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Regular and Exact completions in category theory

The process of completing a category with finite limits to a regular category or
exact category has been well-studied in categorical logic, raising to the so-called
notion of reg/lex- and ex/ lex- completions.

Theorem

A regular category A is the reqular completion (necessarily) of the full
subcategory P 4 of its regular projectives if and only if P 4 is closed under finite
limits in A, A has enough projectives, and every object of A can be embedded in
a reqgular projective.

Theorem

An exact category A is the exact completion (necessarily) of the full subcategory
P4 of its regular projectives if and only if P 4 is closed under finite limits in A and
A has enough projectives.

A. Carboni (1995), Some free constructions in realizability and proof theory, ). Pure Appl.



Introduction: doctrines

Definition (primary doctrine)

A primary doctrine is a functor P: C°° —— InfSL from the opposite of a
category C with finite products to the category of inf-semilattices.

Definition (existential doctrine)

A primary doctrine P: C°®» —— InfSL is existential if, for every object Aand B in
C for any product projection m: A — B, the functor

Pr: P(B) — P(A)

has a left adjoint 34, and these satisfy: Beck-Chevalley condition and Frobenius
reciprocity.



Introduction: doctrines

Definition (elementary doctrine)
A primary doctrine P: C°® —— InfSL is elementary if for every A in C there
exists an object 64 in P(A x A) such that
» the assignment
EI(idA,;dA)(or) = Pm(or) A Oa
for an element a of P(A) determines a left adjoint to Pyiq,,id,) : P(A x A) — PA;

» for every morphism e of the form (m,, m,, M,): X x A— X x Ax AinC, the
assignment
Je(a) := P, m,) (@) A Pim,,m,) (64)

for ain P(X x A) determines a left adjoint to Pe: P(X x A x A) = P(X x A).



Some examples

Example

Let £_ 3 be the (T, A, =, 3)-fragment of first-order Intuitionistic Logic (also
called regular logic), and let T be a theory in such a fragment. Then the syntactic

doctrine
LT! _: V°» ——InfSL

where V is the category of contexts and substitutions and LT“: 5() is given by
the Lindenbaum-Tarski algebra of well-formed formulas of £_ 3 with free
variables in T, is elementary and existential.



Example (weak subobjects doctrine)

Consider a category D with finite limits: the doctrine is given by the functor of
weak subobjects (or variations)

Vp: D°P —— InfSL

where W (A) is the poset reflection of the slice category D/A. This doctrine is
elementary and existential doctrine.

Example (subobjects doctrine)

Let C be a category with finite limits. The functor
Sube: C°P —— InfSL

assigns to an object A in C the poset Sub¢(A) of subobjects of Ain C. This is an
elementary and existential doctrine if and only if the category C is regular.



Doctrines with Hilbert's €-operators

Definition

Let P: C°» —— InfSL be an elementary, existential doctrine. An object B of C is
equipped with Hilbert's e-operator if, for any object A in C and any a in P(A x B)
there exists an arrow €4: A — B such that

31-[1(0) = P(idAlea)(a)
holds in P(A), where 1,: A x B — A is the first projection.

Definition

We say that an elementary, existential doctrine P: C°» —— InfSL is equipped
with Hilbert's e-operators if every object in C is equipped with e-operator.



The 2-category of primary doctrines

Primary doctrines form a 2-category PD where:
» a1-cellis a pair (F, b)
CoP

DoP
such that F: C — D is a functor preserving products,and b: P— Ro F°P is a
natural transformation.

» a2-cell is a natural transformation 6: F — G such that for every Ain C and
every a in PA, we have

bA(CX) < RQA(CA((X)).



Some subcategories of PD

We denote by:

» ExD the 2-full subcategory of PD whose objects are existential doctrines,
and whose 1-cells are those 1-cells of PD which preserve the existential
structure;

» EED the 2-full subcategory of PD whose objects are elementary and
existential doctrines, and whose 1-cells preserve both the existential and
the elementary structure.



Existential free elements

Definition (existential splitting)

Let P: C°P ——InfSL be an existential doctrine. An object o of the fibre P(A) is
said to be an existential splitting if for every projection ms: A x B — A and for
every element (3 of the fibre P(A x B), whenever a = 3,(8) holds then there
exists an arrow h: A — B such that a = P4, n)(B).

Definition (existential free elements)

Let P: C°® ——InfSL be an existential doctrine. An object a of the fibre P(A) is
said to be existential free if for every morphism f: B — A, Ps(a) is an existential
splitting.

M.E. Maietti and D. Trotta (2023), A characterization of generalized existential completions, Ann. Pure Appl. Log.



Doctrines with enough existential free objects

Definition

Given an existential doctrine P: C°® —— InfSL , we say that an element o of the
fibre P(A) is covered by an element 8 € P(A x B) if a = 34,(B).

Definition

We say that an existential doctrine P: C°®® —— InfSL has enough existential
free objects if for every object A of C, any element a € P(A) is covered by some
existential free element B € P(A x B) for some object B of C, namely B is an
existential free element and

a= anA(ﬁ)'



Existential cover

Definition

Let P: C°® ——InfSL be an existential doctrine equipped with a full
subdoctrine P’: C°P —— InfSL . We say that P’ is an existential cover of P if for
any object A, every element o’ of P/(A) is existential splitting for P (and hence
existential free) and every element o of P(A) is covered by an element of P’.

Lemma

Let P: C°" —— InfSL be an existential doctrine, and let P’: C°® —— InfSL be a
full subdoctrine of P. If P’ is an existential cover of P, then the existential free
elements of P coincides exactly with the elements of P’. Hence if an existential
cover exists, it is unique.

M.E. Maietti and D. Trotta (2023), A characterization of regular and exact completions of pure existential
completions, arXiv



Theorem (characterization of existential completions)

Let P: C°» —— InfSL be an existential doctrine. Then the following are
equivalent:

1. P has the universal property of being the existential completion (P’)? of a
primary doctrine P’;
2. P satisfies the following points:

22 P satisfies the rule of choice RC, i.e. every top element T, is existential free;

2.2 for every existential free object a and 3 of P(A), then a A B is an existential
free.

2.3 P has enough existential free elements;

3. P has a (unique) existential cover.

Corollary

Every elementary existential doctrine is equipped with Hilbert’s e-operators if
and only if it provides an existential cover of itself.



Regular completion

Definition
Let P: C°® ——InfSL be an elementary, existential doctrine. The regular
completion of P is the category Reg(P) given by the following data:

> objects are pairs (A, a) where A is an object of C and a € P(A);

» an arrow from (A, a) to (B, B) is given by an element ¢ of P(A x B) such that:

1. ¢ < P7T1(a) A PT[z(B);
2. a <3qg(9);

3. P(n1,n2)(¢) A P(n1,n3)(¢) < P(nz,n3)(5B)-

Theorem

The category Reg(P) is regular, and the assignment P — Reg(P) extends to a
2-functor
Reg(—): EED — Reg

which is left biadjoint to the inclusion Reg — EED.



Examples

Example

The regular completion Reg(Vp) of the weak subobjects doctrine
Vp: D —— InfSL coincides with the regular completion (D)reg/iex Of the lex
category D.

Example
The regular completion Reg(LT" ) of the doctrine LT' _:V°P —— InfSL

provides exactly the syntactic category denoted C%eg associated with the theory
of the regular fragment of first-order logic in the book Sketches of an elephant.



Existential splittings provide regular projectives

Theorem

Let P: C°P —— InfSL be an elementary and existential doctrine. Then:
> every object (A, a) where a is existential splitting is regular projective in
Reg(P);
» if P has enough existential free objects, every object of Reg(P) is covered by
a regular projective object.

M.E. Maietti and D. Trotta (2023), A characterization of regular and exact completions of pure existential
completions, arXiv



Category of predicates

Definition
Given an elementary doctrine P: C°®» —— InfSL , its category of predicates Prdp
is defined as follows:
> an object of Prdp is a pair (A, a) where A is an object of C and a € P(A);
» an arrow [f]~: (A, a) — (B, B) is an equivalence class of arrows f: A— B of C
satisfying a < Ps(B). The equivalence relation f ~ g is given by
TA < P(f,g)((SB).

Definition (graph functor)

Given an elementary, existential doctrine P and an elementary subdoctrine P’ we
can define an embedding, called graph functor G|, : Prdp — Reg(P) by mapping
(A, a) of Prdp into (A, a) of Reg(P) and an arrow [f]: (A, a) — (B, B) of Prdp into
the arrow Gy, ([f]) = Pfxids(68) A (Pr, (@) A Pr(B) ) from (A, a) to (B, B) of
Reg(P).



Characterization of the regular completion

Theorem

Let P: C°® ——InfSL be an elementary and existential doctrine. Then P has an
existential cover P’ if and only if the functor Glr:/g: (Prdp)reg/iex — Reg(P) provides
an equivalence Reg(P) = (Prdp)reg/tex-

M.E. Maietti and D. Trotta (2023), A characterization of regular and exact completions of pure existential
completions, arXiv



Exact completion

Definition (exact completion)

Let P be an elementary, existential doctrine. We call the category
EX(P) := (Reg(P))ex/reg the exact completion of P.

Theorem (exact completion of an elementary, existential doctrine)

Let P: C°» —— InfSL be an elementary and existential doctrine. Then the
category Ex(P) is exact, and the assignment P — Ex(P) extends to a 2-functor

Ex(—): EED — ExCat

which is left biadjoint to the inclusion of the 2-category ExCat of exact categories
in the 2-category EED of elementary and existential doctrines.

M.E. Maietti and G. Rosolini (2013), Unifying exact completions, Appl. Categ. Structures.



Example

The exact completion Ex(Wp) of the weak subobjects doctrine
Vp: D°P —— InfSL coincides with the ex completion (D)ex/iex Of the lex
category D.

Example
The exact completion Ex(LTT: 3= (Reg(LTT: 3))ex/reg Of the syntactic doctrine

LTE 3: YV ——InfSL provides the exact category called the effectivization the

syntactic category Cy °, also denoted by &y := Eff(CTS).

Example

The exact completion of a subobjects doctrine Sub¢: C°°P —— InfSL coincides
with the well known construction of the exact on regular category (C)ex/reg-



Exact completions of doctrines as ex/ lex-completions of Prd

Theorem

Let P: C°® ——InfSL be an elementary and existential doctrine. Then P has an
existential cover P’ if and only if the functor Gf* : (Prdp)ex/iex — EX(P) provides

|
an equivalence Ex(P) = (Prdp’)ex/lex- ’

M.E. Maietti and D. Trotta (2023), A characterization of regular and exact completions of pure existential
completions, arXiv



Applications

Corollary
Let P: C°® ——InfSL be an elementary and existential doctrine. Then the
following are equivalent:
» P is equipped with Hilbert's e-operators;
» the functor G™&: (Prdp)reg/iex — Reg(P) provides an equivalence
Reg(P) = (Prdp)reg/texs
» the functor G**: (Prdp)ex/iex — EX(P) provides an equivalence
Ex(P) = (Prdp)ex/tex-

Corollary

Every Joyal’s arithmetic universe on a Skolem theory S is equivalent to the exact
completion Ex(R?) of the existential completion R3: S°®® —— InfSL of the
elementary doctrine R: S°» —— InfSL of S-primitive recursive predicates.



Applications

Corollary

Let T, be a regular theory given by the fragment L£_ 3 of first-order Intuitionistic
Logic and no extra-logical axioms on a generic signature. Let Ho be the Horn
theory given by the corresponding fragment L_ with no extra-logical axioms on
the same signature.

The syntactic category C%eog of Ty is equivalent to the reg/ lex-completion
(Prdir+o )reg/1ex Of the category of predicates of the syntactic doctrine LTi° of Ho.

Hence, also its effectivization £y, is the ex/ lex-completion (Prdir+o )ex/1ex Of the
category of predicates of LTiO.

M.E. Maietti and D. Trotta (2023), A characterization of regular and exact completions of pure existential
completions, arXiv
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