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The abelian context

Definition [S.C. Dickson, 1966]
A pair (T ,F) of full (replete) subcategories of an abelian category C is a
torsion theory if :

• for any T ∈ T and F ∈ F the only morphism from T to F is

T //

��

F

0

??

• for any C ∈ C there is a short exact sequence

0 // T (C) // C // F (C) // 0

with T (C) ∈ T and F (C) ∈ F .
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T is the torsion subcategory, F the torsion-free subcategory.

The terminology comes from the example (T ,F) = (Abt .,Abt .f .) in the category
C = Ab of abelian groups, where

T = Abt . is the category of torsion abelian groups
and

F = Abt .f . the category of torsion-free abelian groups.

For any A ∈ Ab one has the exact sequence

0 // T (A) // A // A/T (A) // 0,

where T (A) = {a ∈ A | ∃n ∈ N0,na = 0}.
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The pointed case
Torsion theories have been considered in many “non-additive” pointed contexts :
▶ Cassidy-Hébert-Kelly, J. Austr. Math Soc. (1987)
▶ Bourn-Gran, J. Algebra (2006)
▶ Clementino-Dikranjan-Tholen, J. Algebra (2006)
▶ Janelidze-Tholen, Contemp. Mathem. (2007)
▶ Rosický-Tholen, J. Homotopy Rel. Struct. (2007)
▶ Clementino-Gutierres, Cah. Top. Géom. Diff. Catég. (2010)
▶ Tholen, Topology Appl. (2011)
▶ Everaert-Gran, Bull. Sciences Mathém. (2013)
▶ Gran-Lack, J. Algebra (2016)
▶ Gran-Kadjo-Vercruysse, Appl. Categ. Struct. (2016)
▶ Duckerts-Antoine, Adv. Math. (2017)
▶ Lopez Cafaggi, Cah. Top. Géom. Diff. Catég. (2022)



If C is a pointed category, with zero object 0, a torsion theory (T ,F) in C can still
be defined as in the abelian case :

• for any T ∈ T and F ∈ F the only morphism from T to F is

T //

��

F

0

??

• ∀C ∈ C there is a short exact sequence

0 // T (C) // C // F (C) // 0

with T (C) ∈ T and F (C) ∈ F .



Definition (G. Janelidze, L. Márki, W. Tholen, 2002)
A finitely complete category C is semi-abelian if
▶ C has a 0 object
▶ C has A + B
▶ C is (Barr) exact
▶ C is (Bourn) protomodular : given a commutative diagram

0 // K

u
��

k // A

v
��

f
// B

oo

w
��

0 // K ′
k ′
// A′

f ′
// B′oo

u,w isomorphisms ⇒ v isomorphism.



Example
The category Grp is semi-abelian :
▶ every homomorphism f in Grp has a factorisation f = i ◦ p

G f //

p "" ""

H

f (G)
<< i

<<

where p is a regular epimorphism (=a coequalizer) and i is a monomorphism ;

▶ these factorisations are pullback stable ;
▶ Grp is exact (any equivalence relation is a kernel pair) ;
▶ the Split Short Five Lemma holds in Grp.
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Examples
Grp, Rng, AlgK , LieK are all semi-abelian categories.

Grp(Comp), Grp(Prof) (more generally, any Grp(C) with C exact).

The category HopfK,coc of cocommutative Hopf algebras.

Any abelian category !

[ C is abelian ] ⇔ [ C and Cop are semi-abelian] !
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An example of non-abelian torsion theory
(PrimHopfK,GrpHopfK) is a torsion theory in HopfK,coc (for K an algebraically
closed field of characteristic 0).

Here the canonical short exact sequence associated with a Hopf algebra H is

0 // U(LH)
i1 // H ∼= U(LH)⋊ K[GH]

p2
// K[GH]

i2oo // 0,

where U(LH) is the universal enveloping algebra of the Lie algebra LH of primitive
elements of H

LH = {x ∈ H | ∆(x) = 1 ⊗ x + x ⊗ 1},

K[GH] is the group Hopf algebra generated by the grouplike elements

GH = {x ∈ H | ∆(x) = x ⊗ x , ϵ(x) = 1}

(see M. Gran, G. Kadjo, J. Vercruysse (2016)).
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Torsion theories beyond the pointed case...
Any torsion theory (T ,F) in a pointed category C is such that

T ∩ F = {0}.

Indeed, if X ∈ T ∩ F , then the identity 1X factors through 0,

X

��

X

0

??

hence X ∼= 0.
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The idea of a pretorsion theory is to consider any two subcategories T and F and
set

Z = T ∩ F .

The subcategory Z induces an ideal of Z-trivial morphisms.

A morphism f : A → B is Z-trivial if it factors through an object Z ∈ Z :

A f //

##

B

Z ∈ Z

;;

To define a pretorsion theory one needs the definition of short Z-exact sequence.
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Definition
A morphism k : K → X is the Z-kernel of f : X → Y if

1. K k // X f // Y is Z-trivial :

K

""

k // X f // Y

Z ∈ Z

<<

2. for any l : L → X such that f · l is Z-trivial

K k // X f // Y

L
∀l

<<

//

∃!φ

OO

Z ∈ Z

<<

there is a unique φ such that k · φ = l .
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Definition
The sequence K k // X f // Y is short Z-exact if

k = Z-ker(f )
and

f = Z-coker(k).

Remark
When Z = {0} one gets back the notion of short exact sequence.
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Definition
A pair (T ,F) of full (replete) subcategories of a category C is a pretorsion theory if

1. for any T ∈ T and F ∈ F , any morphism from T to F is Z-trivial :

T f //

##

F

Z ∈ Z

;;

2. for any object C ∈ C there is a short Z-exact sequence in C

T (C) // C // F (C),

with T (C) ∈ T and F (C) ∈ F .
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Proposition
Given any pretorsion theory (T ,F) in C, then F is reflective in C

F � �
U
// C,

F
⊥
oo

while T is coreflective in C
T �
� V

⊥
// C.

G
oo



Proof :
To show that F is reflective in C, for any C ∈ C consider the following diagram

T (C)
tC // C

ηC //

∀f !!

F (C)

F1

where the upper line is the canonical short Z-exact sequence of the pretorsion
theory, and f : C → F1 is any morphism with F1 ∈ F .



Proof :
To show that F is reflective in C, for any C ∈ C consider the following diagram

T (C)
tC //

$$

C
ηC //

∀f $$

F (C)

∃!φ
��

Z ∈ Z // F1

where the upper line is the canonical short Z-exact sequence of the pretorsion
theory, f : C → F1 is any morphism with F1 ∈ F .

[f · tC is a Z-trivial morphism] ⇒ [∃!φ such that φ · ηC = f ].



As in the classical case, any two of the subcategories T ,F , and Z determine the
third one :

X ∈ T ⇔ ∀F ∈ F , hom(X ,F ) = TrivZ(X ,F )
and

Y ∈ F ⇔ ∀T ∈ T , hom(T ,Y ) = TrivZ(T ,Y ),

where TrivZ(X ,Y ) denotes the Z-trivial morphisms from X to Y .
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Properties
Let (T ,F) be a pretorsion theory in any category C. Then

• T ,F , and Z are closed in C under retracts, and under Z-extensions :
given a short Z-exact sequence

S1 // X // S2

X belongs to T (to F , or to Z, resp.) whenever both S1 and S2 belong to T
(to F , or to Z, resp.)

Definition
When Z ⊂ F are full subcategories of C we say that F is Z-normal epireflective if

1. the inclusion F �
� U // C has a left adjoint F : C → F ,

2. for any A ∈ C the unit
ηA : A → UF (A)

is a Z-cokernel.
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Proposition [A. Facchini, C. Finocchiaro, M. Gran (2021)]
Let C be a category, Z a full subcategory closed under retracts in C.
Then the following are equivalent for a full subcategory F of C :

1. F is the torsion-free subcategory of a pretorsion theory (T ,F) in C
(with Z = T ∩ F) ;

2. a) F is Z-normal epireflective in C

F � �
U
// C,

F
⊥
oo

b) ∀A ∈ C, the unit ηA : A → UF (A) has a Z-kernel

tA : T (A) → A,

c) ∀A ∈ C, tT (A) : T (T (A)) → T (A) is an isomorphism.
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An example
Recall that a preordered group (G,≤,+) is a group G endowed with a preorder
relation ≤ on G that is “compatible” with the group operation + :

[a ≤ c, and b ≤ d ] ⇒ [a + b ≤ c + d ].

A morphism f : (G,≤,+) → (H,≤,+) in the category PreOrdGrp of preordered
groups is a monotone group homomorphism.

Any preordered group (G,≤,+) has a positive cone PG = {g ∈ G | 0 ≤ g}.
This is a submonoid PG // // G of G stable under conjugation.
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Alternative presentation of PreOrdGrp :

▶ objects : (G,PG) with PG a submonoid of a group G stable under conjugation :

PG��

��
G

▶ morphisms : (G,PG) → (H,PH) is a pair (f , f )

PG��

��

f // PH��

��
G

f
// H

where f : G → H is a group homomorphism and f : PG → PH its restriction.



Alternative presentation of PreOrdGrp :

▶ objects : (G,PG) with PG a submonoid of a group G stable under conjugation :

PG��

��
G

▶ morphisms : (G,PG) → (H,PH) is a pair (f , f )

PG��

��

f // PH��

��
G

f
// H

where f : G → H is a group homomorphism and f : PG → PH its restriction.



Theorem [M.M. Clementino, N. Martins-Ferreira, A. Montoli (2019)]
The category PreOrdGrp is normal.

This means that any morphism (f , f ) factorises as a normal epimorphism
(= a cokernel) followed by a monomorphism

PG
f //

��

��

## ##

PH��

f

��

f (PG)��

��

;;

;;

G

$$ $$
f
// H

f (G)
;;

;;

and these factorisations are pullback stable.
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The category PreOrdGrp contains the full subcategory ParOrdGrp of partially
ordered groups. These are the preordered groups (G,PG) such that PG is a
reduced monoid :

∀x , y ∈ PG, [x + y = 0] ⇒ [x = 0 = y ].

There is also the full subcategory ProtoPreOrdGrp of “protomodular objects” in the
category PreOrdGrp : these are the preordered groups (H,PH) with the property
that PH is a group.

Proposition [M. Gran, A. Michel, 2021]
The pair (ProtoPreOrdGrp,ParOrdGrp) is a pretorsion theory in PreOrdGrp.
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Idea of the proof :
Observe that

Z = ProtoPreOrdGrp ∩ ParOrdGrp = { 0 // // G | G ∈ Grp},

since a reduced monoid that is also a group is trivial. This implies that any
morphism from a protomodular object to a partially ordered group is trivial.

Next, given a preordered group PG // // G , one defines

NG = {n ∈ G | n ∈ PG and −n ∈ PG},

which is a normal subgroup of G.
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The canonical Z-exact sequence associated with (G,PG) is given by

NG��

��

// // PG��

��

ηG // // PG/NG��

��
G G ηG

// // G/NG

where (G,NG) ∈ ProtoPreOrdGrp and (G/NG,PG/NG) ∈ ParOrdGrp.
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The category PreOrd(C) of internal preorders in an exact category C
▶ objects : reflexive and transitive relations

ρ

r2
��

r1
��
A

denoted by (A, ρ) ;

▶ morphisms : f : (A, ρ) → (B, σ) is a pair (f , f ) of morphisms in C

ρ

r2
��

r1
��

f // σ

s2
��

s1
��

A
f
// B

such that s1 · f = f · r1 and s2 · f = f · r2.
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A pretorsion theory in PreOrd(C)
An internal preorder (A, ρ) is a partial order if ρ ∩ ρo = ∆A (anti-symmetry), where
∆A is the discrete relation on A :

A

1A
��

1A
��
A.

We write ParOrd(C) for the category of partial orders in C.

A preorder (A, ρ) is an equivalence relation if ρo = ρ (symmetry).
The category of equivalence relations in C will be denoted by Eq(C).
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The subcategory Eq(C) ∩ ParOrd(C) is the category Z of discrete equivalence
relations in C.

Proposition [A. Facchini, C. Finocchiaro, M. Gran, 2021]
When C is exact, the pair (Eq(C),ParOrd(C)) is a pretorsion theory in PreOrd(C).

Proof :
Given a preorder (A, ρ), we define the equivalence relation ∼ρ = ρ ∩ ρo, and write
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∼ρ

for the corresponding quotient.

The canonical short Z-exact sequence of this pretorsion theory is
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Any morphism

ρ

r2
��

r1
��

f // σ

s2
��

s1
��

A
f
// B

from an equivalence relation (A, ρ) to a partial order (B, σ) is Z-trivial :

f (ρ) = f (ρ ∩ ρo)

≤ f (ρ) ∩ f (ρo)

≤ σ ∩ σo

= ∆B,

hence (f , f ) factors through the discrete relation (B,∆B) ∈ Z.
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The stable category
A. Facchini and C. Finocchiaro introduced the stable category of the category
PreOrd = PreOrd(Set) of preordered sets.

The stable category is a quotient of PreOrd having the property that this quotient
sends

• any trivial preorder to the zero object,
• any Z-trivial morphism to a zero morphism.

With F. Borceux and F. Campanini we have looked at this construction from a
categorical perspective. We proposed a new definition of the stable category of
PreOrd(C), where C is a pretopos.
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A pretopos is an exact category C with finite sums that is also
• extensive : in any commutative diagram

X ′ //
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A
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Y ′oo
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X s1

// X
∐

Y Y ,s2
oo

the top row is a sum if and only if the two squares are pullbacks.

Examples
Set, G-Set, HComp (compact Hausdorff spaces), any topos, etc.



A pretopos is an exact category C with finite sums that is also
• extensive : in any commutative diagram

X ′ //

��

A

��

Y ′oo

��
X s1

// X
∐

Y Y ,s2
oo

the top row is a sum if and only if the two squares are pullbacks.

Examples
Set, G-Set, HComp (compact Hausdorff spaces), any topos, etc.



Complemented subobjects
In a pretopos C a subobject A // α // B of B is complemented if there is another

subobject Ac // α
c
// B with the property that

A ∩ Ac = 0 and A ∪ Ac = B.

The “idea” of the stable category is to identify two morphisms in PreOrd(C) if they
coincide on a (complemented) subobject and are both Z-trivial on its complement.
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To define the stable category, we first build the category PaPreOrd(C) of partial
morphisms in PreOrd(C).

• objects : internal preorders (A, ρ) in C ;
• morphisms : a pair (α, f ) as in
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// (B, σ),

where f : (A′, ρ′) → (B, σ) is a morphism in PreOrd(C) and
(A′, ρ′) //

α // (A, ρ) is a complemented subobject in PreOrd(C).
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• composition : given two composable morphisms, one considers the pullback

(A′′, ρ′′)
f ′

&&

xx
α′

xx
(A′, ρ′)
yy

α

yy
f
&&

(B′, σ′)
xxβ

xx
g
%%

(A, ρ)
(α,f )

// (B, σ)
(β,g)

// (C, τ)

and set
(β,g) ◦ (α, f ) = (αα′,gf ′).



There is a functor
I : PreOrd(C) → PaPreOrd(C)

sending a morphism
f : (A, ρ) → (B, σ)

to the morphism
(A, ρ)

1 f

$$
(A, ρ)

I(f )
// (B, σ).

The stable category Stab(C) of PreOrd(C) is a quotient of PaPreOrd(C).
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Two parallel morphisms (α1, f1) and (α2, f2) in PaPreOrd(C)

and

(A1, ρ1)yy
α1

yy

f1

%%

(A2, ρ2)yy
α2

yy

f2

%%
(A, ρ) // (B, σ) (A, ρ) // (B, σ)

are equivalent for ∼ if there is a congruence diagram between them :

A1
0

c //
α1

0
c

// A1��

α1�� f1 ��
A0 ''

α2
0 ''

77

α1
0

77

//
α0
// A B

A2
0

c //
α2

0
c

// A2

__

α2

__
f2

??



The equivalence relation ∼ is “compatible” with the composition, and is a
congruence on PaPreOrd(C). One has the quotient

PaPreOrd(C) π // PaPreOrd(C)
∼ := Stab(C).

We then get the functor

Σ : PreOrd(C) I // PaPreOrd(C) π // Stab(C).
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∼ := Stab(C).
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Properties

• the stable category Stab(C) is pointed ;

• a morphism f : A → B in PreOrd(C) is Z-trivial iff Σ(f ) = 0 ;

• the functor PreOrd(C) Σ // Stab(C) preserves finite coproducts
and monomorphisms.
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Proposition [F. Borceux, F. Campanini, M.G., 2022]
The functor PreOrd(C) Σ // Stab(C) is a torsion theory functor :

• the pretorsion theory (Eq(C),ParOrd(C)) “becomes” a torsion theory in the
pointed category Stab(C) ;

• the canonical short Z-exact sequence of the pretorsion theory
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Universal property
The functor PreOrd(C) Σ // Stab(C) is universal among all finite coproduct
preserving torsion theory functors G : PreOrd(C) → X, where X is equipped with a
torsion theory :

PreOrd(C) Σ //

∀G %%

Stab(C)

∃!Gzz
X.

The unique G such that G ◦ Σ = G is a torsion theory functor that preserves finite
coproducts.

The stable category Stab(C) provides the “universal torsion theory” associated
with the pretorsion theory (Eq(C),ParOrd(C)).
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The lextensive context
It is interesting to analyse the structural reasons why the construction of the stable
category works well for PreOrd(C).

The crucial properties needed to make this work are those of lextensive
categories : these are the finitely complete extensive categories.

Examples
Set, any pretopos, CRngop, Top, PreOrd, PreOrd(C) (for C a pretopos), Cat.
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Let (T ,F) be a pretorsion theory in a lextensive category C satisfying the following
properties :

• Z = T ∩ F is closed in C under complemented subobjects ;
• Z = T ∩ F is closed in C under binary coproducts.

Example
The pretorsion theory (Eq(C),ParOrd(C)) in PreOrd(C) verifies these properties.

Under these assumptions one can define the category Par(C) of partial
morphisms in C, exactly as we did in the case of the internal preorders.
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The category Par(C)
Let C be a lextensive category. Define :

• objects : same as in C ;
• morphisms : a pair (α, f ) as in

A′
~~

α

~~

f

!!
A

(α,f )
// B,

where f : A′ → B is a morphism in C and A′ // α // A is a complemented
subobject.



The stable category

• There is a functor C I // Par(C) , sending a morphism f : A → B to

A
1 f

!!
A

I(f )
// B.

• Par(C) is pointed : the initial object 0 of C becomes a zero object in Par(C) :

0

��

0~~

~~
0

∃!αX

// X , X
∃!ωX

// 0

• The quotient category Par(C)
∼ = Stab(C) of Par(C) by the equivalence relation

∼ on the morphisms in Par(C) gives the stable category.
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The composite

Σ: C // Par(C) // Par(C)
∼ = Stab(C)

is the universal functor sending the pretorsion theory (T ,F) to a torsion theory :

Universal property
Let (T ,F) be a pretorsion theory in a lextensive category C, with T closed in C
under complemented subobjects. If Z-kernels and Z-cokernels exist, then
the functor Σ: C → Stab(C) is universal among all finite coproduct preserving
torsion theory functors G : C → X, where X is equipped with a torsion theory :

C Σ //

∀G ��

Stab(C)

∃!Gzz
X.
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The example of “symmetric” and “antisymmetric” categories (J. Xarez, 2022)
Let us consider the category Cat of (small) categories and functors.

We write SymCat for the full subcategory of Cat whose objects are
symmetric categories, i.e. those categories having the property :

for any X ,Y , if hom(X ,Y ) ̸= ∅, then hom(Y ,X ) ̸= ∅.

Let AntiSymCat denote the full subcategory of antisymmetric categories :

if hom(X ,Y ) ̸= ∅ and hom(Y ,X ) ̸= ∅, then X = Y .
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Theorem (J. Xarez (2022))
The pair (SymCat,AntiSymCat) is a pretorsion theory in Cat.

In this example of pretorsion theory, the trivial objects in

Z = SymCat ∩ AntiSymCat

are the classes of monoids.
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The example of “groupoids” and “skeletal categories”
Let us consider the category Cat of small categories and functors.

We write Grpd for the full subcategory of Cat whose objects are groupoids.

We write SkelCat for the full subcategory of Cat whose objects are skeletal
categories (= categories where every isomorphism is an automorphism).

In this case
Z = Grpd ∩ SkelCat

are the classes of groups.
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Given a small category C, there is always the subgroupoid Iso(C) ∈ Grpd of its
isomorphisms :

Iso(C) // i // C.

In order to build the skeletal category S associated with C one forms the following
coequalizer in Cat ∐

σ∈Iso(C) 1
d //
c
// C

q // // S,

where 1 is the terminal category, d and c are the functors associating - with any
component indexed by an isomorphism σ - its “domain” and “codomain”,
respectively.
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Theorem (F. Borceux, F. Campanini, M. Gran, W. Tholen, 2023)
The pair (Grpd,SkelCat) is a pretorsion theory in Cat.

The canonical Z-exact sequence of the pretorsion theory associated with a
category C is

Iso(C) // i // C q // // S.

Remark
A key ingredient in the proof comes from a property of coequalizers of morphisms
in Cat with a “discrete” domain : they are faithful and reflect isomorphisms.

Remark
When the small category C is a preordered set, the Z-exact sequence above gives
back the canonical Z-exact sequence for (Eq(Set),ParOrd(Set)).
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