

An introduction to pretorsion theories and their stable categories

Marino Gran

Institut de recherche
en mathématique et physique

University of Ottawa

Outline

From torsion theories to pretorsion theories

Internal preorders

The stable category

The Iextensive context

Two examples of pretorsion theories in Cat

Outline

From torsion theories to pretorsion theories

Internal preorders

The stable category

The lextensive context

Two examples of pretorsion theories in Cat

The abelian context

Definition [S.C. Dickson, 1966]

A pair $(\mathcal{T}, \mathcal{F})$ of full (replete) subcategories of an **abelian category** \mathbb{C} is a **torsion theory** if :

The abelian context

Definition [S.C. Dickson, 1966]

A pair $(\mathcal{T}, \mathcal{F})$ of full (replete) subcategories of an **abelian category** \mathbb{C} is a **torsion theory** if :

- for any $T \in \mathcal{T}$ and $F \in \mathcal{F}$ the only morphism from T to F is

$$\begin{array}{ccc} T & \xrightarrow{\quad} & F \\ \swarrow & & \searrow \\ 0 & & \end{array}$$

The abelian context

Definition [S.C. Dickson, 1966]

A pair $(\mathcal{T}, \mathcal{F})$ of full (replete) subcategories of an **abelian category** \mathbb{C} is a **torsion theory** if :

- for any $T \in \mathcal{T}$ and $F \in \mathcal{F}$ the only morphism from T to F is

$$\begin{array}{ccc} T & \xrightarrow{\quad} & F \\ & \searrow \cdot \cdot \cdot \cdot \cdot \cdot \searrow & \\ & 0 & \end{array}$$

- for any $C \in \mathbb{C}$ there is a short exact sequence

$$0 \longrightarrow T(C) \longrightarrow C \longrightarrow F(C) \longrightarrow 0$$

with $T(C) \in \mathcal{T}$ and $F(C) \in \mathcal{F}$.

\mathcal{T} is the **torsion** subcategory, \mathcal{F} the **torsion-free** subcategory.

\mathcal{T} is the **torsion** subcategory, \mathcal{F} the **torsion-free** subcategory.

The terminology comes from the example $(\mathcal{T}, \mathcal{F}) = (\text{Ab}_{t.}, \text{Ab}_{t.f.})$ in the category $\mathbb{C} = \text{Ab}$ of **abelian groups**, where

$\mathcal{T} = \text{Ab}_{t.}$ is the category of **torsion abelian groups**

and

$\mathcal{F} = \text{Ab}_{t.f.}$ the category of **torsion-free abelian groups.**

For any $A \in \text{Ab}$ one has the exact sequence

$$0 \longrightarrow T(A) \longrightarrow A \longrightarrow A/T(A) \longrightarrow 0,$$

where $T(A) = \{a \in A \mid \exists n \in \mathbb{N}_0, na = 0\}.$

The pointed case

Torsion theories have been considered in many “non-additive” **pointed** contexts :

- ▶ Cassidy-Hébert-Kelly, J. Austr. Math Soc. (1987)
- ▶ Bourn-Gran, J. Algebra (2006)
- ▶ Clementino-Dikranjan-Tholen, J. Algebra (2006)
- ▶ Janelidze-Tholen, Contemp. Mathem. (2007)
- ▶ Rosický-Tholen, J. Homotopy Rel. Struct. (2007)
- ▶ Clementino-Gutiérrez, Cah. Top. Géom. Diff. Catég. (2010)
- ▶ Tholen, Topology Appl. (2011)
- ▶ Everaert-Gran, Bull. Sciences Mathém. (2013)
- ▶ Gran-Lack, J. Algebra (2016)
- ▶ Gran-Kadjo-Vercruyse, Appl. Categ. Struct. (2016)
- ▶ Duckerts-Antoine, Adv. Math. (2017)
- ▶ Lopez Cafaggi, Cah. Top. Géom. Diff. Catég. (2022)

If \mathbb{C} is a **pointed** category, with zero object 0 , a torsion theory $(\mathcal{T}, \mathcal{F})$ in \mathbb{C} can still be defined as in the abelian case :

- for any $T \in \mathcal{T}$ and $F \in \mathcal{F}$ the only morphism from T to F is

$$\begin{array}{ccc} T & \xrightarrow{\quad} & F \\ & \searrow \text{dotted} & \nearrow \text{dotted} \\ & 0 & \end{array}$$

- $\forall C \in \mathbb{C}$ there is a short exact sequence

$$0 \longrightarrow T(C) \longrightarrow C \longrightarrow F(C) \longrightarrow 0$$

with $T(C) \in \mathcal{T}$ and $F(C) \in \mathcal{F}$.

Definition (G. Janelidze, L. Márki, W. Tholen, 2002)

A finitely complete category \mathbb{C} is **semi-abelian** if

- ▶ \mathbb{C} has a 0 object
- ▶ \mathbb{C} has $A + B$
- ▶ \mathbb{C} is (Barr) exact
- ▶ \mathbb{C} is (Bourn) protomodular : given a commutative diagram

$$\begin{array}{ccccccc} 0 & \longrightarrow & K & \xrightarrow{k} & A & \xleftarrow{f} & B \\ & & \downarrow u & & \downarrow v & & \downarrow w \\ 0 & \longrightarrow & K' & \xrightarrow{k'} & A' & \xleftarrow{f'} & B' \end{array}$$

u, w isomorphisms $\Rightarrow v$ isomorphism.

Example

The category Grp is semi-abelian :

- ▶ every homomorphism f in Grp has a factorisation $f = i \circ p$

$$\begin{array}{ccc} G & \xrightarrow{f} & H \\ & \searrow p & \nearrow i \\ & f(G) & \end{array}$$

where p is a regular epimorphism (=a coequalizer) and i is a monomorphism ;

Example

The category Grp is semi-abelian :

- ▶ every homomorphism f in Grp has a factorisation $f = i \circ p$

$$\begin{array}{ccc} G & \xrightarrow{f} & H \\ & \searrow p & \nearrow i \\ & f(G) & \end{array}$$

where p is a regular epimorphism (=a coequalizer) and i is a monomorphism ;

- ▶ these factorisations are pullback stable ;

Example

The category Grp is semi-abelian :

- ▶ every homomorphism f in Grp has a factorisation $f = i \circ p$

$$\begin{array}{ccc} G & \xrightarrow{f} & H \\ & \searrow p & \nearrow i \\ & f(G) & \end{array}$$

where p is a regular epimorphism (=a coequalizer) and i is a monomorphism ;

- ▶ these factorisations are pullback stable ;
- ▶ Grp is exact (any equivalence relation is a kernel pair) ;

Example

The category Grp is semi-abelian :

- ▶ every homomorphism f in Grp has a factorisation $f = i \circ p$

$$\begin{array}{ccc} G & \xrightarrow{f} & H \\ & \searrow p & \nearrow i \\ & f(G) & \end{array}$$

where p is a regular epimorphism (=a coequalizer) and i is a monomorphism ;

- ▶ these factorisations are pullback stable ;
- ▶ Grp is exact (any equivalence relation is a kernel pair) ;
- ▶ the Split Short Five Lemma holds in Grp .

Examples

Grp , Rng , Alg_K , Lie_K are all semi-abelian categories.

Examples

\mathbf{Grp} , \mathbf{Rng} , \mathbf{Alg}_K , \mathbf{Lie}_K are all semi-abelian categories.

$\mathbf{Grp(Comp)}$, $\mathbf{Grp(Prof)}$ (more generally, any $\mathbf{Grp}(\mathbb{C})$ with \mathbb{C} exact).

Examples

\mathbf{Grp} , \mathbf{Rng} , \mathbf{Alg}_K , \mathbf{Lie}_K are all semi-abelian categories.

$\mathbf{Grp(Comp)}$, $\mathbf{Grp(Prof)}$ (more generally, any $\mathbf{Grp}(\mathbb{C})$ with \mathbb{C} exact).

The category $\mathbf{Hopf}_{K,\text{coc}}$ of cocommutative Hopf algebras.

Examples

\mathbf{Grp} , \mathbf{Rng} , \mathbf{Alg}_K , \mathbf{Lie}_K are all semi-abelian categories.

$\mathbf{Grp(Comp)}$, $\mathbf{Grp(Prof)}$ (more generally, any $\mathbf{Grp}(\mathbb{C})$ with \mathbb{C} exact).

The category $\mathbf{Hopf}_{K,\text{coc}}$ of cocommutative Hopf algebras.

Any abelian category !

Examples

\mathbf{Grp} , \mathbf{Rng} , \mathbf{Alg}_K , \mathbf{Lie}_K are all semi-abelian categories.

$\mathbf{Grp(Comp)}$, $\mathbf{Grp(Prof)}$ (more generally, any $\mathbf{Grp}(\mathbb{C})$ with \mathbb{C} exact).

The category $\mathbf{Hopf}_{K,\text{coc}}$ of cocommutative Hopf algebras.

Any abelian category !

[\mathbb{C} is abelian] \Leftrightarrow [\mathbb{C} and \mathbb{C}^{op} are semi-abelian] !

An example of **non-abelian** torsion theory

$(\text{PrimHopf}_K, \text{GrpHopf}_K)$ is a torsion theory in $\text{Hopf}_{K, \text{coc}}$ (for K an algebraically closed field of characteristic 0).

An example of non-abelian torsion theory

$(\text{PrimHopf}_K, \text{GrpHopf}_K)$ is a torsion theory in $\text{Hopf}_{K, \text{coc}}$ (for K an algebraically closed field of characteristic 0).

Here the canonical short exact sequence associated with a Hopf algebra H is

$$0 \longrightarrow \mathcal{U}(L_H) \xrightarrow{i_1} H \cong \mathcal{U}(L_H) \rtimes K[G_H] \xleftarrow[\rho_2]{i_2} K[G_H] \longrightarrow 0,$$

where $\mathcal{U}(L_H)$ is the universal enveloping algebra of the Lie algebra L_H of *primitive elements* of H

$$L_H = \{x \in H \mid \Delta(x) = 1 \otimes x + x \otimes 1\},$$

$K[G_H]$ is the group Hopf algebra generated by the *grouplike elements*

$$G_H = \{x \in H \mid \Delta(x) = x \otimes x, \epsilon(x) = 1\}$$

(see M. Gran, G. Kadjo, J. Vercruyse (2016)).

Torsion theories beyond the pointed case...

Any torsion theory $(\mathcal{T}, \mathcal{F})$ in a **pointed** category \mathbb{C} is such that

$$\mathcal{T} \cap \mathcal{F} = \{0\}.$$

Torsion theories beyond the pointed case...

Any torsion theory $(\mathcal{T}, \mathcal{F})$ in a **pointed** category \mathbb{C} is such that

$$\mathcal{T} \cap \mathcal{F} = \{0\}.$$

Indeed, if $X \in \mathcal{T} \cap \mathcal{F}$, then the identity 1_X factors through 0,

$$X = \overbrace{}^{\nearrow \searrow} X$$

hence $X \cong 0$.

The idea of a **pretorsion theory** is to consider **any** two subcategories \mathcal{T} and \mathcal{F} and set

$$\mathcal{Z} = \mathcal{T} \cap \mathcal{F}.$$

The subcategory \mathcal{Z} induces an **ideal** of \mathcal{Z} -trivial morphisms.

The idea of a **pretorsion theory** is to consider **any** two subcategories \mathcal{T} and \mathcal{F} and set

$$\mathcal{Z} = \mathcal{T} \cap \mathcal{F}.$$

The subcategory \mathcal{Z} induces an **ideal of \mathcal{Z} -trivial morphisms**.

A morphism $f: A \rightarrow B$ is **\mathcal{Z} -trivial** if it factors through an object $Z \in \mathcal{Z}$:

$$\begin{array}{ccc} A & \xrightarrow{f} & B \\ & \searrow \text{dotted} & \nearrow \text{dotted} \\ & Z \in \mathcal{Z} & \end{array}$$

The idea of a **pretorsion theory** is to consider **any** two subcategories \mathcal{T} and \mathcal{F} and set

$$\mathcal{Z} = \mathcal{T} \cap \mathcal{F}.$$

The subcategory \mathcal{Z} induces an **ideal of \mathcal{Z} -trivial morphisms**.

A morphism $f: A \rightarrow B$ is **\mathcal{Z} -trivial** if it factors through an object $Z \in \mathcal{Z}$:

$$\begin{array}{ccc} A & \xrightarrow{f} & B \\ & \searrow \text{dotted} & \nearrow \text{dotted} \\ & Z \in \mathcal{Z} & \end{array}$$

To define a pretorsion theory one needs the definition of short **\mathcal{Z} -exact sequence**.

Definition

A morphism $k: K \rightarrow X$ is the \mathcal{Z} -kernel of $f: X \rightarrow Y$ if

1. $K \xrightarrow{k} X \xrightarrow{f} Y$ is \mathcal{Z} -trivial :

$$\begin{array}{ccccc} K & \xrightarrow{k} & X & \xrightarrow{f} & Y \\ & \searrow & \downarrow & \nearrow & \\ & & Z \in \mathcal{Z} & & \end{array}$$

Definition

A morphism $k: K \rightarrow X$ is the \mathcal{Z} -kernel of $f: X \rightarrow Y$ if

1. $K \xrightarrow{k} X \xrightarrow{f} Y$ is \mathcal{Z} -trivial :

$$\begin{array}{ccccc} K & \xrightarrow{k} & X & \xrightarrow{f} & Y \\ & \searrow & \downarrow & \nearrow & \\ & & Z \in \mathcal{Z} & & \end{array}$$

2. for any $l: L \rightarrow X$ such that $f \cdot l$ is \mathcal{Z} -trivial

$$\begin{array}{ccccc} K & \xrightarrow{k} & X & \xrightarrow{f} & Y \\ \uparrow \exists! \varphi & & \nearrow \forall l & & \\ L & \xrightarrow{\quad} & Z \in \mathcal{Z} & & \end{array}$$

there is a unique φ such that $k \cdot \varphi = l$.

Definition

The sequence $K \xrightarrow{k} X \xrightarrow{f} Y$ is short **\mathcal{Z} -exact** if

$$k = \mathcal{Z}\text{-ker}(f)$$

and

$$f = \mathcal{Z}\text{-coker}(k).$$

Definition

The sequence $K \xrightarrow{k} X \xrightarrow{f} Y$ is short \mathcal{Z} -exact if

$$k = \mathcal{Z}\text{-ker}(f)$$

and

$$f = \mathcal{Z}\text{-coker}(k).$$

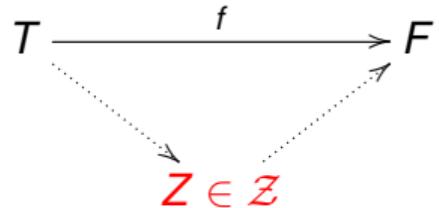
Remark

When $\mathcal{Z} = \{0\}$ one gets back the notion of short exact sequence.

Definition

A pair $(\mathcal{T}, \mathcal{F})$ of full (replete) subcategories of a category \mathbb{C} is a **pretorsion theory** if

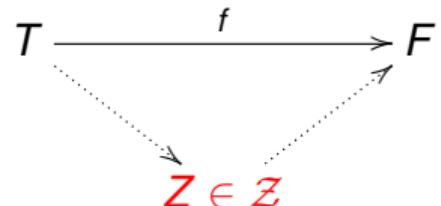
1. for any $T \in \mathcal{T}$ and $F \in \mathcal{F}$, any morphism from T to F is \mathcal{Z} -trivial :



Definition

A pair $(\mathcal{T}, \mathcal{F})$ of full (replete) subcategories of a category \mathbb{C} is a **pretorsion theory** if

1. for any $T \in \mathcal{T}$ and $F \in \mathcal{F}$, any morphism from T to F is \mathcal{Z} -trivial :



2. for any object $C \in \mathbb{C}$ there is a short \mathcal{Z} -exact sequence in \mathbb{C}

$$T(C) \longrightarrow C \longrightarrow F(C),$$

with $T(C) \in \mathcal{T}$ and $F(C) \in \mathcal{F}$.

Proposition

Given any pretorsion theory $(\mathcal{T}, \mathcal{F})$ in \mathbb{C} , then \mathcal{F} is **reflective** in \mathbb{C}

$$\mathcal{F} \begin{array}{c} \xleftarrow{F} \\ \xrightleftharpoons[\perp]{U} \\ \xrightarrow{\quad} \end{array} \mathbb{C},$$

while \mathcal{T} is **coreflective** in \mathbb{C}

$$\mathcal{T} \begin{array}{c} \xrightarrow{V} \\ \xrightleftharpoons[\perp]{G} \\ \xleftarrow{\quad} \end{array} \mathbb{C}.$$

Proof :

To show that \mathcal{F} is **reflective** in \mathbb{C} , for any $C \in \mathbb{C}$ consider the following diagram

$$\begin{array}{ccc} T(C) & \xrightarrow{t_C} & C \xrightarrow{\eta_C} F(C) \\ & & \searrow \forall f \\ & & F_1 \end{array}$$

where the upper line is the canonical short \mathcal{Z} -exact sequence of the pretorsion theory, and $f: C \rightarrow F_1$ is any morphism with $F_1 \in \mathcal{F}$.

Proof :

To show that \mathcal{F} is **reflective** in \mathbb{C} , for any $C \in \mathbb{C}$ consider the following diagram

$$\begin{array}{ccccc} T(C) & \xrightarrow{t_C} & C & \xrightarrow{\eta_C} & F(C) \\ & \searrow & \downarrow \forall f & \swarrow & \downarrow \exists! \varphi \\ Z \in \mathcal{Z} & & & & F_1 \end{array}$$

where the upper line is the canonical short \mathcal{Z} -exact sequence of the pretorsion theory, $f: C \rightarrow F_1$ is any morphism with $F_1 \in \mathcal{F}$.

$[f \cdot t_C \text{ is a } \mathcal{Z}\text{-trivial morphism}] \Rightarrow [\exists! \varphi \text{ such that } \varphi \cdot \eta_C = f]$.

□

As in the classical case, any two of the subcategories \mathcal{T} , \mathcal{F} , and \mathcal{Z} determine the third one :

As in the classical case, any two of the subcategories \mathcal{T} , \mathcal{F} , and \mathcal{Z} determine the third one :

$$X \in \mathcal{T} \Leftrightarrow \forall F \in \mathcal{F}, \hom(X, F) = \text{Triv}_{\mathcal{Z}}(X, F)$$

and

$$Y \in \mathcal{F} \Leftrightarrow \forall T \in \mathcal{T}, \hom(T, Y) = \text{Triv}_{\mathcal{Z}}(T, Y),$$

where $\text{Triv}_{\mathcal{Z}}(X, Y)$ denotes the \mathcal{Z} -trivial morphisms from X to Y .

Properties

Let $(\mathcal{T}, \mathcal{F})$ be a pretorsion theory in any category \mathbb{C} . Then

- \mathcal{T} , \mathcal{F} , and \mathcal{Z} are **closed** in \mathbb{C} under retracts, and under \mathcal{Z} -extensions : given a short \mathcal{Z} -exact sequence

$$S_1 \longrightarrow X \longrightarrow S_2$$

X belongs to \mathcal{T} (to \mathcal{F} , or to \mathcal{Z} , resp.) whenever both S_1 and S_2 belong to \mathcal{T} (to \mathcal{F} , or to \mathcal{Z} , resp.)

Properties

Let $(\mathcal{T}, \mathcal{F})$ be a pretorsion theory in any category \mathbb{C} . Then

- \mathcal{T} , \mathcal{F} , and \mathcal{Z} are closed in \mathbb{C} under retracts, and under \mathcal{Z} -extensions : given a short \mathcal{Z} -exact sequence

$$S_1 \longrightarrow X \longrightarrow S_2$$

X belongs to \mathcal{T} (to \mathcal{F} , or to \mathcal{Z} , resp.) whenever both S_1 and S_2 belong to \mathcal{T} (to \mathcal{F} , or to \mathcal{Z} , resp.)

Definition

When $\mathcal{Z} \subset \mathcal{F}$ are full subcategories of \mathbb{C} we say that \mathcal{F} is \mathcal{Z} -normal epireflective if

1. the inclusion $\mathcal{F} \xhookrightarrow{U} \mathbb{C}$ has a left adjoint $F: \mathbb{C} \rightarrow \mathcal{F}$,

Properties

Let $(\mathcal{T}, \mathcal{F})$ be a pretorsion theory in any category \mathbb{C} . Then

- \mathcal{T} , \mathcal{F} , and \mathcal{Z} are closed in \mathbb{C} under retracts, and under \mathcal{Z} -extensions : given a short \mathcal{Z} -exact sequence

$$S_1 \longrightarrow X \longrightarrow S_2$$

X belongs to \mathcal{T} (to \mathcal{F} , or to \mathcal{Z} , resp.) whenever both S_1 and S_2 belong to \mathcal{T} (to \mathcal{F} , or to \mathcal{Z} , resp.)

Definition

When $\mathcal{Z} \subset \mathcal{F}$ are full subcategories of \mathbb{C} we say that \mathcal{F} is \mathcal{Z} -normal epireflective if

1. the inclusion $\mathcal{F} \xhookrightarrow{U} \mathbb{C}$ has a left adjoint $F: \mathbb{C} \rightarrow \mathcal{F}$,
2. for any $A \in \mathbb{C}$ the unit

$$\eta_A: A \rightarrow UF(A)$$

is a \mathcal{Z} -cokernel.

Proposition [A. Facchini, C. Finocchiaro, M. Gran (2021)]

Let \mathbb{C} be a category, \mathcal{Z} a full subcategory closed under retracts in \mathbb{C} .
Then the following are equivalent for a full subcategory \mathcal{F} of \mathbb{C} :

1. \mathcal{F} is the torsion-free subcategory of a pretorsion theory $(\mathcal{T}, \mathcal{F})$ in \mathbb{C}
(with $\mathcal{Z} = \mathcal{T} \cap \mathcal{F}$);

Proposition [A. Facchini, C. Finocchiaro, M. Gran (2021)]

Let \mathbb{C} be a category, \mathcal{Z} a full subcategory closed under retracts in \mathbb{C} .

Then the following are equivalent for a full subcategory \mathcal{F} of \mathbb{C} :

1. \mathcal{F} is the torsion-free subcategory of a pretorsion theory $(\mathcal{T}, \mathcal{F})$ in \mathbb{C} (with $\mathcal{Z} = \mathcal{T} \cap \mathcal{F}$);
2. a) \mathcal{F} is \mathcal{Z} -normal epireflective in \mathbb{C}

$$\begin{array}{ccc} \mathcal{F} & \xleftarrow{F} & \mathbb{C}, \\ & \xleftarrow{\perp} & \\ & \xrightarrow{U} & \end{array}$$

b) $\forall A \in \mathbb{C}$, the unit $\eta_A: A \rightarrow UF(A)$ has a \mathcal{Z} -kernel

$$t_A: T(A) \rightarrow A,$$

c) $\forall A \in \mathbb{C}$, $t_{T(A)}: T(T(A)) \rightarrow T(A)$ is an isomorphism.

An example

Recall that a **preordered group** $(G, \leq, +)$ is a group G endowed with a preorder relation \leq on G that is “compatible” with the group operation $+$:

$$[a \leq c, \text{ and } b \leq d] \Rightarrow [a + b \leq c + d].$$

An example

Recall that a **preordered group** $(G, \leq, +)$ is a group G endowed with a preorder relation \leq on G that is “compatible” with the group operation $+$:

$$[a \leq c, \text{ and } b \leq d] \Rightarrow [a + b \leq c + d].$$

A morphism $f: (G, \leq, +) \rightarrow (H, \leq, +)$ in the category **PreOrdGrp** of preordered groups is a monotone group homomorphism.

An example

Recall that a **preordered group** $(G, \leq, +)$ is a group G endowed with a preorder relation \leq on G that is “compatible” with the group operation $+$:

$$[a \leq c, \text{ and } b \leq d] \Rightarrow [a + b \leq c + d].$$

A morphism $f: (G, \leq, +) \rightarrow (H, \leq, +)$ in the category **PreOrdGrp** of preordered groups is a monotone group homomorphism.

Any preordered group $(G, \leq, +)$ has a **positive cone** $P_G = \{g \in G \mid 0 \leq g\}$.
This is a submonoid $P_G \longrightarrow G$ of G stable under conjugation.

Alternative presentation of PreOrdGrp :

- ▶ objects : (G, P_G) with P_G a submonoid of a group G stable under conjugation :

$$\begin{array}{c} P_G \\ \downarrow \\ G \end{array}$$

Alternative presentation of PreOrdGrp :

- objects : (G, P_G) with P_G a submonoid of a group G stable under conjugation :

$$\begin{array}{c} P_G \\ \downarrow \\ G \end{array}$$

- morphisms : $(G, P_G) \rightarrow (H, P_H)$ is a pair (f, \bar{f})

$$\begin{array}{ccc} P_G & \xrightarrow{\bar{f}} & P_H \\ \downarrow & & \downarrow \\ G & \xrightarrow{f} & H \end{array}$$

where $f: G \rightarrow H$ is a group homomorphism and $\bar{f}: P_G \rightarrow P_H$ its restriction.

Theorem [M.M. Clementino, N. Martins-Ferreira, A. Montoli (2019)]

The category **PreOrdGrp** is **normal**.

Theorem [M.M. Clementino, N. Martins-Ferreira, A. Montoli (2019)]

The category **PreOrdGrp** is **normal**.

This means that any morphism (f, \bar{f}) factorises as a normal epimorphism (= a cokernel) followed by a monomorphism

$$\begin{array}{ccccc} P_G & \xrightarrow{\bar{f}} & P_H & & \\ \downarrow & \searrow & \uparrow f & & \\ f(P_G) & & & & \\ \downarrow & & & & \\ G & \xrightarrow{f} & H & & \\ \downarrow & \searrow & \uparrow f & & \\ f(G) & & & & \end{array}$$

and these factorisations are **pullback stable**.

The category **PreOrdGrp** contains the full subcategory **ParOrdGrp** of partially ordered groups. These are the preordered groups (G, P_G) such that P_G is a reduced monoid :

$$\forall x, y \in P_G, \quad [x + y = 0] \Rightarrow [x = 0 = y].$$

The category **PreOrdGrp** contains the full subcategory **ParOrdGrp** of partially ordered groups. These are the preordered groups (G, P_G) such that P_G is a reduced monoid :

$$\forall x, y \in P_G, \quad [x + y = 0] \Rightarrow [x = 0 = y].$$

There is also the full subcategory **ProtoPreOrdGrp** of “protomodular objects” in the category **PreOrdGrp** : these are the preordered groups (H, P_H) with the property that P_H is a group.

The category PreOrdGrp contains the full subcategory ParOrdGrp of partially ordered groups. These are the preordered groups (G, P_G) such that P_G is a reduced monoid :

$$\forall x, y \in P_G, \quad [x + y = 0] \Rightarrow [x = 0 = y].$$

There is also the full subcategory ProtoPreOrdGrp of “protomodular objects” in the category PreOrdGrp : these are the preordered groups (H, P_H) with the property that P_H is a group.

Proposition [M. Gran, A. Michel, 2021]

The pair $(\text{ProtoPreOrdGrp}, \text{ParOrdGrp})$ is a pretorsion theory in PreOrdGrp .

Idea of the proof :

Observe that

$$\mathcal{Z} = \text{ProtoPreOrdGrp} \cap \text{ParOrdGrp} = \{ 0 \longrightarrow G \mid G \in \text{Grp} \},$$

since a reduced monoid that is also a group is trivial. This implies that any morphism from a protomodular object to a partially ordered group is trivial.

Idea of the proof :

Observe that

$$\mathcal{Z} = \text{ProtoPreOrdGrp} \cap \text{ParOrdGrp} = \{ 0 \longrightarrow G \mid G \in \text{Grp} \},$$

since a reduced monoid that is also a group is trivial. This implies that any morphism from a protomodular object to a partially ordered group is trivial.

Next, given a preordered group $P_G \longrightarrow G$, one defines

$$N_G = \{n \in G \mid n \in P_G \text{ and } -n \in P_G\},$$

which is a normal subgroup of G .

The canonical \mathcal{Z} -exact sequence associated with (G, P_G) is given by

$$\begin{array}{ccccc} N_G & \longrightarrow & P_G & \xrightarrow{\bar{\eta}_G} & P_G/N_G \\ \downarrow & & \downarrow & & \downarrow \\ G & \xlongequal{\quad} & G & \xrightarrow{\eta_G} & G/N_G \end{array}$$

where $(G, N_G) \in \text{ProtoPreOrdGrp}$ and $(G/N_G, P_G/N_G) \in \text{ParOrdGrp}$.

Outline

From torsion theories to pretorsion theories

Internal preorders

The stable category

The lextensive context

Two examples of pretorsion theories in Cat

The category $\text{PreOrd}(\mathbb{C})$ of internal preorders in an exact category \mathbb{C}

- ▶ objects : reflexive and transitive relations

$$\begin{array}{c} \rho \\ r_1 \downarrow \downarrow r_2 \\ A \end{array}$$

denoted by (A, ρ) ;

The category $\text{PreOrd}(\mathbb{C})$ of internal preorders in an exact category \mathbb{C}

- objects : reflexive and transitive relations

$$\begin{array}{ccc} & \rho & \\ r_1 \downarrow & & \downarrow r_2 \\ A & & \end{array}$$

denoted by (A, ρ) ;

- morphisms : $f: (A, \rho) \rightarrow (B, \sigma)$ is a pair (f, \bar{f}) of morphisms in \mathbb{C}

$$\begin{array}{ccc} \rho & \xrightarrow{\bar{f}} & \sigma \\ r_1 \downarrow & & \downarrow r_2 \\ A & \xrightarrow{f} & B \\ & & s_1 \downarrow & \downarrow s_2 \end{array}$$

such that $s_1 \cdot \bar{f} = f \cdot r_1$ and $s_2 \cdot \bar{f} = f \cdot r_2$.

A pretorsion theory in $\text{PreOrd}(\mathbb{C})$

An internal preorder (A, ρ) is a **partial order** if $\rho \cap \rho^o = \Delta_A$ (anti-symmetry), where Δ_A is the **discrete relation** on A :

$$\begin{array}{c} A \\ | \quad | \\ 1_A \quad 1_A \\ \downarrow \quad \downarrow \\ A. \end{array}$$

A pretorsion theory in $\text{PreOrd}(\mathbb{C})$

An internal preorder (A, ρ) is a **partial order** if $\rho \cap \rho^o = \Delta_A$ (anti-symmetry), where Δ_A is the **discrete relation** on A :

$$\begin{array}{ccc} A & & \\ \downarrow 1_A & & \downarrow 1_A \\ A. & & \end{array}$$

We write $\text{ParOrd}(\mathbb{C})$ for the category of **partial orders** in \mathbb{C} .

A pretorsion theory in $\text{PreOrd}(\mathbb{C})$

An internal preorder (A, ρ) is a **partial order** if $\rho \cap \rho^o = \Delta_A$ (anti-symmetry), where Δ_A is the **discrete relation** on A :

$$\begin{array}{ccc} A & & \\ \downarrow 1_A & & \downarrow 1_A \\ A. & & \end{array}$$

We write $\text{ParOrd}(\mathbb{C})$ for the category of **partial orders** in \mathbb{C} .

A preorder (A, ρ) is an **equivalence relation** if $\rho^o = \rho$ (symmetry).

The category of equivalence relations in \mathbb{C} will be denoted by $\text{Eq}(\mathbb{C})$.

The subcategory $\text{Eq}(\mathbb{C}) \cap \text{ParOrd}(\mathbb{C})$ is the category \mathcal{Z} of discrete equivalence relations in \mathbb{C} .

The subcategory $\text{Eq}(\mathbb{C}) \cap \text{ParOrd}(\mathbb{C})$ is the category \mathcal{Z} of discrete equivalence relations in \mathbb{C} .

Proposition [A. Facchini, C. Finocchiaro, M. Gran, 2021]

When \mathbb{C} is exact, the pair $(\text{Eq}(\mathbb{C}), \text{ParOrd}(\mathbb{C}))$ is a pretorsion theory in $\text{PreOrd}(\mathbb{C})$.

The subcategory $\text{Eq}(\mathbb{C}) \cap \text{ParOrd}(\mathbb{C})$ is the category \mathcal{Z} of discrete equivalence relations in \mathbb{C} .

Proposition [A. Facchini, C. Finocchiaro, M. Gran, 2021]

When \mathbb{C} is exact, the pair $(\text{Eq}(\mathbb{C}), \text{ParOrd}(\mathbb{C}))$ is a pretorsion theory in $\text{PreOrd}(\mathbb{C})$.

Proof :

Given a preorder (A, ρ) , we define the equivalence relation $\sim_\rho = \rho \cap \rho^o$, and write $A \xrightarrow{\pi} \frac{A}{\sim_\rho}$ for the corresponding quotient.

The subcategory $\text{Eq}(\mathbb{C}) \cap \text{ParOrd}(\mathbb{C})$ is the category \mathcal{Z} of discrete equivalence relations in \mathbb{C} .

Proposition [A. Facchini, C. Finocchiaro, M. Gran, 2021]

When \mathbb{C} is exact, the pair $(\text{Eq}(\mathbb{C}), \text{ParOrd}(\mathbb{C}))$ is a pretorsion theory in $\text{PreOrd}(\mathbb{C})$.

Proof :

Given a preorder (A, ρ) , we define the equivalence relation $\sim_\rho = \rho \cap \rho^o$, and write $A \xrightarrow{\pi} \frac{A}{\sim_\rho}$ for the corresponding quotient.

The canonical short \mathcal{Z} -exact sequence of this pretorsion theory is

$$\begin{array}{ccccc} \sim_\rho & \xrightarrow{i} & \rho & \xrightarrow{\bar{\pi}} & \pi(\rho) \\ \downarrow & & \downarrow r_1 & & \downarrow \\ A & \xlongequal{\quad} & A & \xrightarrow{\pi} & \frac{A}{\sim_\rho} \end{array}$$

Any morphism

$$\begin{array}{ccc} \rho & \xrightarrow{\bar{f}} & \sigma \\ r_1 \downarrow & & \downarrow s_1 \\ A & \xrightarrow{f} & B \\ & & s_2 \downarrow \end{array}$$

from an equivalence relation (A, ρ) to a partial order (B, σ) is \mathcal{Z} -trivial :

$$\begin{aligned} f(\rho) &= f(\rho \cap \rho^o) \\ &\leq f(\rho) \cap f(\rho^o) \\ &\leq \sigma \cap \sigma^o \\ &= \Delta_B, \end{aligned}$$

hence (f, \bar{f}) factors through the **discrete relation** $(B, \Delta_B) \in \mathcal{Z}$.

□

Outline

From torsion theories to pretorsion theories

Internal preorders

The stable category

The lextensive context

Two examples of pretorsion theories in Cat

The stable category

A. Facchini and C. Finocchiaro introduced the **stable category** of the category $\text{PreOrd} = \text{PreOrd}(\text{Set})$ of preordered sets.

The stable category

A. Facchini and C. Finocchiaro introduced the **stable category** of the category $\text{PreOrd} = \text{PreOrd}(\text{Set})$ of preordered sets.

The stable category is a **quotient** of PreOrd having the property that this quotient sends

- any **trivial** preorder to the zero object,
- any \mathcal{Z} -trivial morphism to a zero morphism.

The stable category

A. Facchini and C. Finocchiaro introduced the **stable category** of the category $\text{PreOrd} = \text{PreOrd}(\text{Set})$ of preordered sets.

The stable category is a **quotient** of PreOrd having the property that this quotient sends

- any **trivial** preorder to the zero object,
- any \mathcal{Z} -trivial morphism to a zero morphism.

With F. Borceux and F. Campanini we have looked at this construction from a categorical perspective. We proposed a new definition of the stable category of $\text{PreOrd}(\mathbb{C})$, where \mathbb{C} is a **pretopos**.

A **pretopos** is an **exact** category \mathbb{C} with finite sums that is also

- **extensive** : in any commutative diagram

$$\begin{array}{ccccc} X' & \longrightarrow & A & \longleftarrow & Y' \\ \downarrow & & \downarrow & & \downarrow \\ X & \xrightarrow{s_1} & X \coprod Y & \xleftarrow{s_2} & Y, \end{array}$$

the top row is a sum if and only if the two squares are pullbacks.

A **pretopos** is an **exact** category \mathbb{C} with finite sums that is also

- **extensive** : in any commutative diagram

$$\begin{array}{ccccc} X' & \longrightarrow & A & \longleftarrow & Y' \\ \downarrow & & \downarrow & & \downarrow \\ X & \xrightarrow{s_1} & X \coprod Y & \xleftarrow{s_2} & Y, \end{array}$$

the top row is a sum if and only if the two squares are pullbacks.

Examples

Set, G -Set, $HComp$ (compact Hausdorff spaces), any topos, etc.

Complemented subobjects

In a pretopos \mathbb{C} a subobject $A \rightarrowtail B$ of B is **complemented** if there is another subobject $A^c \rightarrowtail B$ with the property that

$$A \cap A^c = 0 \text{ and } A \cup A^c = B.$$

Complemented subobjects

In a pretopos \mathbb{C} a subobject $A \rightarrowtail B$ of B is **complemented** if there is another subobject $A^c \rightarrowtail B$ with the property that

$$A \cap A^c = 0 \text{ and } A \cup A^c = B.$$

The “idea” of the stable category is to identify two morphisms in $\text{PreOrd}(\mathbb{C})$ if they coincide on a (complemented) subobject and are both \mathcal{Z} -trivial on its complement.

To define the stable category, we first build the category $\text{PaPreOrd}(\mathbb{C})$ of **partial morphisms** in $\text{PreOrd}(\mathbb{C})$.

To define the stable category, we first build the category $\text{PaPreOrd}(\mathbb{C})$ of **partial morphisms** in $\text{PreOrd}(\mathbb{C})$.

- objects : internal preorders (A, ρ) in \mathbb{C} ;

To define the stable category, we first build the category $\text{PaPreOrd}(\mathbb{C})$ of **partial morphisms** in $\text{PreOrd}(\mathbb{C})$.

- objects : internal preorders (A, ρ) in \mathbb{C} ;
- morphisms : a pair (α, f) as in

$$\begin{array}{ccc} & (A', \rho') & \\ \alpha \swarrow & & \searrow f \\ (A, \rho) & \dashrightarrow & (B, \sigma), \\ & (\alpha, f) & \end{array}$$

where $f: (A', \rho') \rightarrow (B, \sigma)$ is a morphism in $\text{PreOrd}(\mathbb{C})$ and $(A', \rho') \xrightarrow{\alpha} (A, \rho)$ is a complemented subobject in $\text{PreOrd}(\mathbb{C})$.

- composition : given two composable morphisms, one considers the pullback

$$\begin{array}{ccccc}
 & & (A'', \rho'') & & \\
 & \swarrow \alpha' & & \searrow f' & \\
 (A', \rho') & & & & (B', \sigma') \\
 \swarrow \alpha & \searrow f & \swarrow \beta & \searrow g & \\
 (A, \rho) & \xrightarrow{(\alpha, f)} & (B, \sigma) & \xrightarrow{(\beta, g)} & (C, \tau)
 \end{array}$$

and set

$$(\beta, g) \circ (\alpha, f) = (\alpha \alpha', g f').$$

There is a functor

$$I: \text{PreOrd}(\mathbb{C}) \rightarrow \text{PaPreOrd}(\mathbb{C})$$

sending a morphism

$$f: (A, \rho) \rightarrow (B, \sigma)$$

to the morphism

$$\begin{array}{ccc} & (A, \rho) & \\ 1 \swarrow & & \searrow f \\ (A, \rho) & \xrightarrow{\quad I(f) \quad} & (B, \sigma). \end{array}$$

There is a functor

$$I: \text{PreOrd}(\mathbb{C}) \rightarrow \text{PaPreOrd}(\mathbb{C})$$

sending a morphism

$$f: (A, \rho) \rightarrow (B, \sigma)$$

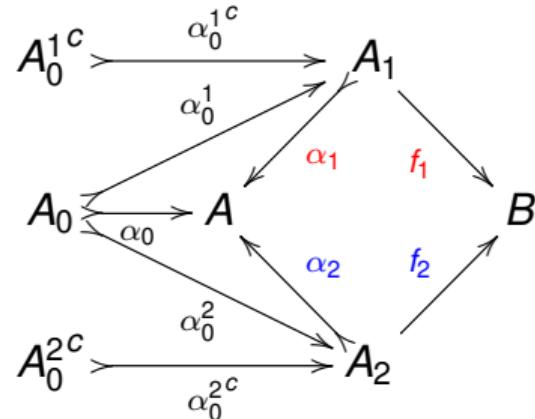
to the morphism

$$\begin{array}{ccc} & (A, \rho) & \\ 1 \swarrow & & \searrow f \\ (A, \rho) & \xrightarrow{\quad \quad \quad} & (B, \sigma). \\ & I(f) & \end{array}$$

The **stable category** $\text{Stab}(\mathbb{C})$ of $\text{PreOrd}(\mathbb{C})$ is a quotient of $\text{PaPreOrd}(\mathbb{C})$.

Two parallel morphisms (α_1, f_1) and (α_2, f_2) in $\text{PaPreOrd}(\mathbb{C})$

are **equivalent** for \sim if there is a **congruence diagram** between them :



The equivalence relation \sim is “compatible” with the composition, and is a congruence on $\text{PaPreOrd}(\mathbb{C})$. One has the quotient

$$\text{PaPreOrd}(\mathbb{C}) \xrightarrow{\pi} \frac{\text{PaPreOrd}(\mathbb{C})}{\sim} := \text{Stab}(\mathbb{C}).$$

The equivalence relation \sim is “compatible” with the composition, and is a congruence on $\text{PaPreOrd}(\mathbb{C})$. One has the quotient

$$\text{PaPreOrd}(\mathbb{C}) \xrightarrow{\pi} \frac{\text{PaPreOrd}(\mathbb{C})}{\sim} := \text{Stab}(\mathbb{C}).$$

We then get the functor

$$\Sigma : \text{PreOrd}(\mathbb{C}) \xrightarrow{I} \text{PaPreOrd}(\mathbb{C}) \xrightarrow{\pi} \text{Stab}(\mathbb{C}).$$

Properties

- the stable category $\text{Stab}(\mathbb{C})$ is **pointed** ;

Properties

- the stable category $\text{Stab}(\mathbb{C})$ is pointed ;
- a morphism $f: A \rightarrow B$ in $\text{PreOrd}(\mathbb{C})$ is \mathcal{Z} -trivial iff $\Sigma(f) = 0$;

Properties

- the stable category $\text{Stab}(\mathbb{C})$ is pointed ;
- a morphism $f: A \rightarrow B$ in $\text{PreOrd}(\mathbb{C})$ is \mathcal{Z} -trivial iff $\Sigma(f) = 0$;
- the functor $\text{PreOrd}(\mathbb{C}) \xrightarrow{\Sigma} \text{Stab}(\mathbb{C})$ preserves finite coproducts and monomorphisms.

Proposition [F. Borceux, F. Campanini, M.G., 2022]

The functor $\text{PreOrd}(\mathbb{C}) \xrightarrow{\Sigma} \text{Stab}(\mathbb{C})$ is a torsion theory functor :

- the pretorsion theory $(\text{Eq}(\mathbb{C}), \text{ParOrd}(\mathbb{C}))$ “becomes” a torsion theory in the pointed category $\text{Stab}(\mathbb{C})$;

Proposition [F. Borceux, F. Campanini, M.G., 2022]

The functor $\text{PreOrd}(\mathbb{C}) \xrightarrow{\Sigma} \text{Stab}(\mathbb{C})$ is a torsion theory functor :

- the pretorsion theory $(\text{Eq}(\mathbb{C}), \text{ParOrd}(\mathbb{C}))$ “becomes” a torsion theory in the pointed category $\text{Stab}(\mathbb{C})$;
- the canonical short \mathcal{Z} -exact sequence of the pretorsion theory

$$\begin{array}{ccccc} \sim_{\rho} & \xrightarrow{i} & \rho & \xrightarrow{\bar{\pi}} & \pi(\rho) \\ \downarrow & & \downarrow r_1 & & \downarrow \\ A & \xlongequal{\quad} & A & \xrightarrow{\pi} & \frac{A}{\sim_{\rho}} \end{array}$$

“becomes” the canonical short exact sequence of the torsion theory in $\text{Stab}(\mathbb{C})$.

Universal property

The functor $\text{PreOrd}(\mathbb{C}) \xrightarrow{\Sigma} \text{Stab}(\mathbb{C})$ is universal among all finite coproduct preserving torsion theory functors $G: \text{PreOrd}(\mathbb{C}) \rightarrow \mathbb{X}$, where \mathbb{X} is equipped with a torsion theory :

$$\begin{array}{ccc} \text{PreOrd}(\mathbb{C}) & \xrightarrow{\Sigma} & \text{Stab}(\mathbb{C}) \\ & \searrow \forall G & \swarrow \exists! \bar{G} \\ & \mathbb{X}. & \end{array}$$

The unique \bar{G} such that $\bar{G} \circ \Sigma = G$ is a torsion theory functor that preserves finite coproducts.

Universal property

The functor $\text{PreOrd}(\mathbb{C}) \xrightarrow{\Sigma} \text{Stab}(\mathbb{C})$ is universal among all finite coproduct preserving torsion theory functors $G: \text{PreOrd}(\mathbb{C}) \rightarrow \mathbb{X}$, where \mathbb{X} is equipped with a torsion theory :

$$\begin{array}{ccc} \text{PreOrd}(\mathbb{C}) & \xrightarrow{\Sigma} & \text{Stab}(\mathbb{C}) \\ & \searrow \forall G & \swarrow \exists! \bar{G} \\ & \mathbb{X}. & \end{array}$$

The unique \bar{G} such that $\bar{G} \circ \Sigma = G$ is a torsion theory functor that preserves finite coproducts.

The stable category $\text{Stab}(\mathbb{C})$ provides the “universal torsion theory” associated with the pretorsion theory $(\text{Eq}(\mathbb{C}), \text{ParOrd}(\mathbb{C}))$.

Outline

From torsion theories to pretorsion theories

Internal preorders

The stable category

The Iextensive context

Two examples of pretorsion theories in Cat

The **extensive** context

It is interesting to analyse the **structural reasons** why the construction of the stable category works well for $\text{PreOrd}(\mathbb{C})$.

The **lex**tensive context

It is interesting to analyse the **structural reasons** why the construction of the stable category works well for $\text{PreOrd}(\mathbb{C})$.

The crucial properties needed to make this work are those of **lex**tensive categories : these are the **finitely complete extensive** categories.

The **lex**tensive context

It is interesting to analyse the **structural reasons** why the construction of the stable category works well for $\text{PreOrd}(\mathbb{C})$.

The crucial properties needed to make this work are those of **lex**tensive categories : these are the **finitely complete extensive** categories.

Examples

Set, any pretopos, CRng^{op} , Top, PreOrd , $\text{PreOrd}(\mathbb{C})$ (for \mathbb{C} a pretopos), Cat .

Let $(\mathcal{T}, \mathcal{F})$ be a pretorsion theory in a **lex**tensive category \mathbb{C} satisfying the following properties :

- $\mathcal{Z} = \mathcal{T} \cap \mathcal{F}$ is closed in \mathbb{C} under complemented subobjects ;
- $\mathcal{Z} = \mathcal{T} \cap \mathcal{F}$ is closed in \mathbb{C} under binary coproducts.

Let $(\mathcal{T}, \mathcal{F})$ be a pretorsion theory in a **lex**tensive category \mathbb{C} satisfying the following properties :

- $\mathcal{Z} = \mathcal{T} \cap \mathcal{F}$ is closed in \mathbb{C} under complemented subobjects ;
- $\mathcal{Z} = \mathcal{T} \cap \mathcal{F}$ is closed in \mathbb{C} under binary coproducts.

Example

The pretorsion theory $(\text{Eq}(\mathbb{C}), \text{ParOrd}(\mathbb{C}))$ in **PreOrd**(\mathbb{C}) verifies these properties.

Let $(\mathcal{T}, \mathcal{F})$ be a pretorsion theory in a **lex**tensive category \mathbb{C} satisfying the following properties :

- $\mathcal{Z} = \mathcal{T} \cap \mathcal{F}$ is closed in \mathbb{C} under complemented subobjects ;
- $\mathcal{Z} = \mathcal{T} \cap \mathcal{F}$ is closed in \mathbb{C} under binary coproducts.

Example

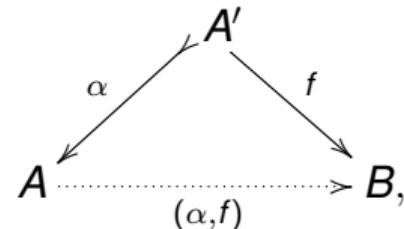
The pretorsion theory $(\text{Eq}(\mathbb{C}), \text{ParOrd}(\mathbb{C}))$ in $\text{PreOrd}(\mathbb{C})$ verifies these properties.

Under these assumptions one can define the category **Par**(\mathbb{C}) of partial morphisms in \mathbb{C} , exactly as we did in the case of the internal preorders.

The category $\text{Par}(\mathbb{C})$

Let \mathbb{C} be a lextensive category. Define :

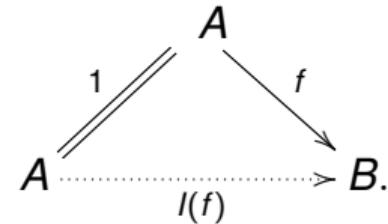
- objects : same as in \mathbb{C} ;
- morphisms : a pair (α, f) as in



where $f: A' \rightarrow B$ is a morphism in \mathbb{C} and $A' \xrightarrow{\alpha} A$ is a complemented subobject.

The stable category

- There is a functor $\mathbb{C} \xrightarrow{I} \text{Par}(\mathbb{C})$, sending a morphism $f: A \rightarrow B$ to



The stable category

- There is a functor $\mathbb{C} \xrightarrow{I} \text{Par}(\mathbb{C})$, sending a morphism $f: A \rightarrow B$ to

$$\begin{array}{ccc} & A & \\ & \swarrow 1 \quad \searrow f & \\ A & \xrightarrow{\quad I(f) \quad} & B. \end{array}$$

- $\text{Par}(\mathbb{C})$ is **pointed** : the initial object 0 of \mathbb{C} becomes a zero object in $\text{Par}(\mathbb{C})$:

$$\begin{array}{ccc} & 0 & \\ & \swarrow \quad \searrow & \\ 0 & \xrightarrow{\quad \exists! \alpha_X \quad} & X, \end{array}$$

$$\begin{array}{ccc} & 0 & \\ & \swarrow \quad \searrow & \\ X & \xrightarrow{\quad \exists! \omega_X \quad} & 0 \end{array}$$

The stable category

- There is a functor $\mathbb{C} \xrightarrow{I} \text{Par}(\mathbb{C})$, sending a morphism $f: A \rightarrow B$ to

$$\begin{array}{ccc} & A & \\ 1 \swarrow & & \searrow f \\ A & \xrightarrow{I(f)} & B. \end{array}$$

- $\text{Par}(\mathbb{C})$ is **pointed** : the initial object 0 of \mathbb{C} becomes a zero object in $\text{Par}(\mathbb{C})$:

$$\begin{array}{ccc} & 0 & \\ 0 \swarrow & \searrow & \\ 0 & \xrightarrow{\exists! \alpha_X} & X, \end{array} \quad \begin{array}{ccc} & 0 & \\ & \swarrow & \searrow \\ X & \xrightarrow{\exists! \omega_X} & 0 \end{array}$$

- The quotient category $\frac{\text{Par}(\mathbb{C})}{\sim} = \text{Stab}(\mathbb{C})$ of $\text{Par}(\mathbb{C})$ by the equivalence relation \sim on the morphisms in $\text{Par}(\mathbb{C})$ gives the **stable category**.

The composite

$$\Sigma: \mathbb{C} \longrightarrow \mathbf{Par}(\mathbb{C}) \longrightarrow \frac{\mathbf{Par}(\mathbb{C})}{\sim} = \mathbf{Stab}(\mathbb{C})$$

is the universal functor sending the pretorsion theory $(\mathcal{T}, \mathcal{F})$ to a torsion theory :

The composite

$$\Sigma: \mathbb{C} \longrightarrow \text{Par}(\mathbb{C}) \longrightarrow \frac{\text{Par}(\mathbb{C})}{\sim} = \text{Stab}(\mathbb{C})$$

is the universal functor sending the pretorsion theory $(\mathcal{T}, \mathcal{F})$ to a torsion theory :

Universal property

Let $(\mathcal{T}, \mathcal{F})$ be a pretorsion theory in a **lex**tensive category \mathbb{C} , with \mathcal{T} closed in \mathbb{C} under complemented subobjects. If \mathcal{Z} -kernels and \mathcal{Z} -cokernels exist, then the functor $\Sigma: \mathbb{C} \rightarrow \text{Stab}(\mathbb{C})$ is **universal** among all finite coproduct preserving torsion theory functors $G: \mathbb{C} \rightarrow \mathbb{X}$, where \mathbb{X} is equipped with a torsion theory :

$$\begin{array}{ccc} \mathbb{C} & \xrightarrow{\Sigma} & \text{Stab}(\mathbb{C}) \\ & \searrow \forall G & \swarrow \exists! \overline{G} \\ & \mathbb{X}. & \end{array}$$

Outline

From torsion theories to pretorsion theories

Internal preorders

The stable category

The lextensive context

Two examples of pretorsion theories in Cat

The example of “symmetric” and “antisymmetric” categories (J. Xarez, 2022)

Let us consider the category Cat of (small) categories and functors.

The example of “symmetric” and “antisymmetric” categories (J. Xarez, 2022)

Let us consider the category Cat of (small) categories and functors.

We write SymCat for the full subcategory of Cat whose objects are *symmetric categories*, i.e. those categories having the property :

for any X, Y , if $\text{hom}(X, Y) \neq \emptyset$, then $\text{hom}(Y, X) \neq \emptyset$.

The example of “symmetric” and “antisymmetric” categories (J. Xarez, 2022)

Let us consider the category Cat of (small) categories and functors.

We write SymCat for the full subcategory of Cat whose objects are *symmetric categories*, i.e. those categories having the property :

for any X, Y , if $\text{hom}(X, Y) \neq \emptyset$, then $\text{hom}(Y, X) \neq \emptyset$.

Let AntiSymCat denote the full subcategory of *antisymmetric categories* :

if $\text{hom}(X, Y) \neq \emptyset$ and $\text{hom}(Y, X) \neq \emptyset$, then $X = Y$.

Theorem (J. Xarez (2022))

The pair $(\text{SymCat}, \text{AntiSymCat})$ is a pretorsion theory in Cat .

Theorem (J. Xarez (2022))

The pair $(\text{SymCat}, \text{AntiSymCat})$ is a pretorsion theory in Cat .

In this example of pretorsion theory, the trivial objects in

$$\mathcal{Z} = \text{SymCat} \cap \text{AntiSymCat}$$

are the classes of **monoids**.

The example of “groupoids” and “skeletal categories”

Let us consider the category Cat of small categories and functors.

The example of “groupoids” and “skeletal categories”

Let us consider the category Cat of small categories and functors.

We write Grpd for the full subcategory of Cat whose objects are groupoids.

The example of “groupoids” and “skeletal categories”

Let us consider the category Cat of small categories and functors.

We write Grpd for the full subcategory of Cat whose objects are groupoids.

We write SkelCat for the full subcategory of Cat whose objects are skeletal categories (= categories where every isomorphism is an automorphism).

The example of “groupoids” and “skeletal categories”

Let us consider the category Cat of small categories and functors.

We write Grpd for the full subcategory of Cat whose objects are groupoids.

We write SkelCat for the full subcategory of Cat whose objects are skeletal categories (= categories where every isomorphism is an automorphism).

In this case

$$\mathcal{Z} = \text{Grpd} \cap \text{SkelCat}$$

are the classes of groups.

Given a small category \mathcal{C} , there is always the subgroupoid $\text{Iso}(\mathcal{C}) \in \text{Grpd}$ of its isomorphisms :

$$\text{Iso}(\mathcal{C}) \xrightarrow{i} \mathcal{C}.$$

Given a small category \mathcal{C} , there is always the subgroupoid $\text{Iso}(\mathcal{C}) \in \text{Grpd}$ of its isomorphisms :

$$\text{Iso}(\mathcal{C}) \xrightarrow{i} \mathcal{C}.$$

In order to build the **skeletal category** \mathcal{S} associated with \mathcal{C} one forms the following coequalizer in Cat

$$\coprod_{\sigma \in \text{Iso}(\mathcal{C})} 1 \rightrightarrows_{c}^d \mathcal{C} \rightrightarrows q \mathcal{S},$$

where 1 is the terminal category, d and c are the functors associating - with any component indexed by an isomorphism σ - its “domain” and “codomain”, respectively.

Theorem (F. Borceux, F. Campanini, M. Gran, W. Tholen, 2023)

The pair $(\text{Grpd}, \text{SkelCat})$ is a pretorsion theory in Cat .

Theorem (F. Borceux, F. Campanini, M. Gran, W. Tholen, 2023)

The pair $(\text{Grpd}, \text{SkelCat})$ is a pretorsion theory in Cat .

The canonical \mathcal{Z} -exact sequence of the pretorsion theory associated with a category \mathcal{C} is

$$\text{Iso}(\mathcal{C}) \xrightarrow{i} \mathcal{C} \xrightarrow{q} \mathcal{S}.$$

Theorem (F. Borceux, F. Campanini, M. Gran, W. Tholen, 2023)

The pair $(\text{Grpd}, \text{SkelCat})$ is a pretorsion theory in Cat .

The canonical \mathcal{Z} -exact sequence of the pretorsion theory associated with a category \mathcal{C} is

$$\text{Iso}(\mathcal{C}) \xrightarrow{i} \mathcal{C} \xrightarrow{q} \mathcal{S}.$$

Remark

A key ingredient in the proof comes from a property of coequalizers of morphisms in Cat with a “discrete” domain : they are **faithful** and **reflect isomorphisms**.

Theorem (F. Borceux, F. Campanini, M. Gran, W. Tholen, 2023)

The pair $(\text{Grpd}, \text{SkelCat})$ is a pretorsion theory in Cat .

The canonical \mathcal{Z} -exact sequence of the pretorsion theory associated with a category \mathcal{C} is

$$\text{Iso}(\mathcal{C}) \xrightarrow{i} \mathcal{C} \xrightarrow{q} \mathcal{S}.$$

Remark

A key ingredient in the proof comes from a property of coequalizers of morphisms in Cat with a “discrete” domain : they are **faithful** and **reflect isomorphisms**.

Remark

When the small category \mathcal{C} is a preordered set, the \mathcal{Z} -exact sequence above gives back the canonical \mathcal{Z} -exact sequence for $(\text{Eq}(\text{Set}), \text{ParOrd}(\text{Set}))$.

References

- F. Borceux, F. Campanini, M. Gran, *The stable category of internal preorders in a pretopos II : the universal property*, Ann. Matem. Pura Appl. (2022)
- F. Borceux, F. Campanini, M. Gran, *Pretorsion theories in lextensive categories*, Israel J. Math., to appear
- F. Borceux, F. Campanini, M. Gran, W. Tholen, *Groupoids and skeletal categories form a pretorsion theory in Cat*, Advances in Math. (2023)
- M.M. Clementino, N. Martins-Ferreira, A. Montoli, *On the categorical behaviour of preordered groups*, J. Pure Appl. Algebra (2019)
- A. Facchini, C. Finocchiaro, *Pretorsion theories, stable category and preordered sets*, Ann. Matem. Pura Appl. (2020)
- A. Facchini, C. Finocchiaro, M. Gran, *Pretorsion theories in general categories*, J. Pure Appl. Algebra (2021)
- M. Grandis, G. Janelidze, L. Márki, *Non-pointed exactness, radicals, closure operators*, J. Aust. Math. Soc. (2013)
- M. Gran, A. Michel, *Torsion theories and coverings of preordered groups*, Algebra Univers. (2021)
- J. Xarez, *A pretorsion theory for the category of all categories*, Cah. Top. Géom. Diff. Catég. (2022)