Seq. composition

Logic in 2D, Metalogic in 3D: The Language of Category Theory

Christian Williams

Doctoral Thesis UC Riverside

2023

https://sites.google.com/view/logic-in-color

The Language of Category Theory

Category theory is known as a language of mathematics.

Applied CT: developing a language for all kinds of science.

My thesis proposes that

category theory is the language of thinking.

Categories form a *bifibrant double category*, which can be seen as a *logic*: a system of "thoughts of a world".

We define the 3D language of all bifibrant double categories, which can be seen as *metalogic*: "thinking about thinking".

Logics

The fundamental notions of category theory

type and process, relation and transformation composition and identity, adjunction and representation

are systematized in the language of a (bi)*fibrant double category*, also known as proarrow equipment, or framed bicategory. [3]

We understand this structure as a **logic**.

fib. dbl. cat.	dim.	logic
object	0	type
tight arrow	V	process
loose arrow	Η	relation
square	2	inference

Logics

The "bifibrance" of a double category is the *action* of processes on relations, pushing forward or pulling backwards in "time".

This property-like structure is *essential*, both for the expressiveness of a logic, and the coherence and expressiveness of metalogic.

image

Logics form a three-dimensional multiverse (FDCs form a fibrant triple category w/o interchange)

which we can explore in both *imagery* and *syntax*.

Color syntax

Imagery is *dual* to syntax; so they unite in **color syntax**: a string diagram is a general concept, and *substituting* syntax determines a specific instance of the concept.

"total" \simeq "fiberwise" is the basis of dependent category theory.

The metalogic of logics

The key to metalogic is to see a logic as like a category: a category is a matrix with composition and identity; a logic is a *matrix category* with composition and identity.

"Matrix category" is a short name for *two-sided bifibration*, so a pseudomonad in MatCat is a *bifibrant double category*.

00000000

The metalogic of logics

=

Matrix categories are *exponentiable*, so metalogic is *higher-order*: the **co/descent calculus** is the higher co/end calculus. [2]

 $MatCat(\mathcal{R}\otimes \mathcal{S},\mathcal{T})$

- П́А.С $\mathbb{C}at((\mathcal{R}\otimes\mathcal{S})(A,C),\mathcal{T}(A,C))$ = Π̈́A, C $\mathbb{C}at(\vec{\Sigma}B \ \mathcal{R}(A, B) \times \mathcal{S}(B, C), \mathcal{T}(A, C))$ =
- ПА.С ПВ \simeq $\mathbb{C}at(\mathcal{R}(A, B) \times \mathcal{S}(B, C), \mathcal{T}(A, C))$
- Π̈́A, B, C $\mathbb{C}at(\mathcal{S}(B, C), [\mathcal{R}(A, B) \to \mathcal{T}(A, C)])$ \simeq \sim
 - $\mathbb{C}at(\mathcal{S}(B,C),\vec{\Pi}C \ [\mathcal{R}(A,B) \to \mathcal{T}(A,C)])$ П́В.С

 $MatCat(\mathcal{S}, [\mathcal{R} \to \mathcal{T}])$

A system for double weighted co/limits, and much more.

Outline

We develop the underlying structure of a logic; then metalogic is the monad completion of this structure.

- A span of categories A ← R → B
 ≃ a matrix of categories R(A, B).
- ► The *weave double category* is the equational logic of A.

$$\langle \mathbb{A} \rangle \equiv \overrightarrow{\mathbb{A}} + \overleftarrow{\mathbb{A}}$$

• A *matrix category* is a bimodule of weave double categories.

A logic, or bifibrant double category, is a matrix category $\underline{\mathbb{C}} \leftarrow \mathbb{C} \rightarrow \underline{\mathbb{C}}$ with comp. and identity.

Spans of categories

The basic data of a logic is a span of categories: relations and inferences, over pairs of types and processes.

A span of categories $\mathbb{A} \leftarrow \mathcal{R} \rightarrow \mathbb{B} \sim$ a matrix of categories: [4] a **displayed category** is a normal lax functor $\mathcal{R} : \mathbb{A} \times \mathbb{B} \rightarrow \mathbb{C}$ at.

 $\vec{\mathcal{R}}(a,b)$: $\mathcal{R}(A_0,B_0)$ | $\mathcal{R}(A_1,B_1)$

Seq. composition

Par. composition

Metalogic 00000000

Spans of categories

 $\label{eq:relation} \begin{array}{l} \mbox{identity} \\ \mathcal{R}(\mathrm{A},\mathrm{B}) \Rightarrow \vec{\mathcal{R}}(\mathrm{id.A},\mathrm{id.B}) \end{array}$

Spans of profunctors

This idea generalizes to spans of profunctors $f \leftarrow i \rightarrow g$. A **displayed profunctor** is a map i(f,g): Prof which forms a bimodule of lax functors $\mathcal{Q}(\mathbb{X}, \mathbb{Y})$ and $\mathcal{R}(\mathbb{A}, \mathbb{B})$.

 $i(f,g): \mathcal{Q}(X,Y) \,|\, \mathcal{R}(A,B)$

Introduction 00000000	Span categories 00000	Arrows and op-arrows	Matrix categories	Par. composition	Metalogic 00000000

 $\begin{array}{c} \textbf{postcomposition}\\ i(\mathbf{f},\mathbf{g})\circ\vec{\mathcal{R}}(\mathbf{a},\mathbf{b}) \Rightarrow i(\mathbf{fa},\mathbf{gb}) \end{array}$

00000

Equivalence: spans are matrices

Inverse image is functorial, defining "displayed functors" and "displayed transformations".

Theorem

The double category of span categories is equivalent to the double category of displayed categories.

SpanCat

- DisCat
- span cat. $\mathbb{A} \leftarrow \mathcal{R} \rightarrow \mathbb{B} \sim dis. cat. \mathcal{R}(A, B)$: Cat 0
- Vspan fun. $[\mathcal{R}]: \mathcal{R}_0 \to \mathcal{R}_1$
- Η
- 2
- ~ dis. fun. $[\mathcal{R}]: \mathcal{R}_0(A_0, B_0) \to \mathcal{R}_1([A_0], [B_0])$
- span prof. $f \leftarrow i \rightarrow q$ ~ dis. prof. i(f,q): Prof
- span trans. $[i]: i_0 \to i_1 \quad \sim \quad \text{dis. trans. } [i]: i_0(f_0, g_0) \Rightarrow i_1([f_0]], [g_0])$

Arrow double categories

If $\mathbb{A} \leftarrow \mathcal{R} \to \mathbb{B}$ is to be *relations* from \mathbb{A} to \mathbb{B} , then relations should *vary* over processes in \mathbb{A} and \mathbb{B} .

The **arrow double category** $\overrightarrow{\mathbb{A}}$ is that of commuting squares.

Introduction Span categories Arrows and op-arrows Oo000000 October October Oo000000 October Oc

Fibered and opfibered categories

A fibered category over \mathbb{A} is a left $\overrightarrow{\mathbb{A}}$ -module. [5] An **opfibered category** over \mathbb{B} is a right $\overrightarrow{\mathbb{B}}$ -module.

These are often denoted a^*R "pullback" and $b_!R$ "pushforward".

Fibered and opfibered categories

In a fibered category \mathcal{R} over \mathbb{A} , a morphism $r: R_0 \to R_1$ over $a: \mathbb{A}(A_0, A_1)$ is equivalent to $\eta.a \circ r: R_0 \to \hat{a} \odot R_1$ over $id.A_0$, by factoring through the **cartesian** morphism $\varepsilon.a \circ id.R_1$.

This gives a contravariant representation of morphisms over a.

$$\vec{\mathcal{R}}(\mathbf{a})(R_0, R_1) \cong \mathcal{R}(R_0, \mathbf{a} \odot R_1)$$

Yet an arrow double category is not a *logic*. There is a limitation to the equational reasoning of $\overrightarrow{\mathbb{A}}$.

Composable pairs are only defined up to associativity.

The latter cannot be expressed in the arrow double category.

So, we define the *weave double category*: the union of the arrow double category $\overrightarrow{\mathbb{A}}$ with its opposite $\overleftarrow{\mathbb{A}}$.

Let \mathbb{A} be a category, with arrow double category $\overline{\mathbb{A}}$. The **op-arrow double category** $\overline{\mathbb{A}}$ is the horizontal opposite.

$$\overleftarrow{\mathbb{A}}(A_0,A_1) \equiv \overrightarrow{\mathbb{A}}(A_1,A_0)$$

Denote an **arrow** $\hat{a} : \overrightarrow{A}(A_0, A_1)$, and an **op-arrow** $\check{a} : \overleftarrow{A}(A_1, A_0)$.

We use \bar{a} for objects of $\overrightarrow{\mathbb{A}} + \overleftarrow{\mathbb{A}}$.

Define $Dbl_{\mathbb{A}}$ be the 2-category of double categories on \mathbb{A} , double functors over $id.\mathbb{A}$, and identity-component transformations.

Given double categories \mathcal{A}_0 and \mathcal{A}_1 on \mathbb{A} , and double functors $f, g: \mathcal{A}_0 \to \mathcal{A}_1$ over id. \mathbb{A} , an icon $\gamma: f \Rightarrow g$ gives for each $a_0: \mathcal{A}_0$ a 2-morphism $\gamma(a_0): f(a_0) \Rightarrow g(a_0)$, subject to naturality.

Weave double category

Let \mathbb{A} be a category. The **weave double category** $\langle \mathbb{A} \rangle$ is the coproduct of the arrow and op-arrow double categories in $Dbl_{\mathbb{A}}$.

$$\langle \mathbb{A} \rangle \equiv \overrightarrow{\mathbb{A}} + \overleftarrow{\mathbb{A}}$$

 $\langle \mathbb{A} \rangle$ is generated by squares of $\overrightarrow{\mathbb{A}}$, opsquares of $\overleftarrow{\mathbb{A}}$, and isomorphisms of identity arrows and op-arrows.

 $\hat{\mathrm{id.A}}\cong\check{\mathrm{id.A}}$

Theorem $\langle \mathbb{A} \rangle$ is a logic.

Theorem $\langle \mathbb{A} \rangle$ *-modules are bifibered categories over* \mathbb{A} *.*

Matrix categories

Let \mathbb{A}, \mathbb{B} be categories, with weave double categories $\langle \mathbb{A} \rangle, \langle \mathbb{B} \rangle$.

A matrix category or two-sided bifibration $\mathcal{R} : \mathbb{A} \parallel \mathbb{B}$ is a span category $\mathbb{A} \leftarrow \mathcal{R} \rightarrow \mathbb{B}$ which is a bimodule from $\langle \mathbb{A} \rangle$ to $\langle \mathbb{B} \rangle$.

$$\begin{split} \odot_{\mathbb{B}} \, : \, \mathcal{R}(A,B_0) \times \langle \mathbb{B} \rangle(B_0,B_1) \\ & \to \mathcal{R}(A,B_1) \end{split}$$

Matrix categories

The actions of $\langle \mathbb{A} \rangle$ and $\langle \mathbb{B} \rangle$ on \mathcal{R} are associative and unital up to coherent isomorphism.

center associator $\alpha_{\mathcal{R}} : \bar{\mathbf{a}} \odot (R \odot \bar{\mathbf{b}}) \cong (\bar{\mathbf{a}} \odot R) \odot \bar{\mathbf{b}}$

Arrows and op-arro

Matrix categories

eq. composition

Par. composition

Metalogic 00000000

Matrix categories

Matrix categories

The coherence means that reassociating a composite is well-defined, and reassociating a unit is well-defined.

 $(\langle \bar{\mathbf{a}}_k \rangle \circ \mathrm{id.A}) \odot R$ $\Rightarrow \langle \bar{\mathbf{a}}_k \rangle \odot (\mathrm{id.A} \odot R)$

We now define relations of matrix categories.

Let $f : \mathbb{X} \mid \mathbb{A}$ be a profunctor; then the **arrow profunctor** of arrow categories $\overrightarrow{f} : \overrightarrow{\mathbb{X}} \mid \overrightarrow{\mathbb{A}}$ consists of commutative squares; its projections form a span profunctor $f \leftarrow \overrightarrow{f} \rightarrow f$.

This forms a vertical profunctor of arrow double categories.

Dually, the **op-arrow profunctor** of *f* is the profunctor of op-arrow categories $\overleftarrow{f}: \overleftarrow{\mathbb{X}} \mid \overleftarrow{\mathbb{A}}$.

$$\overleftarrow{f}(\check{\mathbf{x}},\check{\mathbf{a}}) = \{\mathbf{f}_0 : f(\mathbf{X}_0,\mathbf{A}_0), \mathbf{f}_1 : f(\mathbf{X}_1,\mathbf{A}_1) \mid \mathbf{x} \cdot \mathbf{f}_0 = \mathbf{f}_1 \cdot \mathbf{a}\}\$$

The **weave vertical profunctor** of weave double categories $\langle f \rangle : \langle \mathbb{X} \rangle | \langle \mathbb{A} \rangle$ is the coproduct of \overrightarrow{f} and \overleftarrow{f} in the category of vertical profunctors over f.

Just like the weave double category, this is generated from squares and opsquares in f, plus the actions of $\langle \mathbb{X} \rangle$ and $\langle \mathbb{A} \rangle$, subject to naturality of the isomorphisms $id.A \cong id.A$.

 $\odot_f: \langle f \rangle * i \to i$

Let Q(X, Y) and $\mathcal{R}(\mathbb{A}, \mathbb{B})$ be matrix categories. Let $f: X | \mathbb{A}$ and $g: Y | \mathbb{B}$ be profunctors, with weave profunctors $f \leftarrow \langle f \rangle \rightarrow f$ and $g \leftarrow \langle g \rangle \rightarrow g$.

A matrix profunctor $i(f,g) : \mathcal{Q}(\mathbb{X}, \mathbb{Y}) | \mathcal{R}(\mathbb{A}, \mathbb{B})$ is a span profunctor which is a bimodule from $\langle f \rangle$ to $\langle g \rangle$, coherent with the associators and unitors of \mathcal{Q} and \mathcal{R} .

 $i(f,g): \mathcal{Q}(\mathbb{X},\mathbb{Y}) \mid \mathcal{R}(\mathbb{A},\mathbb{B})$

 $\odot_g : i * \langle g \rangle \to i$

The matrix profunctor i(f,g) is a relation of matrix categories $\mathcal{Q}(\mathbb{X}, \mathbb{Y})$ and $\mathcal{R}(\mathbb{A}, \mathbb{B})$, so it coheres with associators and unitors.

associator coherence

Arrows and op-arro

Matrix categories

eq. composition

Par. composition

Metalogic 00000000

Matrix profunctors

Matrix functors and transformations

Let $\llbracket \mathbb{A} \rrbracket : \mathbb{A}_0 \to \mathbb{A}_1$ and $\llbracket \mathbb{B} \rrbracket : \mathbb{B}_0 \to \mathbb{B}_1$ be functors, and let $\mathcal{R}_0(\mathbb{A}_0, \mathbb{B}_0)$ and $\mathcal{R}_1(\mathbb{A}_1, \mathbb{B}_1)$ be matrix categories.

A **matrix functor** $[\![\mathcal{R}]\!]$: $\mathcal{R}_0 \to \mathcal{R}_1$ is a morphism of bimodules, preserving composition and identity up to coherent isos.

left join $[\![\langle \bar{\mathbf{a}}_k \rangle]\!] \odot_1 [\![R]\!] \cong [\![\langle \bar{\mathbf{a}}_k \rangle \odot_0 R]\!]$ $\begin{array}{c} \textbf{right join} \\ \llbracket R \rrbracket \odot_1 \llbracket \langle \bar{\mathbf{b}}_{\ell} \rangle \rrbracket \cong \llbracket R \odot_0 \langle \bar{\mathbf{b}}_{\ell} \rangle \rrbracket \end{array}$

Matrix functors and transformations

Let $\llbracket Q \rrbracket(X, Y)$ and $\llbracket \mathcal{R} \rrbracket(\mathbb{A}, \mathbb{B})$ be matrix functors, and let $i_0(f_0, g_0) : Q_0 | \mathcal{R}_0$ and $i_1(f_1, g_1) : Q_1 | \mathcal{R}_1$ be matrix profunctors.

A matrix transformation $[\![i]\!]: i_0 \to i_1$ is a span transformation which coheres with the left and right joins of $[\![Q]\!]$ and $[\![R]\!]$.

 $[\![\mathbf{x}]\!] \odot [\![Q]\!] \rightrightarrows [\![\mathbf{a} \odot R]\!]$

 $[\![Q]\!] \odot [\![\mathbf{y}]\!] \rightrightarrows [\![R \odot \mathbf{b}]\!]$

Sequential composition

We now see how matrix categories and functors, matrix profunctors and transformations form a *logic*.

How do we compose matrix profunctors? By using weaves.

00000

Both squares of $\langle f \circ g \rangle$ can be expressed in $\langle f \rangle \circ \langle g \rangle$ so an action by $\langle f \rangle$ and one by $\langle g \rangle$ defines an action by $\langle f \circ g \rangle$.

Sequential composition

So, we ensure the actions are *well-defined* on the *identities*, associativity zig-zags in $\langle f \circ g \rangle$ and $\langle k \circ \ell \rangle$: so to compose $m(f,k) : \mathcal{R}(\mathbb{X},\mathbb{A}) \mid \mathcal{S}(\mathbb{Y},\mathbb{B})$ and $n(g,\ell) : \mathcal{S}(\mathbb{Y},\mathbb{B}) \mid \mathcal{T}(\mathbb{Z},\mathbb{C})$, we quotient $m \circ n$ by their actions.

 $[S.(m,n)] \equiv [u_{\mathcal{R}} \cdot (\langle \bar{\mathbf{y}}_i \rangle \odot S \odot \langle \bar{\mathbf{b}}_j \rangle) . (w_f \odot m \odot w_k, w_g \odot n \odot w_\ell) \cdot u_{\mathcal{T}}^{-1}]$

IntroductionSpan categoriesArrows and op-arrowsMatrix categories00000000000000000000000000000

Seq. composition

Par. composition Me

Sequential composition

Let m(f,k): $\mathcal{R}(\mathbb{X},\mathbb{A}) | \mathcal{S}(\mathbb{Y},\mathbb{B})$ and $n(g,\ell)$: $\mathcal{S}(\mathbb{Y},\mathbb{B}) | \mathcal{T}(\mathbb{Z},\mathbb{C})$ be matrix profunctors. The sequential composite

 $(m \diamond n)(f \circ g, k \circ \ell) : \mathcal{R}(\mathbb{X}, \mathbb{A}) \mid \mathcal{T}(\mathbb{Z}, \mathbb{C})$

is the following coequalizer.

The logic of matrix categories

Theorem Matrix categories form a logic.

Proof.

As sequential composition of matrix profunctors is defined by coequalizer, it is canonically functorial. The associator and unitors are inherited from $\operatorname{Span}\mathbb{C}$ at, because the coequalizer is orthogonal to span profunctor composition.

Hence MatCat is a double category. Moreover it is a logic: substitution of matrix functors in matrix profunctors is exactly analogous to that of functors in profunctors, in Cat.

The logic of matrix categories

A **double fibration** [1] is a category in the 2-category of fibered categories, fibered functors, and fibered transformations.

Theorem

Matrix categories are fibered over pairs of categories.

Proof.

Substitution of functors in matrix categories, and transformations in matrix profunctors, is defined by pullback. Matrix profunctor composition preserves substitution.

The logic of matrix categories

This is the logic of matrix categories, over pairs of categories.

 $\mathbb{C}\mathrm{at} \gets \mathrm{Mat}\mathbb{C}\mathrm{at} \to \mathbb{C}\mathrm{at}$

Now, we define *parallel composition* of matrix categories.

Now, we define composition of matrix categories.

Let $\mathcal{R} : \mathbb{A} \parallel \mathbb{B}$ and $\mathcal{S} : \mathbb{B} \parallel \mathbb{C}$ be matrix categories. The **parallel composite** $\mathcal{R} \otimes \mathcal{S} : \mathbb{A} \parallel \mathbb{C}$ is constructed as follows. On $\mathbb{A} \leftarrow \mathcal{R} * \mathcal{S} \rightarrow \mathbb{C}$ we form the *iso-coinserter* of actions by $\langle \mathbb{B} \rangle$.

This adjoins an associator $\alpha_{\mathcal{RS}}$: $B_0.(R, \bar{b} \odot S) \cong B_1.(R \odot \bar{b}, S)$.

On the associator, two equations are imposed by *coequifier*, for reassociating a composite and a unit.

Hence $\mathcal{R} \otimes \mathcal{S} : \mathbb{A} \parallel \mathbb{C}$ is a codescent object. [5]

Let m(f,g) and n(g,h) be matrix profunctors.

The **parallel composite** matrix profunctor $m \otimes n : Q \otimes S | \mathcal{R} \otimes \mathcal{T}$ is the following coequalizer.

So the elements of $(m \otimes n)(f,h) : (\mathcal{Q} \otimes \mathcal{S})(\mathbb{X},\mathbb{Z}) | (\mathcal{R} \otimes \mathcal{T})(\mathbb{A},\mathbb{C})$ are composites of: morphisms y.(q,s), associators $\alpha_{\mathcal{QS}}$, elements g.(m,n), associators $\alpha_{\mathcal{RT}}$, and morphisms b.(r,t), such that for any $[g_0, g_1] : \langle g \rangle(\bar{y}, \bar{b})$ and $m : m(f, g_0)$, $n : n(g_1, h)$ the following commutes.

$$\begin{array}{ccc} \mathbf{Y}_{0}.(Q,\bar{\mathbf{y}}\odot S) & \xrightarrow{\alpha_{QS}} & \mathbf{Y}_{1}.(Q\odot\bar{\mathbf{y}},S) \\ & & & | \\ & & & | \\ & g_{0}.(m,[\mathbf{g}_{0},\mathbf{g}_{1}]\odot n) & & g_{1}.(m\odot[\mathbf{g}_{0},\mathbf{g}_{1}],n) \\ & \downarrow & & \downarrow \\ & \mathbf{B}_{0}.(R,\bar{\mathbf{b}}\odot T) & \xrightarrow{\alpha_{\mathcal{R}}\tau} & \mathbf{B}_{1}.(R\odot\bar{\mathbf{b}},T) \end{array}$$

Parallel composition does not preserve sequential composition.

 $(i \otimes m) \diamond (j \otimes n) \qquad \nleftrightarrow \qquad (i \diamond j) \otimes (m \diamond n)$

Parallel composition *creates* an associator element, while sequential composition *equates* elements.

The metalogic of matrix categories

A **metalogic** is a logic \mathbb{C} and a fibered logic $\mathbb{C} \leftarrow \mathbb{M} \rightarrow \mathbb{C}$ which forms an *intramonad* in Span(SpanCat): analogous to an intermonad in an intercategory, but vertically 1-weak, horizontally 2-weak, and no interchange.

This is a "bifibrant triple category" without interchange.

A logic is a pseudomonad in $\mathrm{Mat}\mathbb{C}\mathrm{at}.$

Theorem Logics form a metalogic.

0000000

The metalogic of logics

There are two kinds of relations between logics. a *vertical* profunctor consists of *processes* between logics, and a *horizontal* profunctor consists of *relations* between logics.

Two pairs are connected by a *double profunctor*, which consists of inferences between relations, along processes.

The metalogic of logics

Logics have two kinds of relation, and one kind of function: a *double functor* $[\![A]\!]: A_0 \to A_1$ maps squares of A_0 to A_1 , preserving relation composition and unit up to coherent iso. 00000000

This generalizes to transformations of vertical, horizontal, and double profunctors; all four are defined by mapping squares in a way that coheres with parallel composition and unit.

The metalogic of logics

All together, logics form a metalogic.

A cube is a double transformation, the fully general notion of what is known as a modification.

The metalogic of logics

The metalanguage is extremely powerful; there are just three basic "limitations" or complexities:

- 1. *No interchange*. Parallel (horizontal) composition is neither lax nor colax with respect to sequential (vertical) composition of double profunctors.
- 2. *No vertical collage*. In general there is no collage of a vertical profunctor, because its elements do not act on the relations of the bifibrant double categories.
- 3. *No vertical closure*. Neither *bf*.DblCat nor *bf*.DblProf are closed logics.

Yet bf.DblCat is *horizontally* closed: lifts and extensions are derived just as in the co/end calculus, giving formulae for double weighted co/limits.

Prospectus

The language extends to virtual equipments, and moreover their poly- generalization, by specifying any "shape" of 2-cell as a matrix profunctors, equipped with multi- or poly- composition.

The pseudomonad construction generalizes lax or colax double functors; but this complicates the co/descent calculus. It is likely best to use pseudo double functors, and encode co/laxity.

As of now, I do not know any aspect of category theory which is beyond the scope of this metalanguage. There is a huge research program of unification, just waiting for people to explore.

Thank you.

References

Geoffrey Cruttwell, Michael Lambert, Dorette Pronk, and Martin Szyld. Double fibrations, 2022.

Fosco Loregian.
 (Co)end Calculus.
 Cambridge University Press, 2021.

Michael Shulman.

Framed bicategories and monoidal fibrations. *Theory and Applications of Categories*, 20:650–738, 2008.

Ross Street.

Powerful functors, 2001.

Tamara von Glehn.

Polynomials, fibrations, and distributive laws. *Theory and Applications of Categories*, 33:1111–1144, 2018.