The Fundamental Groupoid in Discrete Homotopy Theory

Udit Mavinkurve

Based on joint work with Chris Kapulkin

October 28, 2023

- H. Barcelo, X. Kramer, R. Laubenbacher, and C. Weaver, Foundations of a connectivity theory for simplicial complexes, Adv. Appl. Math., 2001
- E. Babson, H. Barcelo, M. de Longueville, and R. Laubenbacher, *Homotopy theory of graphs*, J. Alegbraic Combin., 2006
- R. Hardeman, The lifting properties of A-homotopy theory, 2019.
- B. Lutz, *Higher discrete homotopy groups of graphs*, Algebr. Comb., 2021.
- D. Carranza and K. Kapulkin, *Cubical setting for discrete homotopy theory, revisited*, 2022.
- K. Kapulkin and U. M., *The fundamental group(oid) in discrete homotopy theory*, 2023.

Dramatis Personae:

A graph is a set equipped with a symmetric, reflexive relation \sim .

If $x \sim x'$ and $x \neq x'$, we draw an edge between the vertices corresponding to x and x'. We suppress the unique loop present at each vertex.

A graph map $f: X \to Y$ is a function that preserves the relation.

Thus, edges in X can be mapped to edges in Y or be contracted to single vertex in Y.

We write Graph for the the category of graphs and graph maps.

Examples:

2

 C_3

3

 C_{5}

The box product $X \square Y$ of two graphs X and Y is defined as follows:

$$(X \Box Y)_{V} = X_{V} \times Y_{V}$$
$$(X \Box Y)_{E} = \begin{cases} (x, y) \sim (x', y') \\ \text{or } x = x' \text{ and } y \sim y' \end{cases}$$

Examples:

Let X and Y be two graphs, and let $f, g: X \to Y$ be two graph maps An A-homotopy $H: f \Rightarrow g$ of length $n \in \mathbb{N}$ is a map

 $H: X \Box I_n \to Y$

such that

$$H(-,0) = f$$
 and $H(-,n) = g$.

A graph map $f: X \to Y$ is an *A*-homotopy equivalence if there exists some graph map $g: Y \to X$ and homotopies $g \circ f \Rightarrow id_X$ and $f \circ g \Rightarrow id_Y$.

Examples:

- $I_n \xrightarrow{!} I_0$ is an A-homotopy equivalence for all $n \in \mathbb{N}$.
- $I_{\infty} \xrightarrow{!} I_0$ is NOT an *A*-homotopy equivalence.

Examples:

•
$$C_n \xrightarrow{!} I_0$$
 is an A-homotopy equivalence for $n = 3, 4$.

Let X be a graph and $x, x' \in X_V$ be two vertices.

A path $\gamma: x \rightsquigarrow x'$ is a map

$$\gamma\colon I_{\infty}\to X$$

for which there exist integers $\textit{N}_{-},\textit{N}_{+}\in\mathbb{Z}$ such that

$$\gamma(i) = x$$
 for all $i \leq N_{-}$

and

$$\gamma(i) = x'$$
 for all $i \ge N_+$.

The fundamental group $A_1(X, x_0)$ of a pointed graph (X, x_0) is defined as follows:

$$A_1(X, x_0) = \{ \text{paths in } X \text{ from } x_0 \text{ to itself} \} / \sim_*$$

Some areas in which discrete homotopy theory has found applications:

- Matroid theory
 S. B. Maurer, *Matroid basis graphs*, J. Combinatorial Theory Ser. B, 1973
- Hyperplane arrangements
 H. Barcelo, C. Severs, and J. A. White, *k-Parabolic subspace arrangements*, Trans. Am. Math. Soc., 2011
- Topological data analysis
 F. Mémoli and L. Zhou, *Persistent homotopy groups of metric spaces*, 2019.

The fundamental groupoid $\Pi_1 X$ of a graph X is defined as follows:

$$\Pi_1 X = \begin{cases} \text{objects:} & \text{vertices } x, x', \dots \text{ of } X \\ \text{morphisms:} & \text{path-homotopy classes } [\gamma] : x \to x' \text{ of} \\ & \text{paths } \gamma \colon x \rightsquigarrow x' \text{ in } X \end{cases}$$

We have $A_1(X, x_0) \cong \prod_1 X(x_0, x_0)$.

Theorem (Kapulkin-M.)

For any graphs X and Y, we have:

```
\Pi_1(X \Box Y) \cong \Pi_1 X \times \Pi_1 Y
```

- A finite formulation of the homotopy groups
- Overing graphs
- **③** Van Kampen theorem for graphs
- Graphs with a prescribed fundamental group(oid)

- A finite formulation of the homotopy groups
- Overing graphs
- **③** Van Kampen theorem for graphs
- Graphs with a prescribed fundamental group(oid)

Covering graphs

The (star) neighbourhood N_x of a vertex x in a graph X consists of x and its neighbours, with an edge drawn between x and each of its neighbours.

A map $p: Y \to X$ is a local isomorphism if it restricts to an isomorphism between N_y and N_{fy} for each $y \in Y$.

A map $p: Y \to X$ is a covering if, in addition to being a local isomorphism, it has the RLP against $\Box: I_3 \to I_1 \Box I_1$.

Example:

• $I_{\infty} \to C_n$; $i \mapsto i \mod n$ is a local isomorphism for all $n \ge 3$, but a covering only for $n \ge 5$.

We write Cov(X) for the full subcategory of Graph $\downarrow X$ on coverings.

Theorem (Kapulkin-M.)

• For any graph X, we have:
$$Cov(X) \simeq Set^{\Pi_1 X}$$
.

2 For any pointed, connected graph (X, x_0) , we have:

$$\left\{\begin{array}{c} \text{connected coverings} \\ \text{of } (X, x_0) \end{array}\right\} \simeq \left\{\begin{array}{c} \text{subgroups of } A_1(X, x_0) \\ \text{ordered by } \subseteq \end{array}\right\}^{\text{op}}$$

Covering graphs

A pointed covering $(Y, y_0) \rightarrow (X, x_0)$ is called a universal cover if it is initial in the category of pointed coverings over (X, x_0) .

Theorem (Kapulkin-M.)

- Every pointed graph (X, x_0) admits a universal cover $(\tilde{X}_{x_0}, [c_{x_0}])$.
- ② A pointed covering $(Y, y_0) \rightarrow (X, x_0)$ is universal if and only if the graph Y is simply connected.

Examples:

- The cycle graph C_n for n = 3, 4 has C_n itself as its universal cover.
- The cycle graph C_n for $n \ge 5$ has I_∞ as its universal cover.

Corollary

$$A_1(C_n, *) \cong \begin{cases} 0 & \text{if } n = 3, 4 \\ \mathbb{Z} & \text{if } n \ge 5 \end{cases}$$

Udit Mavinkurve

- A finite formulation of the homotopy groups
- Overing graphs
- O Van Kampen theorem for graphs
- Graphs with a prescribed fundamental group(oid)

Van Kampen theorem for graphs

A map s: $I_m \rightarrow I_n$ is shrinking if it is order-preserving and surjective.

Let X be a graph and $h: I_1 \Box I_1 \to X$ be any map. A net of h is a pair (H, s) consisting of a map $H: I_m \Box I_n \to X$ for some $m, n \in \mathbb{N}$, together with a shrinking map $s: I_{2m+2n} \to I_4$, such that:

$$H \circ \partial_{m,n} = h \circ \partial_{1,1} \circ s$$

Example:

Theorem (Kapulkin-M.)

Consider a pushout square in Graph as follows:

$$egin{array}{ccc} X_0 \longrightarrow X_1 \ \downarrow & \downarrow \ X_2 \longrightarrow X \end{array}$$

If every map $h: I_1 \Box I_1 \rightarrow X$ whose image in X is a 3- or 4-cycle admits a net (H, s) such that each cell $H_{i,j}$ of H factors through X_1 or X_2 , then the pushout square is preserved by the functor Π_1 : Graph \rightarrow Gpd. That is, we have the following pushout square in Gpd:

$$\begin{array}{c} \Pi_1 X_0 \longrightarrow \Pi_1 X_1 \\ \downarrow \qquad \downarrow \\ \Pi_1 X_2 \longrightarrow \Pi_1 X \end{array}$$

- A finite formulation of the homotopy groups
- Overing graphs
- **③** Van Kampen theorem for graphs
- Graphs with a prescribed fundamental group(oid)

Graphs with a prescribed fundamental group(oid)

For $m \ge 3$ and $n \in \mathbb{N}$, let the (m, n)-disk $D_{m,n}$ be the following quotient:

 $D_{m,n} = C_m \Box I_n / \sim$ $(i,0) \sim (j,0)$ for all $i,j \in C_m$

and let the boundary map $\partial_{m,n} \colon C_m \to D_{m,n}$ be given by

$$\partial_{m,n}(i) = (i,n).$$

Example:

Let F_S be the free group generated by a set S.

Given any word $r = s_1^{d_1} \cdots s_k^{d_k} \in F_S$, we can define its degree as follows:

$$\deg(r) = |d_1| + \dots + |d_k|$$

We can then define a map ω_r corresponding to the word r as follows:

$$\omega_r \colon C_{5 \cdot \deg(r)} \longrightarrow \bigvee_{s \in S} C_5$$

First, wrap d_1 times around the C_5 corresponding to $s_1 \in S$ (clockwise if $d_1 > 0$ and counterclockwise if $d_1 < 0$), then d_2 times around the C_5 corresponding to $s_2 \in S$, and so on.

Graphs with a prescribed fundamental group(oid)

Let G be any group, along with a presentation $G = \langle S \mid R \rangle$.

Define $X_{\langle S|R\rangle}$ to be the graph given by the following pushout:

$$\begin{array}{c|c} & \coprod_{r \in R} C_{5 \cdot \deg(r)} \xrightarrow{(\omega_r)_{r \in R}} \bigvee_{s \in S} C_5 \\ & \coprod_{r \in R} \partial_{5 \cdot \deg(r),3} \downarrow & \downarrow \\ & \coprod_{r \in R} D_{5 \cdot \deg(r),3} \xrightarrow{} X_{\langle S|R \rangle} \end{array}$$

Theorem (Kapulkin-M.)

Given any group G, with a presentation $G = \langle S \mid R \rangle$, we have:

$$A_1(X_{\langle S|R\rangle},*)\cong G$$

Corollary (Approximation property)

Given any groupoid \mathscr{G} , graph Y, and functor $F : \mathscr{G} \to \Pi_1 Y$, there exists a graph X, graph map $f : X \to Y$, and a zigzag of equivalences of groupoids $\mathscr{G} \xleftarrow{\sim} \mathscr{G}' \xrightarrow{\sim} \Pi_1 X$ such that the following diagram commutes:

$$\begin{array}{ccc} \mathscr{G}' & \stackrel{\sim}{\longrightarrow} & \Pi_1 X \\ \sim & & & & \downarrow \Pi_1 f \\ \mathscr{G} & \stackrel{F}{\longrightarrow} & \Pi_1 Y \end{array}$$

A map $f: X \to Y$ is a weak 1-equivalence if it induces a bijection $\pi_0 X \to \pi_0 Y$ and an isomorphism $A_1(X, x) \to A_1(Y, fx)$ for all $x \in X$.

Let $W_{\leq 1}$ be the class of weak 1-equivalences in Graph.

Do we have $(Graph, W_{\leq 1}) \simeq_H Gpd$?

More generally, do we have $(Graph, W_{\leq n}) \simeq_H n$ -Gpd?

Approach: use fibration categories

Theorem (Cisinski)

An exact functor $F : \mathscr{C} \to \mathscr{D}$ between fibration categories induces an equivalence $Ho \mathscr{C} \to Ho \mathscr{D}$ if and only if it satisfies the following approximation properties:

- F reflects weak equivalences
- Given any morphism f: B → FY in D, there exists a morphism
 f: X → Y in C such that there is a commutative square of the form:

where $A \xrightarrow{\sim} B$ and $A \xrightarrow{\sim} FX$ are weak equivalences in \mathcal{D} .