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SHEAVES



SHEAVES ON TOPOLOGICAL SPACES

Let X be a topological space and O(X) = {U ⊆ X : U is open}.

Let (O(X),⊆) be a category.

• A presheaf with values in Set is a functor F : O(X)op → Set
• A presheaf F is a sheaf if for each open covering U =

⋃
i∈I
Ui, of an

open set U of X, we have:

F(U)
∏
i∈I
F(Ui)

∏
(i,j)∈I×I

F(Ui ∩ Uj)
e

p

q

e(t) = {t|Ui | i ∈ I}, p((tk)k∈I) = (ti|Ui∩Uj )(i,j)∈I×I
q((tk)k∈I) = (tj|Ui∩Uj )(i,j)∈I×I
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SHEAF OF CONTINUOUS FUNCTIONS

X and Y topological spaces.

CY := {f : X→ Y | f continuous}.

For each open subset U ⊆ X,

CY(U) := {f : U→ Y | f continuous}.

If U ⊆ V are open subsets of X,

CY(V) → CY(U)
f 7→ f|U

If U =
⋃
i∈I Ui and fi : Ui → Y are continuous functions such that

fi|Ui∩Uj = fj|Ui∩Uj , ∀i, j ∈ I then there is a unique f : U→ Y continuous
such that fi = f|Ui , ∀i ∈ I.
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STRUCTURE SHEAF

We have that Spec(R) = {all prime ideals of R} is a topological space
under the Zariski topology.

If f ∈ R, D(f) = {prime ideals not contaning f} forms a open basis.

We define a sheaf on the basis by OSpecR(D(f)) ∼= Rf = R[f−1].So

OSpecA(D(f))
∏
i∈I

OSpecA(D(fi))
∏

(i,j)∈I×I
OSpecA(D(fi) ∩ D(fj))

Since D(fi) ∩ D(fj) = D(fi.fj),

R[f−1]
∏
i∈I
R[f−1]

∏
(i,j)∈I×I

R[(fi.fj)−1]
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STRUCTURE SHEAF

Let PI(R) be the set of principal ideals of R.

Define LR : PI(R)op → CRing by LR(fR) = R[f−1].
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i∈I
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SHEAVES ON RINGS

Let R be commutative ring with unity.

Let I(R) = (I(R),⊆) be a category.

• A presheaf with values in Set is a functor F : I(R)op → Set
• A presheaf F is a sheaf if for each covering a =

∑
i∈I

ai, of an ideal

a of R, we have:

F(a)
∏
i∈I
F(ai)

∏
(i,j)∈I×I

F(ai.aj)
e

p

q

e(t) = {t|ai | i ∈ I}, p((tk)k∈I) = (ti|ai.aj )(i,j)∈I×I
q((tk)k∈I) = (tj|ai.aj )(i,j)∈I×I
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UNIFIED FRAMEWORK

How to define sheaves on topological spaces and sheaves on
commutative rings with unity using a same general framework?

Use quantales!
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QUANTALES

A quantale (Q,≤,�, 1) is a complete lattice (Q,≤) with a monoid
(Q,�, 1) such that

a� (
∨
i∈I

bi) =
∨
i∈I

(a� bi) and (
∨
i∈I

bi)� a =
∨
i∈I

(bi � a)

If � = ∧, then Q is a locale.

Examples
• (O(X),⊆,∩, X);
• (I(R),⊆, .,R);
• ([0,∞],≥,+, 0).
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SHEAVES ON QUANTALES

A presheaf F : (Q,≤,�, 1)op → Set is a sheaf if for each covering
b =

∨
i∈I
bi, of an element b of Q, we have:

F(b)
∏
i∈I
F(bi)

∏
(i,j)∈I×I

F(bi � bj)

e(t) = {t|bi | i ∈ I}, p((tk)k∈I) = (ti|bi⊙bj
)(i,j)∈I×I

q((tk)k∈I) = (tj|bi⊙bj
)(i,j)∈I×I

bi F(bi)

bi � bj F(bi � bj)
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≤

≤
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QUANTALES

Quantale with extra properties

1. commutative when (Q,�, 1) is a commutative monoid;
2. idempotent when a� a = a, for a ∈ Q;
3. semicartesian when a� b ≤ a,b, for a,b ∈ Q, or, equivalently,
1 = >.

• Closed right (or left) ideals of a C∗-algebra, where � is the
closure of the product of ideals.
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WARNINGS

Warning 1: Our Sh(Q) it not a topos!

Theorem
The complete lattice of the subobjects of the terminal sheaf
HomQ(−, 1) is quantalic isomorphic to Q.

Theorem
The inclusion i : Sh(Q) → PSh(Q) has a left adjoint
a : PSh(Q) → Sh(Q) that we call sheafification.

Warning 2: This sheafification preserves the monoidal structure in
PSh(Q) given by Day convolution, but it does not preserves all finite
limits!
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CHANGE OF BASE

A geometric morphism is a map f : Q′ → Q such that

1. f preserves arbitrary sups and 1;
2. f weakly preserves the multiplication, i.e.,
f(p)� f(q) ≤ f(p�′ q), ∀p,q ∈ Q.

A strong geometric morphism of quantales is a geometric morphism
of quantales where f preserves the multiplication.

Examples
1. The inclusion Idem(Q) → Q.
2. Every surjective homomorphism g : R→ S of commutative and
unital rings induces a strong geometric morphism where
f : I(R) → I(S) given by f(J) = g(J).
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CREATING SHEAVES

Proposition
If f : Q′ → Q is a geometric morphism and F : Qop → Set is a sheaf,
then F ◦ f : Q′ → Set is a sheaf.

Take u =
∨
i∈I
ui a cover in Q′.

Then f(u) = f(
∨
i∈I
ui) =

∨
i∈I
f(ui) is a cover in Q.

Since f(u)� f(v) ≤ f(u�′ v),∀u, v ∈ Q

F ◦ f(u)
∏
i
F ◦ f(ui)

∏
i,j
F ◦ f(ui �′ uj)

∏
i,j
F(f(ui)� f(uj))
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EXAMPLE

Let X be a topological space that admits partition of unity
subordinate to a cover, and C(X) the ring of real-valued continuous
functions on X. Define

τ : I(C(X)) → O(X)

I 7→
⋃
g∈I
g−1(R− {0})

θ : O(X) → I(C(X))
U 7→ 〈{f : f ↾X−U≡ 0}〉

The functor τ is left adjoint to θ, τ is a strong geometric morphism
and θ if a geometric morphism. Moreover, the constant sheaf KX on
O(X) induces a sheaf KX ◦ τ on I(C(X))

13



EXAMPLE

Let X be a topological space that admits partition of unity
subordinate to a cover, and C(X) the ring of real-valued continuous
functions on X. Define

τ : I(C(X)) → O(X)

I 7→
⋃
g∈I
g−1(R− {0})

θ : O(X) → I(C(X))
U 7→ 〈{f : f ↾X−U≡ 0}〉

The functor τ is left adjoint to θ, τ is a strong geometric morphism
and θ if a geometric morphism.

Moreover, the constant sheaf KX on
O(X) induces a sheaf KX ◦ τ on I(C(X))

13



EXAMPLE

Let X be a topological space that admits partition of unity
subordinate to a cover, and C(X) the ring of real-valued continuous
functions on X. Define

τ : I(C(X)) → O(X)

I 7→
⋃
g∈I
g−1(R− {0})

θ : O(X) → I(C(X))
U 7→ 〈{f : f ↾X−U≡ 0}〉

The functor τ is left adjoint to θ, τ is a strong geometric morphism
and θ if a geometric morphism. Moreover, the constant sheaf KX on
O(X) induces a sheaf KX ◦ τ on I(C(X))

13



EXAMPLE

Since the following diagram commutes (up to natural isomorphism)

Sh(X) Sh(C(X))

PSh(X) PSh(C(X))

Set

i j

Lanθ=−◦τ

Lanθ=−◦τ

−◦θ

−◦θ

aX aC(X)

constX constC(X)

So KaX ◦ τ ∼= KaC(X).
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ČECH COHOMOLOGY



MONOIDAL ČECH COHOMOLOGY

Fix F in ShAb(Q) and consider U = (Ui)i∈I a cover in Q, where I is a set
of indices.

The Čech cochain complex is

Cq(U , F) =
∏

i0,...,iq

F(Ui0 � ...� Uiq), ∀q ≥ 0,

and its coboundary morphisms dq : Cq(U , F) → Cq+1(U , F) are

(dqα) =
q+1∑
k=0

(−1)kα(δk)∣∣
(Ui0

⊙...⊙Uiq )

where δk is used to indicate that we are removing ik, and the
restriction is to guarantee that dqα ∈ Cq+1(U , F). The monoidal Čech
cohomology group of U with coefficients in F is

Ȟq(U , F) = Kerdq
Imdq−1 .
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RELATING ČECH COHOMOLOGY GROUPS

Theorem
Consider a strong geometric morphism f : Q′ → Q. Then
Ȟq(U ′, F ◦ f) = Ȟq(f(U ′), F).

Consider a covering {u′i}i∈I = U ′ in Q′. Then

Cq(U ′, F ◦ f) =
∏

i0<...<iq

F ◦ f(u′i0 �
′ ...�′ u′iq)

=
∏

i0<...<iq

F(f(u′i0)� ...� f(u′iq))

= Cq(f(U ′), F).
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RELATING ČECH COHOMOLOGY GROUPS

So the following diagram commutes

. . . Cq−1(U ′, F ◦ f) Cq(U ′, F ◦ f) Cq+1(U ′, F ◦ f) . . .

. . . Cq−1(f(U ′), F) Cq(f(U ′), F) Cq+1(f(U ′), F) . . .

dq−1 dq

ididid

dq−1 dq

Then Ȟq(U ′, F ◦ f) = Ȟq(f(U ′), F).
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MONOIDAL ČECH COHOMOLOGY

The Čech cohomology group of an element u ∈ Q with coefficient in
a sheaf F is the directed (co)limit

Ȟq(u, F) := lim−→
U∈Cov(u)

Ȟq(U , F).

Theorem

Consider a strong geometric morphism Q Q′

f∗

f
such that f∗

preserves unity and arbitrary joins. Then Ȟq(1′, F ◦ f) ∼= Ȟq(1, F).
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preserves unity and arbitrary joins. Then Ȟq(1′, F ◦ f) ∼= Ȟq(1, F).
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PROOF

We have

Ȟq(1′, F ◦ f) := lim−→
U ′∈Cov(1′)

Ȟq(U ′, F ◦ f)

= lim−→
U ′∈Cov(1′)

Ȟq(f(U ′), F).

Since that f(f∗(U)) is a refinement of U , for every covering U of 1
there is a covering U ′ of 1′ such that f(U ′) ⊆ U . Then

Ȟq(1, F) := lim−→
U∈Cov(1)

Ȟq(U , F)

∼= lim−→
U ′∈Cov(1′)

Ȟq(f(U ′), F)
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APPLICATION

Since τ : I(C(X)) → O(X) is a strong geometric morphism and
θ : O(X) → I(C(X)) is a geometric morphism, then

Ȟq(C(X), KaC(X)) ∼= Ȟq(C(X), KaX ◦ τ) ∼= Ȟq(X, KaX)
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RELATING COHOMOLOGIES

Reminder
• If X is a smooth manifold of dimension n then there is an
isomorphism HqdR(X) ∼= Ȟq(X,R), for all q ≤ n;

• The dimension of H0dR(X) corresponds to the number of
connected components of X;

• X is connected if and only if C(X) only had trivial idempotent
elements.

Conjecture: The Čech cohomology group in degree zero of a ring R
with coefficients in a constant sheaf is related to the number of
idempotent elements of R.
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RELATED WORK



MORE ABOUT Sh(Q)

In Sh(L), the subobject classifier is Ω(u) = {q ∈ L : q ≤ u} such that
for all v ≤ u

Ω(u) → Ω(v)
q 7→ q� v

Suppose
∨
i∈I q

−
i = (

∨
i∈I qi)−, for

each {qi : i ∈ I} ⊆ Q.

q− :=
∨

{p ∈ Idem(Q) : p ≤ q�p}

Define
Ω−(u) = {q ∈ Q : q� u− = q}

Ω−(u) → Ω−(v)
q 7→ q� v−

If Q is ”good enough”

q+ :=
∧

{p ∈ Q : q ≤ q� p}

Define
Ω+(u) := {q ∈ Q : q+ � u = q}

Ω+(u) → Ω+(v)
q 7→ q+ � v
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CONCLUSIONS

- We extended the theory of sheaves on locales, in a way that Sh(Q)
is a not a topos;

- We extended Čech cohomology, showing the potential of the theory
to relate algebraic and geometric properties;

- We have mentioned logical aspects of Sh(Q);

- We developed an extension of sheaves for Grothendieck
pretopologies that encompasses our sheaves on quantales.
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