Measuring how much a model is not positively closed

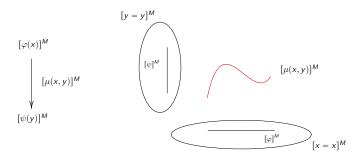
Kristóf Kanalas

Masaryk University

Category Theory Octoberfest 2023

Categories in logic

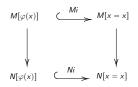
L is a signature, M is an L-structure
→ Def(M) is the category of definable sets and definable functions.



ullet Idea: this is the functorial image of some "category of formulas" ${\cal C}.$

Categories in logic

- ullet Idea: this is the functorial image of some "category of formulas" ${\cal C}.$
- Two observations:
 - Def(M) is closed under some limits/colimits (fin. products, fin. unions,...), so these should exist in C, and M should preserve them.
 - A natural transformation is a map preserving the formulas in $\mathcal{C}.$



 $\mathcal{C}=$ pos. ex. \rightsquigarrow nat. tr. = homomorphisms $\mathcal{C}=L_{\omega\omega} \rightsquigarrow$ nat. tr. = elementary maps.

Definition (coherent theory)

positive existential: atomic, \top , \wedge , \bot , \vee , \exists

 $L^{\mathbf{g}}_{\omega\omega}$ (coherent): $\forall \vec{x}(\varphi(\vec{x}) \to \psi(\vec{x}))$, where φ, ψ are pos. ex. $\varphi(\vec{x}) \Rightarrow \psi(\vec{y})$

Definition (coherent category)

 ${\cal C}$ is coherent if it has finite limits, pb.-stable eff. epi-mono factorization, pb.-stable finite unions

 $F:\mathcal{C}\to\mathcal{D}$ is coherent if it preserves fin. limits, effective epis, fin. unions.

coherent theories = coherent categories

interpretations/ models = coherent functors

homomorphisms = natural transformations

Theorem (⊆; [Makkai-Reyes,1977])

 $T \subseteq L^g_{\omega\omega} \leadsto \mathcal{C}_T$ ("the category of positive existential formulas") is a coherent category, s.t. $Mod(T) \simeq \mathbf{Coh}(\mathcal{C}_T, \mathbf{Set})$.

3/15

The syntactic category C_T

Objects: $[\varphi(\vec{x})]$: pos. ex. formulas

up to (valid) renaming of free variables.

Arrows: $[\mu(\vec{x}, \vec{y})] : [\varphi(\vec{x})] \to [\psi(\vec{y})]$: T-provably functional

pos. ex. formulas, up to T-provable equivalence

$$\vec{x} \cap \vec{y} = \emptyset$$

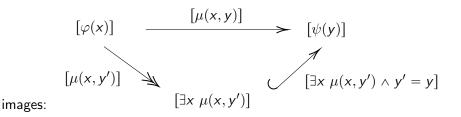
$$T \vdash \mu(\vec{x}, \vec{y}) \Rightarrow \varphi(\vec{x}) \land \psi(\vec{y})$$

$$T \vdash \varphi(\vec{x}) \Rightarrow \exists \vec{y} \mu(\vec{x}, \vec{y})$$

$$T \vdash \exists \vec{x} (\mu(\vec{x}, \vec{y}) \land \mu(\vec{x}, \vec{y'})) \Rightarrow \vec{y} \approx \vec{y'}$$

identity: $[\varphi(\vec{x}) \wedge \vec{x} \approx \vec{x'}] : [\varphi(\vec{x})] \rightarrow [\varphi(\vec{x'})]$

composition: $[\exists \vec{y}(\mu(\vec{x}, \vec{y}) \land \nu(\vec{y}, \vec{z}))] : [\varphi(\vec{x})] \xrightarrow{[\mu]} [\psi(\vec{y})] \xrightarrow{[\nu]} [\chi(\vec{z})]$



$$Sub_{\mathcal{C}_{\mathcal{T}}}([\psi(y)]) = \{\chi(y) : \mathcal{T} \vdash \chi(y) \Rightarrow \psi(y)\}_{\sim \mathcal{T}}$$

 $\mathcal{C}_{\mathcal{T}}$ is the "gluing of the pos. ex. Lindenbaum-Tarski algebras".

Theorem (⊇; [Makkai-Reyes,1977])

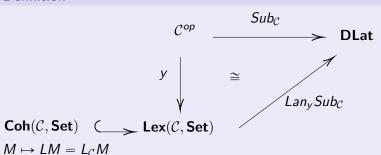
Every small coherent category is the syntactic category of some (many-sorted) coherent theory.

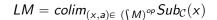
work in categorical language, with logical intuition

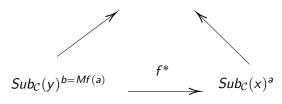
The lattice LM

Definition

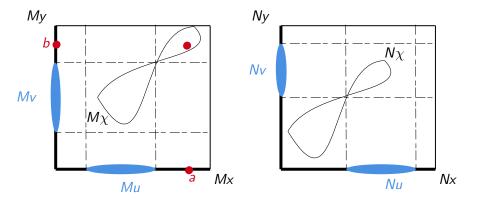
Definition







- Categorically: LM is the set $\{u \hookrightarrow x^a\} / \sim$ where $u \hookrightarrow x^a \sim v \hookrightarrow y^b$ if there's $\chi \hookrightarrow x \times y$ s.t. $(a,b) \in M\chi$ and $\chi \cap u \times y = \chi \cap x \times v$.
- Logically: LM is the set of closed pos. ex. formulas with parameters from M up to: $\varphi(\vec{a}) \sim \psi(\vec{b})$ if there's pos. ex. $\chi(\vec{x}, \vec{y})$, s.t. $M \models \chi(\vec{a}, \vec{b})$ and $T \vdash \chi \land \varphi \Leftrightarrow \chi \land \psi$



$$a \in Mu, b \in Mv \longrightarrow u \hookrightarrow x^a \sim v \hookrightarrow y^b \ (\chi = u \times y \cap x \times v)$$

 $a \in Mu, b \notin Mv \longrightarrow u \hookrightarrow x^a \not\sim v \hookrightarrow y^b$
 $a \notin Mu, b \in Mv \longrightarrow u \hookrightarrow x^a \not\sim v \hookrightarrow y^b$
 $a \notin Mu, b \notin Mv \longrightarrow who knows?$

Definition ([Barr, 1986])

 $\mathcal{C}, F, G : \mathcal{C} \to \mathbf{Set}$ lex. A natural transformation $\eta : F \Rightarrow G$ is elementary if for each mono $u \hookrightarrow x$ in C, the naturality square is a pullback.

Theorem (e.g. [Poizat-Yeshkeyev, 2018])

 $\mathcal{C}.\ M:\mathcal{C}\to \mathbf{Set}\ coherent.\ TFAE:$

- **1** For any $N: \mathcal{C} \to \mathbf{Set}$ coherent, every nat. tr. $\eta: M \Rightarrow N$ is elem.
- 2 For any $w \hookrightarrow z$ mono and $c \in Mz \setminus Mw$ there's $\chi \hookrightarrow z$ with $c \in M\chi$ and $w \cap \chi = \emptyset$.

In this case M is said to be positively closed.

Proposition

M is positively closed iff LM = 2

$$\Rightarrow$$
: $(a,b) \in M(x \times y) \setminus M(u \times y \cup x \times v) \rightsquigarrow$ there's χ .

$$\Leftarrow: c \in Mz \backslash Mw \rightsquigarrow w \hookrightarrow z^c \not\sim 1 \hookrightarrow 1^* \rightsquigarrow w \hookrightarrow z^c \sim \varnothing \hookrightarrow 1^* \rightsquigarrow there's \chi.$$

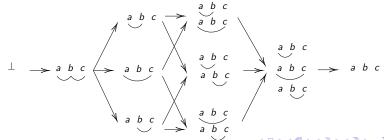
Kristóf Kanalas (MUNI)

◆□▶ ◆圖▶ ◆圖▶ ◆團▶ □

Examples

- $\mathcal{C} = K$ is a dist. lattice, $M = p : K \to 2$ is a prime filter: $L_K p = {}^K / {}_{\sim_p}$ where $u \sim_p v$ iff there's $w \in p$ with $u \cap w = v \cap w$. (Remark: Lp = 2 iff p is maximal)
- $\Sigma = \{\{X\}; \varnothing; \varnothing; \varnothing\}$ $T = \{\exists x : x = x\} \subseteq \Sigma_{\omega\omega}$ models (M) are non-empty sets, homomorphisms are functions. LM: finite lists of finitely supported partitions of M, where in each list we only keep the finest partitions.

When $M = \{a, b, c\}$:



Prime filteres on LM

$$Lan_{y}Sub_{\mathcal{C}} \dashv \mathbf{DLat}(Sub_{\mathcal{C}}(-), \bullet)$$
, i.e. for $F : \mathcal{C} \to \mathbf{Set}$ lex and K dist. lat.:

$$\begin{array}{lll} \mathbf{DLat}(LF,K) & \cong & \mathit{Nat}(F,\mathbf{DLat}(\mathit{Sub}_{\mathcal{C}}(-),K)) \\ \mathit{Spec}(LF) & \cong & \mathit{Nat}(F,\mathcal{S}_{\mathcal{C}}) \end{array}$$

explicitly:

$$p \subseteq LF \qquad \leadsto \qquad \alpha_{p,x} : F(x) \ni a \mapsto \{u \hookrightarrow x : [u \hookrightarrow x^a] \in p\} \in S_{\mathcal{C}}(x)$$

$$\alpha : F \Rightarrow S_{\mathcal{C}} \qquad \leadsto \qquad p_{\alpha} = \{[u \hookrightarrow x^a] : u \in \alpha_x(a)\}$$

Example

 $M: \mathcal{C} \to \mathbf{Set}$ coherent.

 $tp_M: M \Rightarrow S_C$ takes an element to its type: $tp_{M,x}(a) = \{u \hookrightarrow x : a \in Mu\}$

Corollary

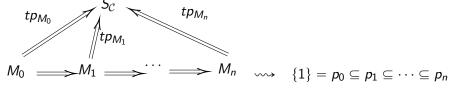
(M coherent.) $\{1\} \subseteq LM$ is a prime filter.

Corollary

(M coherent.) M is positively closed iff tp_M is the unique $M \Rightarrow S_C$ nat. tr.

Krull-dimension

Idea:



If all $M_i \Rightarrow M_{i+1}$ maps are prop. surjections (on underlying sets, not pointwise) \rightsquigarrow no triangles commute (no maps are elementary) \rightsquigarrow $M_0 \Rightarrow M_i \Rightarrow S_{\mathcal{C}}$ are different \rightsquigarrow $p_0 \subsetneq p_1 \subsetneq \cdots \subsetneq p_n$.

Proposition

If there's an n-step chain of proper surjections out of M, then $dim(LM) \geqslant n$.

Remark

If for each $x \in C$: $dim(Sub_C(x)) \le n$ then $dim(LM) \le n$.

Functoriality

- $Lan_ySub_C: Lex(C, Set) \rightarrow DLat$ preserves all
 - colimits (it's a left adjoint),
 - strong monos (can write them as a filtered colimit of strong monos between representables, those are coming from effective epis in C, pullback along them is injective),
 - if C has disjoint unions: finite products (finite products form a sound doctrine in the sense of [Adámek-Borceux-Lack-Rosický,2002]).

Boolean-valued models

Theorem ([Lurie,2018])

(\mathcal{C} has disjoint coproducts.) $F:\mathcal{C}\to \mathbf{Set}$ regular.

It can be factored as $C \xrightarrow{M_F} Sh(F(2)) \xrightarrow{\Gamma} \mathbf{Set}$, where M_F is coherent, F(2)

is a Boolean-alg. with the coherent top., Γ is global sections.

Conversely, if $M : \mathcal{C} \to Sh(B)$ is coherent then ΓM is regular. There's an equivalence: $\mathbf{Reg}(\mathcal{C}, \mathbf{Set}) \simeq \mathcal{C} \downarrow Sh(\mathbf{BAlg})$.

Theorem

C has disjoint coproducts, $F:C \to \mathbf{Set}$ regular.

 $B \subseteq LF$ is the Boolean-algebra of complemented subobjects.

- $B \cong F(2)$
- \downarrow : $LF \rightarrow (Id(B), \subseteq)$ (taking x to $\{b : b \le x\}$) is a homomorphism. So there's a "retraction": \downarrow : $B \hookrightarrow LF \xrightarrow{\downarrow} Id(B)$

References

[Makkai-Reyes,1977]: First-order categorical logic

[Barr,1986]: Representation of categories

[Adámek-Borceux-Lack-Rosický,2002]: A classification of accessible categories

[Poizat-Yeshkeyev,2018]: Positive Jonsson Theories

[Lurie,2018]: Lecture notes in categorical logic

(https://www.math.ias.edu/~lurie/278x.html)