A characterization of regular and exact completions of existential completions

Davide Trotta j.w.w. M.E. Maietti

University of Pisa

Regular and Exact completions in category theory

The process of completing a category with finite limits to a regular category or exact category has been well-studied in categorical logic, raising to the so-called notion of reg/lex- and ex/lex- completions.

Theorem

A regular category A is the regular completion (necessarily) of the full subcategory \mathcal{P}_A of its regular projectives if and only if \mathcal{P}_A is closed under finite limits in A, A has enough projectives, and every object of A can be embedded in a regular projective.

Theorem

An exact category A is the exact completion (necessarily) of the full subcategory \mathcal{P}_A of its regular projectives if and only if \mathcal{P}_A is closed under finite limits in A and A has enough projectives.

A. Carboni (1995), Some free constructions in realizability and proof theory, J. Pure Appl.

Introduction: doctrines

Definition (primary doctrine)

A **primary doctrine** is a functor $P: C^{op} \longrightarrow InfSL$ from the opposite of a category C with finite products to the category of inf-semilattices.

Definition (existential doctrine)

A primary doctrine $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}$ is **existential** if, for every object A and B in \mathcal{C} for any product projection $\pi: A \rightarrow B$, the functor

 $P_{\pi}: P(B) \rightarrow P(A)$

has a left adjoint \exists_{π_i} , and these satisfy: **Beck-Chevalley condition** and **Frobenius** reciprocity.

Introduction: doctrines

Definition (elementary doctrine)

A primary doctrine $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}$ is **elementary** if for every A in \mathcal{C} there exists an object δ_A in $P(A \times A)$ such that

► the assignment

$$\exists_{(\mathrm{id}_A,\mathrm{id}_A)}(\alpha) := P_{\pi_1}(\alpha) \wedge \delta_A$$

for an element α of P(A) determines a left adjoint to $P_{(id_A, id_A)} : P(A \times A) \rightarrow PA$;

► for every morphism *e* of the form (π_1, π_2, π_2) : $X \times A \rightarrow X \times A \times A$ in *C*, the assignment

$$\exists_{e}(\alpha) := \mathsf{P}_{\langle \pi_1, \pi_2 \rangle}(\alpha) \land \mathsf{P}_{\langle \pi_2, \pi_2 \rangle}(\delta_A)$$

for α in $P(X \times A)$ determines a left adjoint to $P_e: P(X \times A \times A) \rightarrow P(X \times A)$.

Some examples

Example

Let $\mathcal{L}_{=,\exists}$ be the $(\top, \land, =, \exists)$ -fragment of first-order Intuitionistic Logic (also called **regular logic**), and let \mathbb{T} be a theory in such a fragment. Then the syntactic doctrine

$$LT_{=,\exists}^{\mathbb{T}}: \mathcal{V}^{op} \longrightarrow InfSL$$

where \mathcal{V} is the category of contexts and substitutions and $LT_{=,\exists}^{\mathbb{T}}(\Gamma)$ is given by the Lindenbaum-Tarski algebra of well-formed formulas of $\mathcal{L}_{=,\exists}$ with free variables in Γ , is elementary and existential.

Example (weak subobjects doctrine)

Consider a category \mathcal{D} with finite limits: the doctrine is given by the functor of weak subobjects (or variations)

 $\Psi_{\mathcal{D}} \colon \mathcal{D}^{\mathsf{op}} \longrightarrow \mathsf{InfSL}$

where $\Psi_{\mathcal{D}}(A)$ is the poset reflection of the slice category \mathcal{D}/A . This doctrine is elementary and existential doctrine.

Example (subobjects doctrine)

Let \mathcal{C} be a category with finite limits. The functor

 $\mathsf{Sub}_{\mathcal{C}} \colon \mathcal{C}^{\mathsf{op}} \longrightarrow \mathsf{InfSL}$

assigns to an object A in C the poset $Sub_{\mathcal{C}}(A)$ of subobjects of A in C. This is an elementary and existential doctrine if and only if the category C is regular.

Doctrines with Hilbert's ϵ -operators

Definition

Let $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}$ be an elementary, existential doctrine. An object B of \mathcal{C} is equipped with Hilbert's ϵ -**operator** if, for any object A in \mathcal{C} and any α in $P(A \times B)$ there exists an arrow $\epsilon_{\alpha}: A \to B$ such that

$$\exists_{\pi_1}(\alpha) = P_{\langle \mathsf{id}_A, \epsilon_\alpha \rangle}(\alpha)$$

holds in P(A), where $\pi_1: A \times B \rightarrow A$ is the first projection.

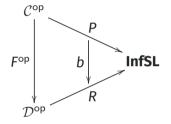
Definition

We say that an elementary, existential doctrine $P: \mathcal{C}^{op} \longrightarrow \text{InfSL}$ is equipped with Hilbert's ϵ -operators if every object in \mathcal{C} is equipped with ϵ -operator.

The 2-category of primary doctrines

Primary doctrines form a 2-category **PD** where:

```
► a 1-cell is a pair (F, b)
```



such that $F: \mathcal{C} \to \mathcal{D}$ is a functor preserving products, and $b: P \to R \circ F^{op}$ is a natural transformation.

• a 2-cell is a natural transformation $\theta: F \to G$ such that for every A in C and every α in PA, we have

$$b_A(\alpha) \leq R_{\theta_A}(c_A(\alpha)).$$

Some subcategories of PD

We denote by:

- ExD the 2-full subcategory of PD whose objects are existential doctrines, and whose 1-cells are those 1-cells of PD which preserve the existential structure;
- EED the 2-full subcategory of PD whose objects are elementary and existential doctrines, and whose 1-cells preserve both the existential and the elementary structure.

Existential free elements

Definition (existential splitting)

Let $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}$ be an existential doctrine. An object α of the fibre P(A) is said to be an **existential splitting** if for every projection $\pi_A: A \times B \to A$ and for every element β of the fibre $P(A \times B)$, whenever $\alpha = \exists_{\pi_A}(\beta)$ holds then there exists an arrow $h: A \to B$ such that $\alpha = P_{(\text{id}_A, h)}(\beta)$.

Definition (existential free elements)

Let $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}$ be an existential doctrine. An object α of the fibre P(A) is said to be **existential free** if for every morphism $f: B \to A$, $P_f(\alpha)$ is an existential splitting.

M.E. Maietti and D. Trotta (2023), A characterization of generalized existential completions, Ann. Pure Appl. Log.

Doctrines with enough existential free objects

Definition

Given an existential doctrine $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}$, we say that an element α of the fibre P(A) is **covered** by an element $\beta \in P(A \times B)$ if $\alpha = \exists_{\pi_A}(\beta)$.

Definition

We say that an existential doctrine $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}$ has **enough existential free objects** if for every object A of C, any element $\alpha \in P(A)$ is covered by some existential free element $\beta \in P(A \times B)$ for some object B of C, namely β is an existential free element and

$$\alpha = \exists_{\pi_A}(\beta).$$

Existential cover

Definition

Let $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}$ be an existential doctrine equipped with a full subdoctrine $P': \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}$. We say that P' is an **existential cover** of P if for any object A, every element α' of P'(A) is existential splitting for P (and hence existential free) and every element α of P(A) is covered by an element of P'.

Lemma

Let $P: \mathcal{C}^{op} \longrightarrow \text{InfSL}$ be an existential doctrine, and let $P': \mathcal{C}^{op} \longrightarrow \text{InfSL}$ be a full subdoctrine of P. If P' is an existential cover of P, then the existential free elements of P coincides exactly with the elements of P'. Hence if an existential cover exists, it is unique.

M.E. Maietti and D. Trotta (2023), A characterization of regular and exact completions of pure existential completions, arXiv

Theorem (characterization of existential completions)

Let $P: \mathcal{C}^{op} \longrightarrow InfSL$ be an existential doctrine. Then the following are equivalent:

- P has the universal property of being the existential completion (P')[∃] of a primary doctrine P';
- 2. P satisfies the following points:
 - 2.1 P satisfies the rule of choice RC, i.e. every top element T_A is existential free;
 - 2.2 for every existential free object α and β of P(A), then $\alpha \land \beta$ is an existential free.
 - 2.3 P has enough existential free elements;
- 3. P has a (unique) existential cover.

Corollary

Every elementary existential doctrine is equipped with Hilbert's ϵ -operators if and only if it provides an existential cover of itself.

Regular completion

Definition

Let $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}$ be an elementary, existential doctrine. The **regular completion** of *P* is the category Reg(P) given by the following data:

- objects are pairs (A, α) where A is an object of C and $\alpha \in P(A)$;
- an arrow from (A, α) to (B, β) is given by an element ϕ of $P(A \times B)$ such that:

1.
$$\phi \leq P_{\pi_1}(\alpha) \wedge P_{\pi_2}(\beta);$$

- 2. $\alpha \leq \exists_{\pi_1}(\phi);$
- 3. $P_{\langle \pi_1, \pi_2 \rangle}(\phi) \wedge P_{\langle \pi_1, \pi_3 \rangle}(\phi) \leq P_{\langle \pi_2, \pi_3 \rangle}(\delta_B).$

Theorem

The category Reg(P) is regular, and the assignment $P \mapsto \text{Reg}(P)$ extends to a 2-functor

$$\operatorname{Reg}(-)$$
: **EED** \rightarrow **Reg**

which is left biadjoint to the inclusion $\text{Reg} \rightarrow \text{EED}$.

Examples

Example

The regular completion $\operatorname{Reg}(\Psi_{\mathcal{D}})$ of the weak subobjects doctrine $\Psi_{\mathcal{D}} \colon \mathcal{D}^{\operatorname{op}} \longrightarrow \operatorname{InfSL}$ coincides with the regular completion $(\mathcal{D})_{\operatorname{reg/lex}}$ of the lex category \mathcal{D} .

Example

The regular completion $\operatorname{Reg}(\operatorname{LT}_{=,\exists}^{\mathbb{T}})$ of the doctrine $\operatorname{LT}_{=,\exists}^{\mathbb{T}}: \mathcal{V}^{\operatorname{op}} \longrightarrow \operatorname{InfSL}$ provides exactly the syntactic category denoted $\mathcal{C}_{\mathbb{T}}^{\operatorname{reg}}$ associated with the theory of the regular fragment of first-order logic in the book *Sketches of an elephant*.

Existential splittings provide regular projectives

Theorem

Let $P: \mathcal{C}^{op} \longrightarrow$ InfSL be an elementary and existential doctrine. Then:

- every object (A, α) where α is existential splitting is regular projective in Reg(P);
- if P has enough existential free objects, every object of Reg(P) is covered by a regular projective object.

M.E. Maietti and D. Trotta (2023), A characterization of regular and exact completions of pure existential completions, arXiv

Category of predicates

Definition

Given an elementary doctrine $P: \mathcal{C}^{op} \longrightarrow$ InfSL , its category of predicates Prd_P is defined as follows:

- ▶ an object of Prd_P is a pair (A, α) where A is an object of C and $\alpha \in P(A)$;
- ► an arrow $[f]_{\sim}$: $(A, \alpha) \rightarrow (B, \beta)$ is an equivalence class of arrows $f : A \rightarrow B$ of C satisfying $\alpha \leq P_f(\beta)$. The equivalence relation $f \sim g$ is given by $T_A \leq P_{\langle f, g \rangle}(\delta_B)$.

Definition (graph functor)

Given an elementary, existential doctrine *P* and an elementary subdoctrine *P'* we can define an embedding, called **graph functor** $G_{|_{P'}} : \operatorname{Prd}_{P'} \to \operatorname{Reg}(P)$ by mapping (A, α) of $\operatorname{Prd}_{P'}$ into (A, α) of $\operatorname{Reg}(P)$ and an arrow $[f] : (A, \alpha) \to (B, \beta)$ of $\operatorname{Prd}_{P'}$ into the arrow $G_{|_{P'}}([f]) = P_{f \times \operatorname{id}_B}(\delta_B) \land (P_{\pi_1}(\alpha) \land P_{\pi_2}(\beta))$ from (A, α) to (B, β) of $\operatorname{Reg}(P)$.

Characterization of the regular completion

Theorem

Let $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}$ be an elementary and existential doctrine. Then P has an existential cover P' if and only if the functor $G_{|_{P'}}^{\text{reg}}: (\operatorname{Prd}_{P'})_{\text{reg/lex}} \to \operatorname{Reg}(P)$ provides an equivalence $\operatorname{Reg}(P) \equiv (\operatorname{Prd}_{P'})_{\text{reg/lex}}$.

M.E. Maietti and D. Trotta (2023), A characterization of regular and exact completions of pure existential completions, arXiv

Exact completion

Definition (exact completion)

Let *P* be an elementary, existential doctrine. We call the category $Ex(P) := (Reg(P))_{ex/reg}$ the **exact completion** of *P*.

Theorem (exact completion of an elementary, existential doctrine)

Let $P: \mathcal{C}^{op} \longrightarrow$ **InfSL** be an elementary and existential doctrine. Then the category Ex(P) is exact, and the assignment $P \mapsto Ex(P)$ extends to a 2-functor

Ex(-): **EED** \rightarrow **ExCat**

which is left biadjoint to the inclusion of the 2-category **ExCat** of exact categories in the 2-category **EED** of elementary and existential doctrines.

M.E. Maietti and G. Rosolini (2013), Unifying exact completions, Appl. Categ. Structures.

Example

The exact completion $Ex(\Psi_D)$ of the weak subobjects doctrine $\Psi_D: \mathcal{D}^{op} \longrightarrow InfSL$ coincides with the ex completion $(\mathcal{D})_{ex/lex}$ of the lex category \mathcal{D} .

Example

The exact completion $\operatorname{Ex}(\operatorname{LT}_{=,\exists}^{\mathbb{T}}) = (\operatorname{Reg}(\operatorname{LT}_{=,\exists}^{\mathbb{T}}))_{\operatorname{ex/reg}}$ of the syntactic doctrine $\operatorname{LT}_{=,\exists}^{\mathbb{T}} \colon \mathcal{V}^{\operatorname{op}} \longrightarrow \operatorname{InfSL}$ provides the exact category called the *effectivization* the syntactic category $\mathcal{C}_{\mathbb{T}}^{\operatorname{reg}}$, also denoted by $\mathcal{E}_{\mathbb{T}} := \operatorname{Eff}(\mathcal{C}_{\mathbb{T}}^{\operatorname{reg}})$.

Example

The exact completion of a subobjects doctrine $\operatorname{Sub}_{\mathcal{C}}: \mathcal{C}^{\operatorname{op}} \longrightarrow \operatorname{InfSL}$ coincides with the well known construction of the exact on regular category $(\mathcal{C})_{\operatorname{ex/reg}}$.

Exact completions of doctrines as ex/lex-completions of Prd

Theorem

Let $P: \mathcal{C}^{op} \longrightarrow \text{InfSL}$ be an elementary and existential doctrine. Then P has an existential cover P' if and only if the functor $G_{|_{P'}}^{ex}: (\operatorname{Prd}_{P'})_{ex/lex} \to \operatorname{Ex}(P)$ provides an equivalence $\operatorname{Ex}(P) \equiv (\operatorname{Prd}_{P'})_{ex/lex}$.

M.E. Maietti and D. Trotta (2023), A characterization of regular and exact completions of pure existential completions, arXiv

Applications

Corollary

Let $P: C^{op} \longrightarrow$ **InfSL** be an elementary and existential doctrine. Then the following are equivalent:

- P is equipped with Hilbert's ε-operators;
- ► the functor G^{reg} : $(Prd_P)_{reg/lex} \rightarrow Reg(P)$ provides an equivalence $Reg(P) \equiv (Prd_P)_{reg/lex}$;
- ► the functor G^{ex} : $(Prd_P)_{ex/lex} \rightarrow Ex(P)$ provides an equivalence $Ex(P) \equiv (Prd_P)_{ex/lex}$.

Corollary

Every Joyal's arithmetic universe on a Skolem theory S is equivalent to the exact completion $Ex(R^{\exists})$ of the existential completion $R^{\exists}: S^{op} \longrightarrow InfSL$ of the elementary doctrine $R: S^{op} \longrightarrow InfSL$ of S-primitive recursive predicates.

Applications

Corollary

Let \mathbb{T}_{o} be a regular theory given by the fragment $\mathcal{L}_{=,\exists}$ of first-order Intuitionistic Logic and no extra-logical axioms on a generic signature. Let H_{o} be the Horn theory given by the corresponding fragment $\mathcal{L}_{=}$ with no extra-logical axioms on the same signature. The syntactic category $\mathcal{C}_{\mathbb{T}_{o}}^{reg}$ of \mathbb{T}_{o} is equivalent to the reg/lex-completion $(\operatorname{Prd}_{LT_{=}^{H_{o}}})_{reg/lex}$ of the category of predicates of the syntactic doctrine $LT_{=}^{H_{o}}$ of H_{o} . Hence, also its effectivization $\mathcal{E}_{\mathbb{T}_{o}}$ is the ex/lex-completion $(\operatorname{Prd}_{LT^{H_{o}}})_{ex/lex}$ of the

category of predicates of $LT_{-}^{H_o}$.

M.E. Maietti and D. Trotta (2023), A characterization of regular and exact completions of pure existential completions, arXiv

Main references

- M.E. Maietti (2010), Joyal's arithmetic universe as list-arithmetic pretopos, Theory Appl. Categ.
- M.E. Maietti and G. Rosolini (2013), Quotient completion for the foundation of constructive mathematics, Log. Univers.
- M.E. Maietti and G. Rosolini (2013), Unifying exact completions, Appl. Categ. Structures.
- M.E. Maietti, F. Pasquali, and G. Rosolini (2017), Triposes, exact completions, and Hilbert's ε-operator, Tbil. Math. J.
- ▶ J. Frey (2015), Triposes, q-toposes and toposes, Ann. Pure Appl. Log.
- M.E. Maietti and D. Trotta (2023), A characterization of generalized existential completions, Ann. Pure Appl. Log.
- M.E. Maietti and D. Trotta (2023), A characterization of regular and exact completions of pure existential completions, *arXiv*
- ▶ D. Trotta (2020), The existential completion, *Theory App. Categ.*
- D. Trotta, M. Spadetto, and V. de Paiva, Dialectica principles via Gödel doctrines, *Theoret. Comput. Sci.*