} is a right $\overrightarrow{\mathbb{B}}$-module.

substitution

$\odot: \mathcal{R}\left(\mathrm{B}_{0}\right) \times \stackrel{\text { image }}{\overrightarrow{\mathbb{B}}\left(\mathrm{B}_{0}, \mathrm{~B}_{1}\right) \rightarrow \mathcal{R}\left(\mathrm{B}_{1}\right)}$
$\odot: \overrightarrow{\mathbb{A}}\left(\mathrm{A}_{0}, \mathrm{~A}_{1}\right) \times \mathcal{R}\left(\mathrm{A}_{1}\right) \rightarrow \mathcal{R}\left(\mathrm{A}_{0}\right)$
These are often denoted $\mathrm{a}^{*} R$ "pullback" and $\mathrm{b}_{!} R$ "pushforward".

Fibered and opfibered categories

In a fibered category \mathcal{R} over \mathbb{A}, a morphism $r: R_{0} \rightarrow R_{1}$ over $\mathrm{a}: \mathbb{A}\left(\mathrm{A}_{0}, \mathrm{~A}_{1}\right)$ is equivalent to η. a or $: R_{0} \rightarrow \hat{\mathrm{a}} \odot R_{1}$ over id. A_{0}, by factoring through the cartesian morphism ε. a $\circ \mathrm{id} . R_{1}$.

This gives a contravariant representation of morphisms over a.

$$
\overrightarrow{\mathcal{R}}(\mathrm{a})\left(R_{0}, R_{1}\right) \cong \mathcal{R}\left(R_{0}, \mathrm{a} \odot R_{1}\right)
$$

Weave double category

Yet an arrow double category is not a logic. There is a limitation to the equational reasoning of $\overrightarrow{\mathbb{A}}$.

$$
\left(a_{0}, a_{1} \cdot a_{2}\right)=\left(a_{0} \cdot a_{1}, a_{2}\right) \quad\left(a_{0} \cdot a_{1}, a_{2}\right)=\left(a_{0}, a_{1} \cdot a_{2}\right)
$$

Composable pairs are only defined up to associativity.

Weave double category

The latter cannot be expressed in the arrow double category.

So, we define the weave double category: the union of the arrow double category $\overrightarrow{\mathbb{A}}$ with its opposite $\overleftarrow{\mathbb{A}}$

Weave double category

Let \mathbb{A} be a category, with arrow double category $\overrightarrow{\mathbb{A}}$. The op-arrow double category $\overleftarrow{\mathbb{A}}$ is the horizontal opposite.

$$
\overleftarrow{\mathbb{A}}\left(\mathrm{A}_{0}, \mathrm{~A}_{1}\right) \equiv \overrightarrow{\mathbb{A}}\left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right)
$$

Denote an arrow $\hat{a}: \overrightarrow{\mathbb{A}}\left(\mathrm{A}_{0}, \mathrm{~A}_{1}\right)$, and an op-arrow ǎ: $\overleftarrow{\mathbb{A}}\left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right)$.

We use ā for objects of $\overrightarrow{\mathbb{A}}+\overleftarrow{\mathbb{A}}$.

Weave double category

Define $\mathrm{Dbl}_{\mathbb{A}}$ be the 2-category of double categories on \mathbb{A}, double functors over id.A, and identity-component transformations.

Given double categories \mathcal{A}_{0} and \mathcal{A}_{1} on \mathbb{A}, and double functors $f, g: \mathcal{A}_{0} \rightarrow \mathcal{A}_{1}$ over id.A, an icon $\gamma: f \Rightarrow g$ gives for each $a_{0}: \mathcal{A}_{0}$ a 2-morphism $\gamma\left(a_{0}\right): f\left(a_{0}\right) \Rightarrow g\left(a_{0}\right)$, subject to naturality.

Weave double category

Let \mathbb{A} be a category. The weave double category $\langle\mathbb{A}\rangle$ is the coproduct of the arrow and op-arrow double categories in $\mathrm{Dbl}_{\mathbb{A}}$.

$$
\langle\mathbb{A}\rangle \equiv \overrightarrow{\mathbb{A}}+\overleftarrow{\mathbb{A}}
$$

$\langle\mathbb{A}\rangle$ is generated by squares of $\overrightarrow{\mathbb{A}}$, opsquares of $\overleftarrow{\mathbb{A}}$, and isomorphisms of identity arrows and op-arrows.

$$
\text { id. } \mathrm{A} \cong \text { id. } \mathrm{A}
$$

Theorem
$\langle\mathbb{A}\rangle$ is a logic.
Theorem
$\langle\mathbb{A}\rangle$-modules are bifibered categories over \mathbb{A}.

Matrix categories

Let \mathbb{A}, \mathbb{B} be categories, with weave double categories $\langle\mathbb{A}\rangle,\langle\mathbb{B}\rangle$.

A matrix category or two-sided bifibration $\mathcal{R}: \mathbb{A} \| \mathbb{B}$ is a span category $\mathbb{A} \leftarrow \mathcal{R} \rightarrow \mathbb{B}$ which is a bimodule from $\langle\mathbb{A}\rangle$ to $\langle\mathbb{B}\rangle$.

$\begin{aligned} \odot_{\mathbb{A}}:\langle\mathbb{A}\rangle & \left(\mathrm{A}_{0}, \mathrm{~A}_{1}\right) \times \mathcal{R}\left(\mathrm{A}_{1}, \mathrm{~B}\right) \\ & \rightarrow \mathcal{R}\left(\mathrm{A}_{0}, \mathrm{~B}\right)\end{aligned}$

$$
\rightarrow \mathcal{R}\left(\mathrm{A}_{0}, \mathrm{~B}\right)
$$

$\odot_{\mathbb{B}}: \mathcal{R}\left(\mathrm{A}, \mathrm{B}_{0}\right) \times\langle\mathbb{B}\rangle\left(\mathrm{B}_{0}, \mathrm{~B}_{1}\right)$
$\rightarrow \mathcal{R}\left(\mathrm{A}, \mathrm{B}_{1}\right)$

$$
\rightarrow \mathcal{R}\left(\mathrm{A}, \mathrm{~B}_{1}\right)
$$

Matrix categories

The actions of $\langle\mathbb{A}\rangle$ and $\langle\mathbb{B}\rangle$ on \mathcal{R} are associative and unital up to coherent isomorphism.

$$
\langle\mathbb{A}\rangle * \mathcal{R} *\langle\mathbb{B}\rangle-\langle\mathbb{A}\rangle * \odot_{\mathbb{B}} \rightarrow\langle\mathbb{A}\rangle * \mathcal{R}
$$

center associator

$$
\alpha_{\mathcal{R}}: \overline{\mathrm{a}} \odot(R \odot \overline{\mathrm{~b}}) \cong(\overline{\mathrm{a}} \odot R) \odot \overline{\mathrm{b}}
$$

Matrix categories

Matrix categories

The coherence means that reassociating a composite is well-defined, and reassociating a unit is well-defined.

$$
\begin{aligned}
& \left(\left\langle\bar{a}_{k}\right\rangle \circ\left\langle\bar{a}_{\ell}\right\rangle \circ\left\langle\bar{a}_{m}\right\rangle\right) \odot R \\
\rightrightarrows & \left\langle\bar{a}_{k}\right\rangle \odot\left(\left\langle\bar{a}_{\ell}\right\rangle \odot\left(\left\langle\bar{a}_{m}\right\rangle \odot R\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left\langle\bar{a}_{k}\right\rangle \circ \mathrm{id} . \mathrm{A}\right) \odot R \\
\rightrightarrows & \left\langle\overline{\mathrm{a}}_{k}\right\rangle \odot(\mathrm{id} . \mathrm{A} \odot R)
\end{aligned}
$$

Matrix profunctors

We now define relations of matrix categories.
Let $f: \mathbb{X} \mid \mathbb{A}$ be a profunctor; then the arrow profunctor of arrow categories $\vec{f}: \overrightarrow{\mathbb{X}} \mid \overrightarrow{\mathbb{A}}$ consists of commutative squares; its projections form a span profunctor $f \leftarrow \vec{f} \rightarrow f$.

$$
\vec{f}(\hat{\mathrm{x}}, \hat{\mathrm{a}})=\left\{\left(\mathrm{f}_{0}: f\left(\mathrm{X}_{0}, \mathrm{~A}_{0}\right), \mathrm{f}_{1}: f\left(\mathrm{X}_{1}, \mathrm{~A}_{1}\right)\right) \mid \mathrm{a} \cdot \mathrm{f}_{0}=\mathrm{f}_{1} \cdot \mathrm{x}\right\}
$$

This forms a vertical profunctor of arrow double categories.

Matrix profunctors

Dually, the op-arrow profunctor of f is the profunctor of op-arrow categories $\overleftarrow{f}: \overleftarrow{\mathbb{X}} \mid \overleftarrow{\mathbb{A}}$.

$$
\overleftarrow{f}(\check{\mathrm{x}}, \check{\mathrm{a}})=\left\{\mathrm{f}_{0}: f\left(\mathrm{X}_{0}, \mathrm{~A}_{0}\right), \mathrm{f}_{1}: f\left(\mathrm{X}_{1}, \mathrm{~A}_{1}\right) \mid \mathrm{x} \cdot \mathrm{f}_{0}=\mathrm{f}_{1} \cdot \mathrm{a}\right\}
$$

The weave vertical profunctor of weave double categories $\langle f\rangle:\langle\mathbb{X}\rangle \mid\langle\mathbb{A}\rangle$ is the coproduct of \vec{f} and \overleftarrow{f} in the category of vertical profunctors over f.

Just like the weave double category, this is generated from squares and opsquares in f, plus the actions of $\langle\mathbb{X}\rangle$ and $\langle\mathbb{A}\rangle$, subject to naturality of the isomorphisms id. $\mathrm{A} \cong$ id.A.

Matrix profunctors

Let $\mathcal{Q}(\mathbb{X}, \mathbb{Y})$ and $\mathcal{R}(\mathbb{A}, \mathbb{B})$ be matrix categories.
Let $f: \mathbb{X} \mid \mathbb{A}$ and $g: \mathbb{Y} \mid \mathbb{B}$ be profunctors, with weave profunctors $f \leftarrow\langle f\rangle \rightarrow f$ and $g \leftarrow\langle g\rangle \rightarrow g$.

A matrix profunctor $i(f, g): \mathcal{Q}(\mathbb{X}, \mathbb{Y}) \mid \mathcal{R}(\mathbb{A}, \mathbb{B})$ is a span profunctor which is a bimodule from $\langle f\rangle$ to $\langle g\rangle$, coherent with the associators and unitors of \mathcal{Q} and \mathcal{R}.

$\odot_{f}:\langle f\rangle * i \rightarrow i$

$i(f, g): \mathcal{Q}(\mathbb{X}, \mathbb{Y}) \mid \mathcal{R}(\mathbb{A}, \mathbb{B})$

$\odot_{g}: i *\langle g\rangle \rightarrow i$

Matrix profunctors

The matrix profunctor $i(f, g)$ is a relation of matrix categories $\mathcal{Q}(\mathbb{X}, \mathbb{Y})$ and $\mathcal{R}(\mathbb{A}, \mathbb{B})$, so it coheres with associators and unitors.

associator coherence

Matrix profunctors

Matrix functors and transformations

Let $\llbracket \mathbb{A} \rrbracket: \mathbb{A}_{0} \rightarrow \mathbb{A}_{1}$ and $\llbracket \mathbb{B} \rrbracket: \mathbb{B}_{0} \rightarrow \mathbb{B}_{1}$ be functors, and let $\mathcal{R}_{0}\left(\mathbb{A}_{0}, \mathbb{B}_{0}\right)$ and $\mathcal{R}_{1}\left(\mathbb{A}_{1}, \mathbb{B}_{1}\right)$ be matrix categories.

A matrix functor $\llbracket \mathcal{R} \rrbracket: \mathcal{R}_{0} \rightarrow \mathcal{R}_{1}$ is a morphism of bimodules, preserving composition and identity up to coherent isos.

left join

$$
\llbracket\left\langle\bar{a}_{k}\right\rangle \rrbracket \odot_{1} \llbracket R \rrbracket \cong \llbracket\left\langle\bar{a}_{k}\right\rangle \odot_{0} R \rrbracket
$$

right join
$\llbracket R \rrbracket \odot_{1} \llbracket\left\langle\overline{\mathrm{~b}}_{\ell}\right\rangle \rrbracket \cong \llbracket R \odot_{0}\left\langle\overline{\mathrm{~b}}_{\ell}\right\rangle \rrbracket$

Matrix functors and transformations

Let $\llbracket \mathcal{Q} \rrbracket(\mathbb{X}, \mathbb{Y})$ and $\llbracket \mathcal{R} \rrbracket(\mathbb{A}, \mathbb{B})$ be matrix functors, and let $i_{0}\left(f_{0}, g_{0}\right): \mathcal{Q}_{0} \mid \mathcal{R}_{0}$ and $i_{1}\left(f_{1}, g_{1}\right): \mathcal{Q}_{1} \mid \mathcal{R}_{1}$ be matrix profunctors.

A matrix transformation $\llbracket i \rrbracket: i_{0} \rightarrow i_{1}$ is a span transformation which coheres with the left and right joins of $\llbracket \mathcal{Q} \rrbracket$ and $\llbracket \mathcal{R} \rrbracket$.

$\llbracket \mathrm{x} \rrbracket \odot \llbracket Q \rrbracket \rightrightarrows \llbracket \mathrm{a} \odot R \rrbracket$

$\llbracket Q \rrbracket \odot \llbracket y \rrbracket \rightrightarrows \llbracket R \odot \mathrm{~b} \rrbracket$

Sequential composition

We now see how matrix categories and functors, matrix profunctors and transformations form a logic.

How do we compose matrix profunctors? By using weaves.

Both squares of $\langle f \circ g\rangle$ can be expressed in $\langle f\rangle \circ\langle g\rangle$ so an action by $\langle f\rangle$ and one by $\langle g\rangle$ defines an action by $\langle f \circ g\rangle$.

Sequential composition

So, we ensure the actions are well-defined on the identities, associativity zig-zags in $\langle f \circ g\rangle$ and $\langle k \circ \ell\rangle$: so to compose $m(f, k): \mathcal{R}(\mathbb{X}, \mathbb{A}) \mid \mathcal{S}(\mathbb{Y}, \mathbb{B})$ and $n(g, \ell): \mathcal{S}(\mathbb{Y}, \mathbb{B}) \mid \mathcal{T}(\mathbb{Z}, \mathbb{C})$, we quotient $m \circ n$ by their actions.

$[S .(m, n)] \equiv\left[u_{\mathcal{R}} \cdot\left(\left\langle\overline{\mathrm{y}}_{i}\right\rangle \odot S \odot\left\langle\overline{\mathrm{~b}}_{j}\right\rangle\right) \cdot\left(w_{f} \odot m \odot w_{k}, w_{g} \odot n \odot w_{\ell}\right) \cdot u_{\mathcal{T}}^{-1}\right]$

Sequential composition

Let $m(f, k): \mathcal{R}(\mathbb{X}, \mathbb{A}) \mid \mathcal{S}(\mathbb{Y}, \mathbb{B})$ and $n(g, \ell): \mathcal{S}(\mathbb{Y}, \mathbb{B}) \mid \mathcal{T}(\mathbb{Z}, \mathbb{C})$ be matrix profunctors. The sequential composite

$$
(m \diamond n)(f \circ g, k \circ \ell): \mathcal{R}(\mathbb{X}, \mathbb{A}) \mid \mathcal{T}(\mathbb{Z}, \mathbb{C})
$$

is the following coequalizer.

The logic of matrix categories

Theorem
Matrix categories form a logic.
Proof.
As sequential composition of matrix profunctors is defined by coequalizer, it is canonically functorial. The associator and unitors are inherited from SpanCat, because the coequalizer is orthogonal to span profunctor composition.

Hence MatCat is a double category. Moreover it is a logic: substitution of matrix functors in matrix profunctors is exactly analogous to that of functors in profunctors, in $\mathbb{C a t}$.

The logic of matrix categories

A double fibration [1] is a category in the 2-category of fibered categories, fibered functors, and fibered transformations.

Theorem
Matrix categories are fibered over pairs of categories.
Proof.
Substitution of functors in matrix categories, and transformations in matrix profunctors, is defined by pullback. Matrix profunctor composition preserves substitution.

The logic of matrix categories

This is the logic of matrix categories, over pairs of categories.

\mathbb{C} at \leftarrow Mat $\mathbb{C a t} \rightarrow \mathbb{C}$ at
Now, we define parallel composition of matrix categories.

Parallel composition

Now, we define composition of matrix categories.
Let $\mathcal{R}: \mathbb{A} \| \mathbb{B}$ and $\mathcal{S}: \mathbb{B} \| \mathbb{C}$ be matrix categories.
The parallel composite $\mathcal{R} \otimes \mathcal{S}: \mathbb{A} \| \mathbb{C}$ is constructed as follows.
On $\mathbb{A} \leftarrow \mathcal{R} * \mathcal{S} \rightarrow \mathbb{C}$ we form the iso-coinserter of actions by $\langle\mathbb{B}\rangle$.

This adjoins an associator $\alpha_{\mathcal{R} \mathcal{S}}: \mathrm{B}_{0} \cdot(R, \overline{\mathrm{~b}} \odot S) \cong \mathrm{B}_{1} \cdot(R \odot \overline{\mathrm{~b}}, S)$.

Parallel composition

On the associator, two equations are imposed by coequifier, for reassociating a composite and a unit.

associator coherence

$$
\begin{gathered}
\left(R, \overline{\mathrm{~b}}_{1} \odot\left(\overline{\mathrm{~b}}_{2} \odot S\right)\right) \\
\left.\rightrightarrows\left(\left(R \odot \overline{\mathrm{~b}}_{1}\right) \odot \overline{\mathrm{b}}_{2}\right), S\right)
\end{gathered}
$$

unitor coherence

$$
\begin{gathered}
(R, \overline{\mathrm{id}} . \mathrm{B} \odot S) \\
\rightrightarrows(R \odot \overline{\mathrm{id}} \cdot \mathrm{~B}, S)
\end{gathered}
$$

Hence $\mathcal{R} \otimes \mathcal{S}: \mathbb{A} \| \mathbb{C}$ is a codescent object. [5]

Parallel composition

Let $m(f, g)$ and $n(g, h)$ be matrix profunctors.

The parallel composite matrix profunctor $m \otimes n: Q \otimes \mathcal{S} \mid \mathcal{R} \otimes \mathcal{T}$ is the following coequalizer.

Parallel composition

So the elements of $(m \otimes n)(f, h):(\mathcal{Q} \otimes \mathcal{S})(\mathbb{X}, \mathbb{Z}) \mid(\mathcal{R} \otimes \mathcal{T})(\mathbb{A}, \mathbb{C})$ are composites of: morphisms y. (q, s), associators $\alpha_{\mathcal{Q S}}$, elements g. (m, n), associators $\alpha_{\mathcal{R} \mathcal{T}}$, and morphisms b. (r, t), such that for any $\left[\mathrm{g}_{0}, \mathrm{~g}_{1}\right]:\langle g\rangle(\overline{\mathrm{y}}, \overline{\mathrm{b}})$ and $m: m\left(\mathrm{f}, \mathrm{g}_{0}\right), n: n\left(\mathrm{~g}_{1}, \mathrm{~h}\right)$ the following commutes.

Parallel composition

Parallel composition does not preserve sequential composition.

$$
(i \otimes m) \diamond(j \otimes n) \quad \leftrightarrow \quad(i \diamond j) \otimes(m \diamond n)
$$

Parallel composition creates an associator element, while sequential composition equates elements.

The metalogic of matrix categories

A metalogic is a logic \mathbb{C} and a fibered logic $\mathbb{C} \leftarrow \mathbb{M} \rightarrow \mathbb{C}$ which forms an intramonad in Span(SpanCat):
analogous to an intermonad in an intercategory, but vertically 1 -weak, horizontally 2 -weak, and no interchange.

Theorem
Matrix categories form a metalogic.

This is a "bifibrant triple category" without interchange.

The metalogic of logics

A logic is a pseudomonad in MatCat.
Theorem
Logics form a metalogic.

The metalogic of logics

There are two kinds of relations between logics. a vertical profunctor consists of processes between logics, and a horizontal profunctor consists of relations between logics.

meta process (v-prof.)

meta relation (h-prof.)

meta inference (d-prof.)

Two pairs are connected by a double profunctor, which consists of inferences between relations, along processes.

The metalogic of logics

Logics have two kinds of relation, and one kind of function: a double functor $\llbracket \mathbb{A} \rrbracket: \mathbb{A}_{0} \rightarrow \mathbb{A}_{1}$ maps squares of \mathbb{A}_{0} to \mathbb{A}_{1}, preserving relation composition and unit up to coherent iso.

This generalizes to transformations of vertical, horizontal, and double profunctors; all four are defined by mapping squares in a way that coheres with parallel composition and unit.

The metalogic of logics

All together, logics form a metalogic.

A cube is a double transformation, the fully general notion of what is known as a modification.

The metalogic of logics

The metalanguage is extremely powerful; there are just three basic "limitations" or complexities:

1. No interchange. Parallel (horizontal) composition is neither lax nor colax with respect to sequential (vertical) composition of double profunctors.
2. No vertical collage. In general there is no collage of a vertical profunctor, because its elements do not act on the relations of the bifibrant double categories.
3. No vertical closure. Neither $b f$.DblCat nor $b f$.DblProf are closed logics.

Yet $b f$. DblCat is horizontally closed: lifts and extensions are derived just as in the co/end calculus, giving formulae for double weighted co/limits.

Prospectus

The language extends to virtual equipments, and moreover their poly- generalization, by specifying any "shape" of 2-cell as a matrix profunctors, equipped with multi- or poly- composition.

The pseudomonad construction generalizes lax or colax double functors; but this complicates the co/descent calculus. It is likely best to use pseudo double functors, and encode co/laxity.

As of now, I do not know any aspect of category theory which is beyond the scope of this metalanguage. There is a huge research program of unification, just waiting for people to explore.

Thank you.

References

嗇 Geoffrey Cruttwell，Michael Lambert，Dorette Pronk，and Martin Szyld．
Double fibrations， 2022.
目 Fosco Loregian．
（Co）end Calculus．
Cambridge University Press， 2021.
围 Michael Shulman．
Framed bicategories and monoidal fibrations．
Theory and Applications of Categories，20：650－738， 2008.
目 Ross Street．
Powerful functors， 2001.
目 Tamara von Glehn．
Polynomials，fibrations，and distributive laws．
Theory and Applications of Categories，33：1111－1144， 2018.

