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Internal structures in Mal'tsev categories

Mal'tsev categories

Let G be a group and R � G�G be a re�exive relation on G which
is compatible with the group structure on G , i.e., R is a subgroup of
G � G .

Observation:
R is symmetric: Let px , yq P R . Then

py , xq � px , xqpx�1, y�1qpy , yq P R.

R is transitive: Let px , yq, py , zq P R . Then

px , zq � px , yqpy�1, y�1qpy , zq P R.

Thus, R is an equivalence relation.
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Mal'tsev categories

De�nition

Let C be a �nitely complete category. An internal equivalence
relation on an object X of C is a subobject

R X � X
r�pr1,r2q

such that:

R R R

X X � X R X � X R �X R X � X

R �X R R

R X

r pr1,r2q rDδ

∆X

Dσ

pr2,r1q

Dτ

pr1p1,r2p2q

p2

p1 r1

r2
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Mal'tsev categories

De�nition (Carboni�Lambek�Pedicchio (1990))

A �nitely complete category C is a Mal'tsev category if every
internal re�exive relation in C is an equivalence relation.

Theorem (Carboni�Pedicchio�Pirovano (1992))

For a �nitely complete category C , the following conditions are

equivalent:

1 C is a Mal'tsev category.

2 Every re�exive relation in C is symmetric.

3 Every re�exive relation in C is transitive.

4 Every relation in C is difunctional.

A relation R � X � Y in Set is difunctional if, for all x , z P X and
y , u P Y ,

xRy , zRy , zRu ñ xRu.
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Mal'tsev categories

De�nition

A �nitely complete category C is called regular if:

1 C has coequalizers of kernel pairs.

2 Regular epimorphisms are pullback-stable.

A regular category C is called (Barr-)exact if any internal
equivalence relation is the kernel pair of some morphism.

In a regular category, any morphism factorizes as a regular epimor-
phism followed by a monomorphism.

Eqrf s X Y

I

p1

p2

q

f

i
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Mal'tsev categories

Regular categories allow for a "good" calculus of relations.

P

R S

X Y Z

I

q

p1 p2r1p1 s2p2

r1 r2 s1 s2

pS�Rq1 pS�Rq2

Theorem (Carboni�Lambek�Pedicchio (1990))

For a regular category C , the following conditions are equivalent:

1 C is a Mal'tsev category.

2 For any object X P C and any two equivalence relations R,S
on X , S � R is an equivalence relation.

3 For any object X P C and any two equivalence relations R,S
on X , it holds that S � R � R � S .
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Mal'tsev categories

Theorem (Mal'tsev (1954))

For a variety V of universal algebras, the following conditions are

equivalent:

1 V is a Mal'tsev category.

2 Its algebraic theory contains a ternary term ppx , y , zq such that

ppx , x , yq � y � ppy , x , xq.

Examples (Mal'tsev varieties)

Grp: ppx , y , zq :� xy�1z

Heyt: ppx , y , zq :� ppx ñ yq ñ zq ^ ppz ñ yq ñ xq,
qpx , y , xq :� py ñ px ^ zqq ^ px _ zq



Internal structures in Mal'tsev categories

Mal'tsev categories

Theorem (Mal'tsev (1954))

For a variety V of universal algebras, the following conditions are

equivalent:

1 V is a Mal'tsev category.

2 Its algebraic theory contains a ternary term ppx , y , zq such that

ppx , x , yq � y � ppy , x , xq.

Examples (Mal'tsev varieties)

Grp: ppx , y , zq :� xy�1z

Heyt: ppx , y , zq :� ppx ñ yq ñ zq ^ ppz ñ yq ñ xq,
qpx , y , xq :� py ñ px ^ zqq ^ px _ zq



Internal structures in Mal'tsev categories

Mal'tsev categories

Theorem (Mal'tsev (1954))

For a variety V of universal algebras, the following conditions are

equivalent:

1 V is a Mal'tsev category.

2 Its algebraic theory contains a ternary term ppx , y , zq such that

ppx , x , yq � y � ppy , x , xq.

Examples (Mal'tsev varieties)

Grp: ppx , y , zq :� xy�1z

Heyt: ppx , y , zq :� ppx ñ yq ñ zq ^ ppz ñ yq ñ xq,
qpx , y , xq :� py ñ px ^ zqq ^ px _ zq



Internal structures in Mal'tsev categories

Mal'tsev categories

Proposition

Let C be a Mal'tsev category and X be an object of C . Then C {X
and X {C are Mal'tsev categories.

Proposition

Let B be a small category and C be a Mal'tsev category. Then

C B is a Mal'tsev category.

Proposition

Let C and D be �nitely complete categories and F : C Ñ D be a

conservative functor which preserves pullbacks. If D is a Mal'tsev

category, so is C .
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Examples (Mal'tsev categories)

Mal'tsev varieties internal to a �nitely complete category:

GrppTopq

Abelian and semi-abelian categories

The dual of an elementary topos: Setop
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De�nition

Let C be a category with pullbacks. An internal groupoid C in C
is given by a diagram

C2 C1 C0
m

c

d

i

e

in C such that:

C2 C1 C3 C1 C3 C2

C1 C0 C2 C0 C1 C0

p2

p1 c

π2

π1 c

π1

2

π1

1
cp1

d dp2 d

(RG) de � 1C0
� ce

(MG) mxec , 1C1
y � 1C1

� mx1C1
, edy

(C) dm � dp2, cm � cp1, mxmπ1, π2y � mxπ11,mπ12y
(G) di � c , ci � d , mxi , 1C1

y � ed , mx1C1
, iy � ec
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Internal structures in Mal'tsev categories

De�nition

Let C be a category with pullbacks, and C and D be two internal
groupoids in C . An internal functor F : CÑ D is given by
morphisms f0 : C0 Ñ D0 and f1 : C1 Ñ D1 such that

C2 C1 C0

D2 D1 D0

m

f1

c

d

i

f0

e

m c

d

i

e

reasonably commutes.

We denote by GrpdpC q (CatpC q, MGpC q, RGpC q) the category
of internal groupoids (internal categories, multiplicative graphs, re-
�exive graphs) in C and internal functors between them.
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Internal structures in Mal'tsev categories

De�nition

A crossed module of groups is given by a group homomorphism
d : X Ñ B together with a group action � : B � X Ñ X such that
for all x , y P X and b P B :
(Equivariance) dpb � xq � bdpxqb�1

(Pei�er identity) dpxq � y � xyx�1

A morphism of crossed modules of groups from pX ,Bq to
pX 1,B 1q is given by two group homomorphism f1 : X Ñ X 1 and
f0 : B Ñ B 1 such that for all x P X and b P B :

f0dpxq � d 1f1pxq

f1pb � xq � f0pbq � f1pxq

We denote by XModpGrpq the category of crossed modules of
groups and their corresponding morphisms.
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Theorem (Brown�Spencer (1976))

The categories GrpdpGrpq of internal groupoids in Grp and

XModpGrpq of crossed modules of groups are equivalent.
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Theorem (Brown�Spencer (1976))

The categories GrpdpGrpq of internal groupoids in Grp and

XModpGrpq of crossed modules of groups are equivalent.

Let

C1 C0c

d
e

be the underlying re�exive graph of an internal groupoid in Grp.
Then

X :� Kerpdq C1 C0 �: Bc

and b � x :� epbqxepbq�1 for all x P Kerpdq and b P C0 de�ne a
crossed module of groups.
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Internal structures in Mal'tsev categories

Theorem (Brown�Spencer (1976))

The categories GrpdpGrpq of internal groupoids in Grp and

XModpGrpq of crossed modules of groups are equivalent.

LetpX ,Bq be a crossed module of groups. Then

X � B B,
p1

p2

i2

where p2px , bq :� b, i2pbq :� p1, bq and p1px , bq :� dpxqb for all
x P X and b P B , is the underlying re�exive graph of an internal
groupoid in Grp.
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Internal structures in Mal'tsev categories

Theorem (Brown�Spencer (1976))

The categories GrpdpGrpq of internal groupoids in Grp and

XModpGrpq of crossed modules of groups are equivalent.

Theorem (G. Janelidze (2003))

Let C be a semi-abelian category. Then the categories GrpdpC q of
internal groupoids in C and XModpC q of internal crossed modules

in C are equivalent.
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Proposition

Any re�exive graph in Grp admits at most one multiplicative graph

structure.

Let

C1 �C0 C1 C1 C0
m

c

d
e

be a multiplicative graph in Grp, where

C1 �C0
C1 � tpg , f q P C1 � C1 | dpgq � cpf qu.

Then

mpg , f q � mpgpedpgqq�1edpgq, 1f q

� mpgpedpgqq�1, 1qmpedpgq, f q

� mpgpedpgqq�1, edpgpedpgqq�1qqmpecpf q, f q

� gped pgqq�1f .



Internal structures in Mal'tsev categories

Internal structures in Mal'tsev categories

Proposition

Any re�exive graph in Grp admits at most one multiplicative graph

structure.

Let

C1 �C0 C1 C1 C0
m

c

d
e

be a multiplicative graph in Grp, where

C1 �C0
C1 � tpg , f q P C1 � C1 | dpgq � cpf qu.

Then

mpg , f q � mpgpedpgqq�1edpgq, 1f q

� mpgpedpgqq�1, 1qmpedpgq, f q

� mpgpedpgqq�1, edpgpedpgqq�1qqmpecpf q, f q

� gped pgqq�1f .



Internal structures in Mal'tsev categories

Internal structures in Mal'tsev categories

Proposition

Any re�exive graph in Grp admits at most one multiplicative graph

structure.

Let

C1 �C0 C1 C1 C0
m

c

d
e

be a multiplicative graph in Grp, where

C1 �C0
C1 � tpg , f q P C1 � C1 | dpgq � cpf qu.

Then

mpg , f q � mpgpedpgqq�1edpgq, 1f q

� mpgpedpgqq�1, 1qmpedpgq, f q

� mpgpedpgqq�1, edpgpedpgqq�1qqmpecpf q, f q

� gped pgqq�1f .



Internal structures in Mal'tsev categories

Internal structures in Mal'tsev categories

Proposition

Any re�exive graph in Grp admits at most one multiplicative graph

structure.

Let

C1 �C0 C1 C1 C0
m

c

d
e

be a multiplicative graph in Grp, where

C1 �C0
C1 � tpg , f q P C1 � C1 | dpgq � cpf qu.

Then

mpg , f q � mpgpedpgqq�1edpgq, 1f q

� mpgpedpgqq�1, 1qmpedpgq, f q

� mpgpedpgqq�1, edpgpedpgqq�1qqmpecpf q, f q

� gped pgqq�1f .



Internal structures in Mal'tsev categories

Internal structures in Mal'tsev categories

Proposition

Any re�exive graph in Grp admits at most one multiplicative graph

structure.

Let

C1 �C0 C1 C1 C0
m

c

d
e

be a multiplicative graph in Grp, where

C1 �C0
C1 � tpg , f q P C1 � C1 | dpgq � cpf qu.

Then

mpg , f q � mpgpedpgqq�1edpgq, 1f q

� mpgpedpgqq�1, 1qmpedpgq, f q

� mpgpedpgqq�1, edpgpedpgqq�1qqmpecpf q, f q

� gped pgqq�1f .



Internal structures in Mal'tsev categories

Internal structures in Mal'tsev categories

Proposition

Any re�exive graph in Grp admits at most one multiplicative graph

structure.

Let

C1 �C0 C1 C1 C0
m

c

d
e

be a multiplicative graph in Grp, where

C1 �C0
C1 � tpg , f q P C1 � C1 | dpgq � cpf qu.

Then

mpg , f q � mpgpedpgqq�1edpgq, 1f q

� mpgpedpgqq�1, 1qmpedpgq, f q

� mpgpedpgqq�1, edpgpedpgqq�1qqmpecpf q, f q

� gped pgqq�1f .



Internal structures in Mal'tsev categories

Internal structures in Mal'tsev categories

Proposition

For a re�exive graph C,

C1 C0,c

d
e

in Grp, the following conditions are equivalent:

1 rKerpdq,Kerpcqs � t1u

2 C admits a (unique) multiplicative graph structure.

3 C admits a (unique) category structure.

4 C admits a (unique) groupoid structure.
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p1q ñ p2q: Let us suppose that rKerpdq,Kerpcqs � t1u.

We de�ne m : C1 �C0
C1 Ñ C1 by mpg , f q :� gpedpgqq�1f . Then

mppg 1, f 1qpg , f qq � mpg 1g , f 1f q

� pg 1gqpedpg 1gqq�1pf 1f q

� g 1gpedpgqq�1pedpg 1qq�1f 1f

� g 1gpedpgqq�1pecpf 1qq�1f 1f

� g 1pecpf 1qq�1f 1gpedpgqq�1f

� g 1pedpg 1qq�1f 1gpedpgqq�1f

� mpg 1, f 1qmpg , f q.

Furthermore,

mpecpf q, f q � ecpf qpedecpf qq�1f � f ,

mpf , ed pf qq � f pedpf qq�1edpf q � f .
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p2q ñ p1q: Let us suppose that C admits a multiplicative graph
structure.

Let f P Kerpdq and g P Kerpcq. Then

fg � mpf , 1qmp1, gq � mpf , gq � mp1, gqmpf , 1q � gf .
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To (4): We de�ne i : C1 Ñ C1 by

ipf q � edpf qf �1ecpf q.
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Theorem (Bourn (1996))

For a �nitely complete category C , the following conditions are

equivalent:

1 C is a Mal'tsev category.

2 PtX pC q is a Mal'tsev category for any object X of C .

3 Given a pullback of split epimorphisms

X �Z Y Y

X Z

p2

p1

e2
ge1

f

s

r

in C , the pullback injections e1, e2 are jointly extremally

epimorphic.
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Proposition

Any re�exive graph in a Mal'tsev category C admits at most one

multiplicative graph structure.

Let C be a multiplicative graph in C . We consider

C1

C1 �C0 C1 C1

C1 C0.

m
p2

p1

1C1

e2

c
1C1 e1

d

e

e

Since e1 � x1C1
, edy, e2 � xec , 1C1

y are jointly (strongly) epimor-
phic, m is uniquely determined by the equations

mxec , 1C1
y � 1C1

� mx1C1
, edy.
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De�nition (Bourn�Gran (2002))

Let R,S be two equivalence relations on an object X in a �nitely
complete category C . We consider the pullback

R �X S S

R X .

p2

p1 s1

r2

A connector between R and S is a map p : R �X S Ñ X such
that

1 xSppx , y , zq and ppx , y , zqRz ,

2 ppx , x , yq � y � ppy , x , xq,

3 ppx , y , ppy , u, vqq � ppx , u, vq and
ppppx , y , uq, u, vq � ppx , y , vq.
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Proposition

Let C,

C1 C0,c

d
e

be a re�exive graph in a �nitely complete category C . The

connectors between Eqrds and Eqrcs are in one-to-one

correspondence with the internal groupoid structures on C.

Proposition (Bourn�Gran (2002))

Let C be a Mal'tsev category and R,S two equivalence relations on

an object X of C . Then there exists at most one map

p : R �X S Ñ X such that ppx , x , yq � y and ppx , y , yq � x and

this map is a connector.

In this case, one says that R and S centralize each other.
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an object X of C . Then there exists at most one map

p : R �X S Ñ X such that ppx , x , yq � y and ppx , y , yq � x and

this map is a connector.

In this case, one says that R and S centralize each other.
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Proposition

For a re�exive graph C,

C1 C0,c

d
e

in a Mal'tsev category C , the following conditions are equivalent:

1 Eqrds and Eqrcs centralize each other.

2 C admits a (unique) multiplicative graph structure.

3 C admits a (unique) category structure.

4 C admits a (unique) groupoid structure.
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Internal structures in Mal'tsev categories

Given two subgroups H, I of a group G , we can abstract the condition
rH, I s � t1u to the pointed Mal'tsev setting.

De�nition

Let C be a pointed Mal'tsev category and f : X Ñ Y and
g : X 1 Ñ Y be morphisms in C . We say that f and g commute if
there exists a (necessarily unique) morphism φ : X � X 1 Ñ Y such
that

X X � X 1 X 1

Y

p1X ,0q

f
φ

p0,1X 1 q

g

commutes.

Then rH, I s � t1u if and only if the inclusions h : H Ñ G and
i : I Ñ G commute.
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Internal structures in Mal'tsev categories

Given an equivalence relation R on an object X in a pointed Mal'tsev
category C , we can associate to it its normalization

NR :� Kerpr1q R X .

nR

kerpr1q r2

Given two equivalence relations R,S on X in C centralizing each
other, nR and nS commute.

The converse is not necessarily true.
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Proposition

Let C be a Mal'tsev category. Then GrpdpC q is a full subcategory

of RGpC q.

C2 C1 C0

D2 D1 D0

m

f1

c

d

i

f0

e

m c

d

i

e



Internal structures in Mal'tsev categories

Goursat and weakly Mal'tsev categories

De�nition

Let C be a regular category. Then C is called n-permutable if, for
any two equivalence relations R, S on an object X in C , it holds
that

R � S � R � S � � � �loooooooooomoooooooooon

n factors

� S � R � S � R � � � �loooooooooomoooooooooon

n factors

.

A 2-permutable category is exactly a regular Mal'tsev category.

A 3-permutable category is also called a Goursat category.
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Goursat and weakly Mal'tsev categories

Theorem (Bourn (1996))

For a �nitely complete category C , the following conditions are

equivalent:

1 C is a Mal'tsev category.

2 GrpdpC q is closed in RGpC q under subobjects.

C1 �C0 C1 C1 C0

G1 �G0 G1 G1 G0

m
d

c

f1

e

f0

m

d

c

e

Proposition (Gran�Rodelo�Tcho�o Nguefeu (2017))

For a regular category C , the following conditions are equivalent:

1 C is a Goursat category.

2 GrpdpC q is closed in RGpC q under quotients.
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Goursat and weakly Mal'tsev categories

De�nition (Martins-Ferreira (2008))

A category C is called a weakly Mal'tsev category if it has
pullbacks of split epimorphisms along split epimorphisms and the
pullback injections e1, e2 of such a pullback

X �Z Y Y

X Z

p2

p1

e2
ge1

f

s

r

are jointly epimorphic.

Proposition

Any re�exive graph in a weakly Mal'tsev category C admits at

most one multiplicative graph structure.
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most one multiplicative graph structure.
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Goursat and weakly Mal'tsev categories

Let C be a �nitely complete category. A strong relation between
objects X and Y of C is given by a strong monomorphism
r : R ↣ X � Y .

A B

R X � Y

e

a b
D!d

r

Theorem (Z. Janelidze�Martins-Ferreira (2012))

For a �nitely complete category C , the following conditions are

equivalent:

1 C is a weakly Mal'tsev category.

2 Any re�exive strong relation in C is an equivalence relation.

3 Any re�exive strong relation in C is symmetric.

4 Any re�exive strong relation in C is transitive.

5 Any strong relation in C is difunctional.
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Theorem (E.�Jacqmin�Martins-Ferreira, 2023)

A variety V of universal algebras is a weakly Mal'tsev category if
and only if there exist integers k,m,N ¥ 0, binary terms
f1, g1, . . . , fk , gk , ternary terms p1, . . . , pm, p2pk � 2m � 1qq-ary
terms s1, . . . , sN , p2pk �m � 2qq-ary terms σ1, . . . , σN�1 and, for

all i P t1, . . . ,N � 1u, pk �m � 1q-ary terms η
piq
1 , η

piq
2 , ϵ

piq
1 , ϵ

piq
2 such

that, for all i P t1, . . . , ku, j P t1, . . . ,N � 1u and α P t1, 2u,

fi px , xq � gi px , xq (1)

ηpjqα py , f1px , yq, . . . , fkpx , yq, p1px , x , yq, . . . , pmpx , x , yqq

�ϵpjqα py , f1px , yq, . . . , fkpx , yq, p1px , x , yq, . . . , pmpx , x , yqq, (2a)

ηpjqα px , g1px , yq, . . . , gkpx , yq, p1px , y , yq, . . . , pmpx , y , yqq

�ϵpjqα px , g1px , yq, . . . , gkpx , yq, p1px , y , yq, . . . , pmpx , y , yqq, (2b)
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Theorem

for all i P t1, . . . ,Nu,

σi pu, v⃗ , w⃗ , u1, v⃗ 1, w⃗ 1, ϵ
piq
1
pu, v⃗ , w⃗q, ϵ

piq
2
pu1, v⃗ 1, w⃗ 1qq

�si pu, v⃗ , w⃗ , w⃗ , u1, v⃗ 1, w⃗ 1, w⃗ 1q, (3a)

si pu, v⃗ , w⃗ , w⃗ 1, u1, v⃗ 1, w⃗ 1, w⃗q

�σi�1pu, v⃗ , w⃗ , u1, v⃗ 1, w⃗ 1, η
pi�1q
1

pu, v⃗ , w⃗q, η
pi�1q
2

pu1, v⃗ 1, w⃗ 1qq, (3b)

u � σ1pu, v⃗ , w⃗ , u1, v⃗ 1, w⃗ 1, η
p1q
1

pu, v⃗ , w⃗q, η
p1q
2

pu1, v⃗ 1, w⃗ 1qq, (4a)

u1 � σN�1pu, v⃗ , w⃗ , u1, v⃗ 1, w⃗ 1, ϵ
pN�1q
1

pu, v⃗ , w⃗q, ϵ
pN�1q
2

pu1, v⃗ 1, w⃗ 1qq, (4b)

where v⃗ � pv1, . . . , vkq, w⃗ � pw1, . . . ,wmq and analogosuly for v⃗ 1

and w⃗ 1.
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Goursat and weakly Mal'tsev categories

Examples (Martins-Ferreira (2012, 2015) )

Mal'tsev categories

Distributive lattices

Commutative monoids with cancellation

Topop

Proposition (Martins-Ferreira, 2008)

Let C be a weakly Mal'tsev category. Then any multiplicative

graph in C is an internal category.

Not any internal category in a weakly Mal'tsev category yields an
internal groupoid:

C0 :� pN,�q,
C1 :� tpa, bq | a, b P N with a ¤ bu

yield a category in CancCommMon that doesn't allow for inverses.
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Goursat and weakly Mal'tsev categories

Proposition (Martins-Ferreira�Van der Linden (2014))

For a weakly Mal'tsev category C , the following conditions are

equivalent:

1 Any internal category is an internal groupoid.

2 Any preorder is an equivalence relation.

Proposition (Chajda�Rachunek (1983))

For a variety V, the following conditions are equivalent:

1 Any preorder is an equivalence relation.

2 V is n-permutable for some n.

Proposition (Martins-Ferreira�Rodelo�Van der Linden (2014))

Let C be an n-permutable category. Then any internal category is

an internal groupoid.

Note: weakly Mal'tsev + Goursat � Mal'tsev
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Internal 2-groupoids

Theorem (Gran (1999))

Let C be an exact Mal'tsev category. Then GrpdpC q is an exact

Mal'tsev category.

In this case, an internal functor

C2 C1 C0

D2 D1 D0

m

f1

c

d

i

f0

e

m c

d

i

e

in GrpdpCq is a regular epimorphism if and only f0, f1 are regular
epimorphisms in C .
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Internal 2-groupoids

Let C be an exact Mal'tsev category. We have an adjunction

GrpdpC q GrpdpC q,

D

π0

%

where:

DpX q � pX ùù X q

π0pC1

d
Ñ
c
C0q � Coeqpd , cq

Discrete groupoids are closed under subobjects and quotients in
groupoids.

X C1

X C0

e1

1X 1X d c

e0

1X e
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Internal 2-groupoids

Let C be an exact category and X be a replete full re�ective sub-
category of C .

C X
I

H

%

We assume that IH � 1X .

De�nition

X is called a Birkho� subcategory of C if it is closed under
subobjects and quotients in C .

In this case, X is exact itself and a morphism in X is a monomor-
phism (regular epimorphism) if and only if it is a monomorphism
(regular epimorphism) in C .

Remark

The Birkho� subcategories of a variety V of universal algebras are

exactly the subvarieties of V.
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Internal 2-groupoids

De�nition (Janelidze�Kelly (1994))

Let X be a Birkho� subcategory of an exact Mal'tsev category C
and f : AÑ B be a regular epimorphism in C .

1 We call f a trivial extension if the naturality square

A HIA

B HIB

f

ηA

HIpf q

ηB

is a pullback.

2 We call f a central extension if p1 in

A�B A A

A B

p1

p2

f

f

is a trivial extension.
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Internal 2-groupoids

Example

A surjective group homomorphism f : AÑ B is central with

respect to the subcategory Ab of abelian groups of the category

Grp of groups if and only if Kerpf q � Z pAq.

Example (Gran (2001))

An exact Mal'tsev category C yields a Birkho� subcategory of
GrpdpC q and a regular epimorphism pf0, f1q : CÑ D in GrpdpC q
is central with respect to C if and only if it is a discrete �bration.

C1 D1

C0 D0

c

f1

c

f0
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Internal 2-groupoids

Let C be an exact Mal'tsev category. Then the category

Grp2pC q :� GrpdpGrpdpC qq

of internal double groupoids in C is exact Mal'tsev as well.

C 1
1 C 1

0

C 0
1 C 0

0

d1 c1

d1

c1

c0

e1

d0e1

c0

d0

e0

e0

We consider, in Grpd2pC q, the full replete subcategory

2�GrpdpC q

of internal 2-groupoids in C , which contains all the double groupoids
with C 0

1 � C 0
0 and d0 � 1C0

0
� c0.
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Internal 2-groupoids

Proposition (E.�Jacqmin�Gran (2023))

Let C be an exact Mal'tsev category with �nite colimits. Then

2�GrpdpC q is a Birkho� subcategory of Grpd2pC q.

C 1
1 C 1

0

C 0
1 C 0

0

C 1
1 �C0

1

Coeqpd0, c0q C 1
0 �C0

0

Coeqpd0, c0q

Coeqpd0, c0q Coeqpd0, c0q

d1 c1
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c1

c0

e1

d0

coeqpd0,c0qd0

e1

c0

d0

coeqpd0,c0q

e0

e0

δ1 γ1

δ1

γ1

γ0

ϵ1

δ0ϵ1 ϵ0
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Internal 2-groupoids

Proposition

Let C be a regular Mal'tsev category with coequalizers. Then

GprdpC q is a Birkho� subcategory of RGpC q.

Corollary

Let V be a Mal'tsev variety of universal algebras. Then GrpdpVq,
2�GrpdpVq, Grpd2pVq are varieties.
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