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The abelian context

Definition [S.C. Dickson, 1966]

A pair (T,F) of full (replete) subcategories of an abelian category C is a
torsion theory if :

e forany T € 7 and F € F the only morphism from T to F is

T—F

\\

0o

e for any C € C there is a short exact sequence

0 T(C) c F(C)——>0

with T(C) € T and F(C) € F.



T is the torsion subcategory, 7 the torsion-free subcategory.



T is the torsion subcategory, 7 the torsion-free subcategory.

The terminology comes from the example (7, 7) = (Aby., Ab; ) in the category
C = Ab of abelian groups, where

T = Ab; is the category of torsion abelian groups
and
F = Ab; ¢ the category of torsion-free abelian groups.

For any A € Ab one has the exact sequence

0 T(A) A A/T(A)——=0,

where T(A) ={ac A | 3n € Ny, na= 0}.



The pointed case
Torsion theories have been considered in many “non-additive” pointed contexts :

>
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If C is a pointed category, with zero object 0, a torsion theory (7, F) in C can still
be defined as in the abelian case :

e forany T € T and F € F the only morphism from T to F is

T——~F

0o
e VC € C there is a short exact sequence

0 T(C) c F(C)——=0

with T(C) € T and F(C) € F.



Definition (G. Janelidze, L. Marki, W. Tholen, 2002)
A finitely complete category C is semi-abelian if
» C has a 0 object
» Chas A+ B
» Cis (Barr) exact
» C is (Bourn) protomodular : given a commutative diagram

0 K—* . A —B
0 K’ A—=P
I'd f’

u, w isomorphisms =- v isomorphism.



Example
The category Grp is semi-abelian :
» every homomorphism f in Grp has a factorisation f = iop

where p is a regular epimorphism (=a coequalizer) and i is @ monomorphism;
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Example
The category Grp is semi-abelian :
» every homomorphism f in Grp has a factorisation f = iop

where p is a regular epimorphism (=a coequalizer) and i is @ monomorphism;
» these factorisations are pullback stable;
> Grp is exact (any equivalence relation is a kernel pair) ;
» the Split Short Five Lemma holds in Grp.
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Grp, Rng, Algy, Liek are all semi-abelian categories.
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Examples
Grp, Rng, Algy, Liek are all semi-abelian categories.

Grp(Comp), Grp(Prof) (more generally, any Grp(C) with C exact).
The category Hopfk o 0Of cocommutative Hopf algebras.
Any abelian category !

[ Cis abelian] < [ C and C are semi-abelian]!



An example of non-abelian torsion theory

(PrimHopfy, GrpHopfy) is a torsion theory in Hopfk ¢ (for K an algebraically
closed field of characteristic 0).



An example of non-abelian torsion theory

(PrimHopfy, GrpHopfy) is a torsion theory in Hopfk ¢ (for K an algebraically
closed field of characteristic 0).

Here the canonical short exact sequence associated with a Hopf algebra H is
0 — U(Ly) —> H = U(Ly) x K[Gr] == K[G] —= 0,

where U(Ly) is the universal enveloping algebra of the Lie algebra Ly of primitive
elements of H
ly={xecH| AX)=12x+x®1},

K[Gy] is the group Hopf algebra generated by the grouplike elements
Gyu={xeH| AX)=x®x,¢e(x) =1}

(see M. Gran, G. Kadjo, J. Vercruysse (2016)).



Torsion theories beyond the pointed case...
Any torsion theory (7,F) in a pointed category C is such that

TnF={0}.



Torsion theories beyond the pointed case...
Any torsion theory (7,F) in a pointed category C is such that

TnF={0}.

Indeed, if X € T N F, then the identity 1y factors through 0,

X——X

hence X = 0.
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set
Z=TNF.

The subcategory Z induces an ideal of Z-trivial morphisms.
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The idea of a pretorsion theory is to consider any two subcategories 7 and F and
set
Z=TNF.

The subcategory Z induces an ideal of Z-trivial morphisms.

A morphism f: A — B is Z-trivial if it factors through an object Z € Z :

To define a pretorsion theory one needs the definition of short Z-exact sequence.



Definition
A morphism k: K — X is the Z-kernel of f: X — Y if

1. KXo Xx—1.Y is Ztrivial :




Definition
A morphism k: K — X is the Z-kernel of f: X — Y if

1. KXo Xx—1.Y is Ztrivial :

K—k . x_ 1

ZeZ

2. forany /: L — X such that f - [ is Z-trivial

K—Hk o x_ T
L ~Z e Z

there is a unique ¢ such that k- o = 1.



Definition
The sequence K Ko X"V isshort Z-exact f
k = Z-ker(f)

and
f = Z-coker(k).



Definition
The sequence K Ko X"V isshort Z-exact f
k = Z-ker(f)
and
f = Z-coker(k).

Remark
When Z = {0} one gets back the notion of short exact sequence.



Definition
A pair (7, F) of full (replete) subcategories of a category C is a pretorsion theory if
1. forany T € 7 and F € F, any morphism from T to F is Z-trivial :




Definition
A pair (7, F) of full (replete) subcategories of a category C is a pretorsion theory if
1. forany T € 7 and F € F, any morphism from T to F is Z-trivial :

T- f F

7

ZecZ
2. for any object C € C there is a short Z-exact sequence in C
T(C) —= C—F(0),

with T(C) € T and F(C) € F.



Proposition
Given any pretorsion theory (7, 7) in C, then F is reflective in C

F
Fotr G
U

while T is coreflective in C



Proof :
To show that F is reflective in C, for any C € C consider the following diagram

T(C)-“—~c "% F(C)

PN

F

where the upper line is the canonical short Z-exact sequence of the pretorsion
theory, and f: C — F4 is any morphism with € F.



Proof :
To show that F is reflective in C, for any C € C consider the following diagram

T(C)——C—"~F(C)

dlp
x v

N
ZeZ > F4

where the upper line is the canonical short Z-exact sequence of the pretorsion
theory, f: C — Fq is any morphism with F; € F.

[f - tc is a Z-trivial morphism] = [3! such that ¢ - nc = f].



As in the classical case, any two of the subcategories 7, 7, and Z determine the
third one :



As in the classical case, any two of the subcategories 7, 7, and Z determine the
third one :

XeT & VFeF, hom(X,F)=Trivz(X, F)
and
YeF & VT eT, hom(T,Y)=Trivz(T,Y),

where Trivz (X, Y) denotes the Z-trivial morphisms from X to Y.
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e 7, F,and Z are closed in C under retracts, and under Z-extensions :
given a short Z-exact sequence
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X belongs to 7 (to 7, or to Z, resp.) whenever both S; and S, belong to 7
(to 7, orto Z, resp.)
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Properties
Let (7, F) be a pretorsion theory in any category C. Then

e 7, F,and Z are closed in C under retracts, and under Z-extensions :
given a short Z-exact sequence

Si—=X—S

X belongs to 7 (to 7, or to Z, resp.) whenever both S; and S, belong to 7
(to 7, orto Z, resp.)

Definition
When Z c F are full subcategories of C we say that 7 is Z-normal epireflective if

1. the inclusion 7 <Y~ C has a left adjoint F: C — 7,

2. for any A € C the unit
na: A— UF(A)

is a Z-cokernel.



Proposition [A. Facchini, C. Finocchiaro, M. Gran (2021)]

Let C be a category, Z a full subcategory closed under retracts in C.
Then the following are equivalent for a full subcategory 7 of C :

1. F is the torsion-free subcategory of a pretorsion theory (7, F) in C
(with Z2 =T N F);



Proposition [A. Facchini, C. Finocchiaro, M. Gran (2021)]

Let C be a category, Z a full subcategory closed under retracts in C.
Then the following are equivalent for a full subcategory 7 of C :

1. F is the torsion-free subcategory of a pretorsion theory (7, F) in C
(with Z2 =T nNF);
2. a) F is Z-normal epireflective in C
F
Fc L C,
U
b) VA € C, the unit n4: A — UF(A) has a Z-kernel
ta: T(A) = A,

C) VA€ C, tra): T(T(A)) — T(A) is an isomorphism.
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Recall that a preordered group (G, <, +) is a group G endowed with a preorder
relation < on G that is “compatible” with the group operation + :

[a<c,andb<d] = [a+b<c+|].
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An example

Recall that a preordered group (G, <, +) is a group G endowed with a preorder
relation < on G that is “compatible” with the group operation + :

[a<c,andb<d] = [a+b<c+|].

A morphism f: (G, <,+) — (H, <, +) in the category PreOrdGrp of preordered
groups is @ monotone group homomorphism.

Any preordered group (G, <, +) has a positive cone P ={gec G | 0 < g}.
This is a submonoid Pz > G of G stable under conjugation.



Alternative presentation of PreOrdGrp :
> objects : (G, Pg) with Pg a submonoid of a group G stable under conjugation :

Pa

G



Alternative presentation of PreOrdGrp :
> objects : (G, Pg) with Pg a submonoid of a group G stable under conjugation :

FI’G
G

» morphisms : (G, Pg) — (H, Py) is a pair (f, f)

PIG | >IIDH
G f>H

where f: G — H is a group homomorphism and f: Pg — Py its restriction.



Theorem [M.M. Clementino, N. Martins-Ferreira, A. Montoli (2019)]
The category PreOrdGrp is normal.



Theorem [M.M. Clementino, N. Martins-Ferreira, A. Montoli (2019)]
The category PreOrdGrp is normal.

This means that any morphism (f, f) factorises as a normal epimorphism
(= a cokernel) followed by a monomorphism

G — Py
\
f(PG)/ f

and these factorisations are pullback stable.



The category PreOrdGrp contains the full subcategory ParOrdGrp of partially
ordered groups. These are the preordered groups (G, Pg) such that P is a
reduced monoid :

Vx,y € Pg, [x+y=0]=[x=0=y]
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The category PreOrdGrp contains the full subcategory ParOrdGrp of partially
ordered groups. These are the preordered groups (G, Pg) such that P is a
reduced monoid :

Vx,y € Pg, [x+y=0]=[x=0=y]

There is also the full subcategory ProtoPreOrdGrp of “protomodular objects” in the
category PreOrdGrp : these are the preordered groups (H, Py) with the property
that Py is a group.

Proposition [M. Gran, A. Michel, 2021]

The pair (ProtoPreOrdGrp, ParOrdGrp) is a pretorsion theory in PreOrdGrp.



Idea of the proof :
Observe that

Z = ProtoPreOrdGrp N ParOrdGrp = { 0 >——= G | G € Grp},

since a reduced monoid that is also a group is trivial. This implies that any
morphism from a protomodular object to a partially ordered group is trivial.



Idea of the proof :
Observe that

Z = ProtoPreOrdGrp N ParOrdGrp = { 0 >——= G | G € Grp},
since a reduced monoid that is also a group is trivial. This implies that any
morphism from a protomodular object to a partially ordered group is trivial.
Next, given a preordered group Pg = G, one defines

Ng={ne G| ne Pgand —n € Pg},

which is a normal subgroup of G.



The canonical Z-exact sequence associated with (G, Pg) is given by

n
G Pg——> Pg/Ng

G ———=G

G/Ng

nG

where (G, Ng) € ProtoPreOrdGrp and (G/Ng, Pg/Ng) € ParOrdGrp.



Outline

Internal preorders



The category PreOrd(C) of internal preorders in an exact category C

» objects : reflexive and transitive relations

p

aie
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denoted by (A, p);



The category PreOrd(C) of internal preorders in an exact category C

» objects : reflexive and transitive relations

p

aie

>

denoted by (A, p);
» morphisms : f: (A, p) — (B, o) is a pair (f, f) of morphisms in C

p%—

r ro

-
h
b

vy}

A——s

f

suchthatsy - f=f-riand sy -f="f-r.



A pretorsion theory in PreOrd(C)

An internal preorder (A, p) is a partial order if p N p°® = A4 (anti-symmetry), where
A4 is the discrete relation on A :
A

|1

A.
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We write ParOrd(C) for the category of partial orders in C.



A pretorsion theory in PreOrd(C)

An internal preorder (A, p) is a partial order if p N p°® = A4 (anti-symmetry), where
A4 is the discrete relation on A :
A

|1

A.

-

14

We write ParOrd(C) for the category of partial orders in C.

A preorder (A, p) is an equivalence relation if p° = p (symmetry).
The category of equivalence relations in C will be denoted by Eq(C).



The subcategory Eq(C) N ParOrd(C) is the category Z of discrete equivalence
relations in C.



The subcategory Eq(C) N ParOrd(C) is the category Z of discrete equivalence
relations in C.

Proposition [A. Facchini, C. Finocchiaro, M. Gran, 2021]
When C is exact, the pair (Eq(C), ParOrd(C)) is a pretorsion theory in PreOrd(C).



The subcategory Eq(C) N ParOrd(C) is the category Z of discrete equivalence
relations in C.

Proposition [A. Facchini, C. Finocchiaro, M. Gran, 2021]

When C is exact, the pair (Eq(C), ParOrd(C)) is a pretorsion theory in PreOrd(C).
Proof :

Given a preorder (A, p), we define the equivalence relation ~, = p N p°, and write
A"~ NA; for the corresponding quotient.



The subcategory Eq(C) N ParOrd(C) is the category Z of discrete equivalence
relations in C.

Proposition [A. Facchini, C. Finocchiaro, M. Gran, 2021]
When C is exact, the pair (Eq(C), ParOrd(C)) is a pretorsion theory in PreOrd(C).

Proof :
Given a preorder (A, p), we define the equivalence relation ~, = p N p°, and write

A"~ NA; for the corresponding quotient.

The canonical short Z-exact sequence of this pretorsion theory is



Any morphism
f

—>J

fie

A——B
f
from an equivalence relation (A, p) to a partial order (B, o) is Z-trivial :

f(p) f(p N p°)
f(p) N 1(p°)

ocnNg®

- AB:

IN N

hence (f, f) factors through the discrete relation (B, Ag) € Z.



Outline
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e any trivial preorder to the zero object,
e any Z-trivial morphism to a zero morphism.



The stable category

A. Facchini and C. Finocchiaro introduced the stable category of the category
PreOrd = PreOrd(Set) of preordered sets.

The stable category is a quotient of PreOrd having the property that this quotient
sends

e any trivial preorder to the zero object,
e any Z-trivial morphism to a zero morphism.

With F. Borceux and F. Campanini we have looked at this construction from a
categorical perspective. We proposed a new definition of the stable category of
PreOrd(C), where C is a pretopos.



A pretopos is an exact category C with finite sums that is also
e extensive : in any commutative diagram

X' A Y

o

the top row is a sum if and only if the two squares are pullbacks.



A pretopos is an exact category C with finite sums that is also
e extensive : in any commutative diagram

X' A Y

o

the top row is a sum if and only if the two squares are pullbacks.

Examples
Set, G-Set, HComp (compact Hausdorff spaces), any topos, etc.



Complemented subobjects
In a pretopos C a subobject A~~~ B of B is complemented if there is another

subobject A°~2°_ B with the property that
ANA®=0and AUA® =B.



Complemented subobjects
In a pretopos C a subobject A~~~ B of B is complemented if there is another

subobject A°~2°_ B with the property that
ANA®=0and AUA® =B.

The “idea” of the stable category is to identify two morphisms in PreOrd(C) if they
coincide on a (complemented) subobject and are both Z-trivial on its complement.



To define the stable category, we first build the category PaPreOrd(C) of partial
morphisms in PreOrd(C).
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To define the stable category, we first build the category PaPreOrd(C) of partial
morphisms in PreOrd(C).

e objects : internal preorders (A, p) in C;
e morphisms : a pair («, f) as in
(A, p')
/ \
(A, p) w7 (B.o).

where f: (A, p') — (B, o) is a morphism in PreOrd(C) and
(A, p') =%~ (A, p) is a complemented subobject in PreOrd(C).



e composition : given two composable morphisms, one considers the pullback

and set
(8:9) o (o, ) = (ac’, gf").



There is a functor
I: PreOrd(C) — PaPreOrd(C)

sending a morphism
f: (A,p) = (B,0)

to the morphism



There is a functor
I: PreOrd(C) — PaPreOrd(C)

sending a morphism
f: (A,p) = (B,0)

to the morphism

The stable category Stab(C) of PreOrd(C) is a quotient of PaPreOrd(C).



Two parallel morphisms (a1, f1) and (ag, f2) in PaPreOrd(C)

A17P1) A27P2)
[e%] \ and a2 K
(A, p)

> (B, o) (A, ) > (B, 0)

are equivalent for ~ if there is a congruence diagram between them :



The equivalence relation ~ is “compatible” with the composition, and is a
congruence on PaPreOrd(C). One has the quotient

PaPreOrd(C) — PaPreord(©) . gtap(C).



The equivalence relation ~ is “compatible” with the composition, and is a
congruence on PaPreOrd(C). One has the quotient

PaPreOrd(C) — PaPreord(©) . gtap(C).

We then get the functor

¥ : PreOrd(C) ——= PaPreOrd(C) —= Stab(C).



Properties
¢ the stable category Stab(C) is pointed;
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Properties
¢ the stable category Stab(C) is pointed;
e amorphism f: A— Bin PreOrd(C) is Z-trivial iff X(f) = 0;

e the functor PreOrd(C) —Z>Stab(<C) preserves finite coproducts
and monomorphisms.



Proposition [F. Borceux, F. Campanini, M.G., 2022]
The functor PreOrd(C) RN Stab(C) is a torsion theory functor :

e the pretorsion theory (Eq(C), ParOrd(C)) “becomes” a torsion theory in the
pointed category Stab(C);



Proposition [F. Borceux, F. Campanini, M.G., 2022]
The functor PreOrd(C) RN Stab(C) is a torsion theory functor :

e the pretorsion theory (Eq(C), ParOrd(C)) “becomes” a torsion theory in the
pointed category Stab(C);

¢ the canonical short Z-exact sequence of the pretorsion theory

“pecomes” the canonical short exact sequence of the torsion theory in
Stab(C).



Universal property

The functor PreOrd(C) _x. Stab(C) is universal among all finite coproduct
preserving torsion theory functors G: PreOrd(C) — X, where X is equipped with a
torsion theory :

PreOrd(C) x Stab(C)

X.

The unique G such that Go ¥ = G is a torsion theory functor that preserves finite
coproducts.



Universal property

The functor PreOrd(C) R Stab(C) is universal among all finite coproduct
preserving torsion theory functors G: PreOrd(C) — X, where X is equipped with a
torsion theory :

PreOrd(C) x Stab(C)

X.

The unique G such that Go ¥ = G is a torsion theory functor that preserves finite
coproducts.

The stable category Stab(C) provides the “universal torsion theory” associated
with the pretorsion theory (Eq(C), ParOrd(C)).
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The lextensive context
It is interesting to analyse the structural reasons why the construction of the stable
category works well for PreOrd(C).
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It is interesting to analyse the structural reasons why the construction of the stable
category works well for PreOrd(C).

The crucial properties needed to make this work are those of lextensive
categories : these are the finitely complete extensive categories.



The lextensive context
It is interesting to analyse the structural reasons why the construction of the stable
category works well for PreOrd(C).

The crucial properties needed to make this work are those of lextensive
categories : these are the finitely complete extensive categories.

Examples
Set, any pretopos, CRng, Top, PreOrd, PreOrd(C) (for C a pretopos), Cat.
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The pretorsion theory (Eq(C), ParOrd(C)) in PreOrd(C) verifies these properties.



Let (7, F) be a pretorsion theory in a lextensive category C satisfying the following
properties :

e Z =T N Fisclosedin C under complemented subobjects;

e Z =T N Fisclosedin C under binary coproducts.

Example
The pretorsion theory (Eq(C), ParOrd(C)) in PreOrd(C) verifies these properties.

Under these assumptions one can define the category Par(C) of partial
morphisms in C, exactly as we did in the case of the internal preorders.



The category Par(C)

Let C be a lextensive category. Define :
e oObjects : same asin C;
e morphisms : a pair («, f) as in

A/
/ \
A > B,
()

where f: A' — Bis a morphism in C and A'>>~ A is a complemented
subobject.



The stable category

o There is a functor C —'~ Par(C) , sending a morphism f: A — Bto



The stable category

o There is a functor C —'~ Par(C) , sending a morphism f: A — Bto
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o There is a functor C —'~ Par(C) , sending a morphism f: A — Bto

N
A > B
I(f)

e Par(C) is pointed : the initial object 0 of C becomes a zero object in Par(C) :

e

e The quotient category Par(€) — Stab(C) of Par(C) by the equivalence relation

~

~ on the morphisms in Par(C) gives the stable category.



The composite
¥: C —> Par(C) — PC) _ gtap(C)

is the universal functor sending the pretorsion theory (7, F) to a torsion theory :



The composite
¥: C —> Par(C) — PC) _ gtap(C)

is the universal functor sending the pretorsion theory (7, F) to a torsion theory :

Universal property

Let (7, F) be a pretorsion theory in a lextensive category C, with 7 closed in C
under complemented subobjects. If Z-kernels and Z-cokernels exist, then

the functor X : C — Stab(C) is universal among all finite coproduct preserving
torsion theory functors G: C — X, where X is equipped with a torsion theory :

C >, Stab(C)

A /, 3G

X.
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The example of “symmetric” and “antisymmetric” categories (J. Xarez, 2022)
Let us consider the category Cat of (small) categories and functors.

We write SymCat for the full subcategory of Cat whose objects are
symmetric categories, i.e. those categories having the property :

forany X, Y, if hom(X, Y) # 0, then hom(Y, X) # 0.

Let AntiSymCat denote the full subcategory of antisymmetric categories :

if hom(X,Y) # 0 and hom(Y,X) #0, thenX =Y.
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Theorem (J. Xarez (2022))
The pair (SymCat, AntiSymCat) is a pretorsion theory in Cat.
In this example of pretorsion theory, the trivial objects in

Z = SymCat N AntiSymCat

are the classes of monoids.
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The example of “groupoids” and “skeletal categories™
Let us consider the category Cat of small categories and functors.

We write Grpd for the full subcategory of Cat whose objects are groupoids.

We write SkelCat for the full subcategory of Cat whose objects are skeletal
categories (= categories where every isomorphism is an automorphism).

In this case
Z = Grpd N SkelCat

are the classes of groups.



Given a small category C, there is always the subgroupoid Iso(C) € Grpd of its
isomorphisms :

Iso(C) —'.c.



Given a small category C, there is always the subgroupoid Iso(C) € Grpd of its
isomorphisms :

Iso(C) —'.c.

In order to build the skeletal category S associated with C one forms the following
coequalizer in Cat

d. q

Haelso(C) 1 — C—=6,

where 1 is the terminal category, d and c are the functors associating - with any
component indexed by an isomorphism o - its “domain” and “codomain”,

respectively.



Theorem (F. Borceux, F. Campanini, M. Gran, W. Tholen, 2023)
The pair (Grpd, SkelCat) is a pretorsion theory in Cat.



Theorem (F. Borceux, F. Campanini, M. Gran, W. Tholen, 2023)
The pair (Grpd, SkelCat) is a pretorsion theory in Cat.

The canonical Z-exact sequence of the pretorsion theory associated with a
category C is

|SO(C)>—i>C s



Theorem (F. Borceux, F. Campanini, M. Gran, W. Tholen, 2023)
The pair (Grpd, SkelCat) is a pretorsion theory in Cat.

The canonical Z-exact sequence of the pretorsion theory associated with a
category C is

|SO(C)>—i>C s

Remark
A key ingredient in the proof comes from a property of coequalizers of morphisms
in Cat with a “discrete” domain : they are faithful and reflect isomorphisms.



Theorem (F. Borceux, F. Campanini, M. Gran, W. Tholen, 2023)
The pair (Grpd, SkelCat) is a pretorsion theory in Cat.

The canonical Z-exact sequence of the pretorsion theory associated with a
category C is

|SO(C)>—i>C s

Remark
A key ingredient in the proof comes from a property of coequalizers of morphisms
in Cat with a “discrete” domain : they are faithful and reflect isomorphisms.

Remark
When the small category C is a preordered set, the Z-exact sequence above gives
back the canonical Z-exact sequence for (Eq(Set), ParOrd(Set)).
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