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Intro and Motivation

To get started, let’s recall what an (m + 1)-category 1 is

Definition
A category C is an (m + 1)-category if HomC(x , y) is m-truncated
for x , y ∈ Ob(C)

For m ≥ −1, a space X is m-truncated if πi (X , x) = 0 for i > m
(for any basepoint x ∈ X ). m = −2, X is −2-truncated if it is
contractible.

Example
An ordinary category is a 1-category. The category of n-truncated
spaces is a n + 1-category.

1in this talk (m + 1)-category means (m + 1, 1)-categories
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Motivation

Already for ordinary categories, there’s a rich theory of
monoidal/braided monoidal/symmetric monoidal structures. We
would like to extend this to higher categories.

While we already know that the homotopic generalization of these
monoidal structures are En operads and their algebras, there is
currently no nice explicit data for them. For example, the notion of
braided monoidal (E2) algebras for higher categories.

In this talk we are interested in the following question:

Question
How do we construct En-algebras in (m + 1)-categories?
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Some defintions

Before moving further, I’ll recall some basic definitions

Definition
A map of operads f : A → B is said to be n-connected if

MulA(X1, · · · ,Xn,Y ) → MulB(f (X1), · · · , f (Xn), f (Y ))

is n-connected.

Definition
A map of operads f : A → B is said to be n-truncated if

MulA(X1, · · · ,Xn,Y ) → MulB(f (X1), · · · , f (Xn), f (Y ))

is n-truncated.



Some defintions

Before moving further, I’ll recall some basic definitions

Definition
A map of operads f : A → B is said to be n-connected if

MulA(X1, · · · ,Xn,Y ) → MulB(f (X1), · · · , f (Xn), f (Y ))

is n-connected.

Definition
A map of operads f : A → B is said to be n-truncated if

MulA(X1, · · · ,Xn,Y ) → MulB(f (X1), · · · , f (Xn), f (Y ))

is n-truncated.



Definition
O is an (m + 1)-operad if O → E∞ is m-truncated.

Lemma
C is a symmetric monoidal ∞-category, then C⊗ is (m + 1)-operad
iff C is a (m + 1)-category.

Lemma
A → B m-truncated, C a symmetric monoidal (m + 1)-category

AlgB(C) → AlgA(C)

is an equivalence.
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E1-algebras in an m-category

Let’s answer the question in the case of E1-algebras:

Turns out, as we all know, we already have an answer due to
Stasheff.
We have the filtration

E0 = A1 → A2 → · · · → A∞ = E1

Basically, moving from An → An+1, we first fill in a
Kn ≃ Sn−1 → Dn−1 cell in Hom(C⊗n+1, C), and then the higher
cell for units.
Now importantly, An → An+1 is (n − 3) connected and
An(l) → An+1(l) for l ≤ n
This implies

AlgE1(C) ≃ AlgAn+1(C)

where C is an (m + 1)-category.
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E2-algebras in (m + 1)-categories

Hang on a sec, lemme grab my pen.



Main Theorem

Theorem(Yu Liu, D.)
Given n1 ≤ n2 ≤ · · · ≤ nl , with the first i equal

An1 ⊗ An2 ⊗ · · · ⊗ Anl → El

is (kn1 − 2 − i)-connected.
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Consequences of Main Theorem I

Here’s some consequences of this:

Corollary
Ak1 ⊗ Ak2 → E2 is{

2k1 − 3 when k1 ≤ k2 − 1
k1 + k2 − 4 when k1 ≥ k2 − 1.

(1)

-connected. Therefore for D + 1 category, E2 algebras are
equivalent to {

Ad+2 ⊗ Ad+2 when D = 2d
Ad+2 ⊗ Ad+3 when D = 2d + 1

(2)



Consequences of Main Theorem II

m-category Ak1 ⊗ Ak2

1 (2,2)
2 (2,3)
3 (3,3)
4 (3,4)
5 (4,4)

We see that when we go from m-category to (m + 1)-categories,
we increase one of the k1 while “hugging the diagonal”. This also
gives us a way to explicitly construct E2 algebras by filling in the
appropriate Stasheff associahedrons. Furthermore, all of this

generalises to El .
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Proof Sketch

We first begin by defining k-restricted operads

Definition
A k-restricted operad O≤k can be defined as

• (Lurie) i.e. O≤k → F in∗≤k with · · ·
• (Dendroidal) A Segal Presheaf on Ω≤k (aka tress with valence
≤ k)

Now the functor
Op

(−)≤k−−−−→ Op≤k

has a left adjoint Lk defined as

Lk(O≤k(n)) =
all ways to construct k-ary morphisms from

≤ k-ary morphisms;

{ }
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We, however, have a subtlety with the right adjoint.

We have a right adjoint when restricted to unital operads, i.e.

Opun −→ Opun≤k

has a right adjoint Rk with

Rk(O≤k(n)) =
all ways to construct
k-ary morphisms by plugging in units

{ }
We have generally

Prop
For C, a symmetric monoidal, unital ∞-category with colimits we
have

RkC⊗
≤k(X1, · · · ,Xn,Y ) = HomC(colim fX1,··· ,Xn |≤k ,Y )

where fX1,··· ,Xn : P({1, · · · , n}) −→ C is
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X1 × X2 X1 × X2 × X3

X1 X1 × X3
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Theorem
f : P → Q is d1-connected, P≤k → Q≤k an equivalence and R ,
d2-connected then

P ⊗ Q −→ R ⊗ Q

is (d1 + k(d2 − 2))-connected.

Prop(Yu Liu, D.)
R is d-connected, coherent, then

colim fX1,···Xn |≤k−→ X1 × · · · × Xn

is (k(d + 2)− 2)-connected.

Note that the operads En are coherent, but An are not! This is one
of the complications of the proof.
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