## $\mathbb{E}_n$ -algebras in (m + 1)-categories Category Theory Octoberfest 2023

Amartya Shekhar Dubey<sup>†</sup>

joint work in progress with Yu Leon Liu \*

October 29, 2023

<sup>†</sup>School of Mathematical Sciences National Institute of Science Education and Research, India

Department of Mathmatics Harvard University, USA

# Outline

- Intro and Motivations
- Stasheff's associahedron
- $\mathbb{E}_2$ -algebras in an *m*-category
- Main Theorem
- Proof Sketch

## Intro and Motivation

To get started, let's recall what an (m+1)-category <sup>1</sup> is

<sup>1</sup> in this talk (m + 1)-category means (m + 1, 1)-categories

To get started, let's recall what an (m+1)-category <sup>1</sup> is

## Definition

```
A category \mathcal C is an (m+1)-category if \operatorname{Hom}_{\mathcal C}(x,y) is m-truncated for x,y\in\operatorname{Ob}(\mathcal C)
```

<sup>&</sup>lt;sup>1</sup> in this talk (m + 1)-category means (m + 1, 1)-categories

To get started, let's recall what an (m+1)-category  $^1$  is

### Definition

A category C is an (m + 1)-category if  $Hom_{\mathcal{C}}(x, y)$  is *m*-truncated for  $x, y \in Ob(\mathcal{C})$ 

For  $m \ge -1$ , a space X is *m*-truncated if  $\pi_i(X, x) = 0$  for i > m (for any basepoint  $x \in X$ ). m = -2, X is -2-truncated if it is contractible.

<sup>&</sup>lt;sup>1</sup> in this talk (m + 1)-category means (m + 1, 1)-categories

To get started, let's recall what an (m+1)-category  $^1$  is

## Definition

A category  $\mathcal C$  is an (m+1)-category if  $\operatorname{Hom}_{\mathcal C}(x,y)$  is *m*-truncated for  $x,y\in\operatorname{Ob}(\mathcal C)$ 

For  $m \ge -1$ , a space X is *m*-truncated if  $\pi_i(X, x) = 0$  for i > m (for any basepoint  $x \in X$ ). m = -2, X is -2-truncated if it is contractible.

#### Example

An ordinary category is a 1-category. The category of *n*-truncated spaces is a n + 1-category.

<sup>&</sup>lt;sup>1</sup>in this talk (m + 1)-category means (m + 1, 1)-categories

Already for ordinary categories, there's a rich theory of monoidal/braided monoidal/symmetric monoidal structures. We would like to extend this to higher categories.

Already for ordinary categories, there's a rich theory of monoidal/braided monoidal/symmetric monoidal structures. We would like to extend this to higher categories.

While we already know that the homotopic generalization of these monoidal structures are  $\mathbb{E}_n$  operads and their algebras, there is currently no nice explicit data for them. For example, the notion of braided monoidal ( $\mathbb{E}_2$ ) algebras for higher categories.

Already for ordinary categories, there's a rich theory of monoidal/braided monoidal/symmetric monoidal structures. We would like to extend this to higher categories.

While we already know that the homotopic generalization of these monoidal structures are  $\mathbb{E}_n$  operads and their algebras, there is currently no nice explicit data for them. For example, the notion of braided monoidal ( $\mathbb{E}_2$ ) algebras for higher categories.

In this talk we are interested in the following question:

#### Question

How do we construct  $\mathbb{E}_n$ -algebras in (m+1)-categories?

Before moving further, I'll recall some basic definitions

Definition A map of operads  $f : \mathcal{A} \to \mathcal{B}$  is said to be *n*-connected if  $Mul_{\mathcal{A}}(X_1, \cdots, X_n, Y) \to Mul_{\mathcal{B}}(f(X_1), \cdots, f(X_n), f(Y))$ is *n*-connected. Before moving further, I'll recall some basic definitions

Definition A map of operads  $f : A \to B$  is said to be *n*-connected if

$$\operatorname{\mathsf{Mul}}_{\mathcal{A}}(X_1,\cdots,X_n,Y) \to \operatorname{\mathsf{Mul}}_{\mathcal{B}}(f(X_1),\cdots,f(X_n),f(Y))$$

is *n*-connected.

## Definition

A map of operads  $f:\mathcal{A} 
ightarrow \mathcal{B}$  is said to be *n*-truncated if

$$\operatorname{Mul}_{\mathcal{A}}(X_1, \cdots, X_n, Y) \to \operatorname{Mul}_{\mathcal{B}}(f(X_1), \cdots, f(X_n), f(Y))$$

is *n*-truncated.

## Definition

## $\mathcal O$ is an (m+1)-operad if $\mathcal O o \mathbb E_\infty$ is *m*-truncated.

### Definition

 $\mathcal{O}$  is an (m+1)-operad if  $\mathcal{O} o \mathbb{E}_{\infty}$  is *m*-truncated.

#### Lemma

 ${\mathcal C}$  is a symmetric monoidal  $\infty$ -category, then  ${\mathcal C}^\otimes$  is (m+1)-operad iff  ${\mathcal C}$  is a (m+1)-category.

### Definition

 $\mathcal{O}$  is an (m+1)-operad if  $\mathcal{O} o \mathbb{E}_{\infty}$  is *m*-truncated.

#### Lemma

 ${\mathcal C}$  is a symmetric monoidal  $\infty$ -category, then  ${\mathcal C}^\otimes$  is (m+1)-operad iff  ${\mathcal C}$  is a (m+1)-category.

#### Lemma

A 
ightarrow B *m*-truncated,  ${\cal C}$  a symmetric monoidal (m+1)-category

$$\mathsf{Alg}_B(\mathcal{C}) o \mathsf{Alg}_A(\mathcal{C})$$

is an equivalence.

Let's answer the question in the case of  $\mathbb{E}_1\text{-algebras}$ :

Let's answer the question in the case of  $\mathbb{E}_1\text{-algebras}$ : Turns out, as we all know, we already have an answer due to Stasheff.

Let's answer the question in the case of  $\mathbb{E}_1\text{-algebras}$ : Turns out, as we all know, we already have an answer due to Stasheff.

We have the filtration

$$\mathbb{E}_0 = \mathbb{A}_1 \to \mathbb{A}_2 \to \dots \to \mathbb{A}_\infty = \mathbb{E}_1$$

Let's answer the question in the case of  $\mathbb{E}_1\text{-algebras}$ : Turns out, as we all know, we already have an answer due to Stasheff.

We have the filtration

$$\mathbb{E}_0 = \mathbb{A}_1 o \mathbb{A}_2 o \dots o \mathbb{A}_\infty = \mathbb{E}_1$$

Basically, moving from  $\mathbb{A}_n \to \mathbb{A}_{n+1}$ , we first fill in a  $K_n \simeq S^{n-1} \to D^{n-1}$  cell in  $\operatorname{Hom}(\mathcal{C}^{\otimes n+1}, \mathcal{C})$ , and then the higher cell for units.

Let's answer the question in the case of  $\mathbb{E}_1\text{-algebras}$ : Turns out, as we all know, we already have an answer due to Stasheff.

We have the filtration

$$\mathbb{E}_0 = \mathbb{A}_1 o \mathbb{A}_2 o \dots o \mathbb{A}_\infty = \mathbb{E}_1$$

Basically, moving from  $\mathbb{A}_n \to \mathbb{A}_{n+1}$ , we first fill in a  $\mathcal{K}_n \simeq S^{n-1} \to D^{n-1}$  cell in  $\operatorname{Hom}(\mathcal{C}^{\otimes n+1}, \mathcal{C})$ , and then the higher cell for units.

Now importantly,  $\mathbb{A}_n \to \mathbb{A}_{n+1}$  is (n-3) connected and  $\mathbb{A}_n(I) \to \mathcal{A}_{n+1}(I)$  for  $I \leq n$ 

Let's answer the question in the case of  $\mathbb{E}_1\text{-algebras}$ : Turns out, as we all know, we already have an answer due to Stasheff.

We have the filtration

$$\mathbb{E}_0 = \mathbb{A}_1 o \mathbb{A}_2 o \dots o \mathbb{A}_\infty = \mathbb{E}_1$$

Basically, moving from  $\mathbb{A}_n \to \mathbb{A}_{n+1}$ , we first fill in a  $K_n \simeq S^{n-1} \to D^{n-1}$  cell in  $\operatorname{Hom}(\mathcal{C}^{\otimes n+1}, \mathcal{C})$ , and then the higher cell for units.

Now importantly,  $\mathbb{A}_n \to \mathbb{A}_{n+1}$  is (n-3) connected and  $\mathbb{A}_n(I) \to \mathcal{A}_{n+1}(I)$  for  $I \leq n$ This implies

$$\mathsf{Alg}_{\mathbb{E}_1(\mathcal{C})} \simeq \mathsf{Alg}_{\mathbb{A}_{n+1}}(\mathcal{C})$$

where C is an (m+1)-category.

Hang on a sec, lemme grab my pen.

Theorem(Yu Liu, D.)

Given  $n_1 \leq n_2 \leq \cdots \leq n_l$ , with the first *i* equal

Theorem(Yu Liu, D.) Given  $n_1 \le n_2 \le \cdots \le n_l$ , with the first *i* equal  $\mathbb{A}_{n_1} \otimes \mathbb{A}_{n_2} \otimes \cdots \otimes \mathbb{A}_{n_l} \to \mathbb{E}_l$ is  $(kn_1 - 2 - i)$ -connected.

# Consequences of Main Theorem I

Here's some consequences of this:

Corollary  $\mathbb{A}_{k_1} \otimes \mathbb{A}_{k_2} \to \mathbb{E}_2$  is  $\begin{cases}
2k_1 - 3 & \text{when } k_1 \leq k_2 - 1 \\
k_1 + k_2 - 4 & \text{when } k_1 \geq k_2 - 1.
\end{cases}$ -connected. Therefore for D + 1 category,  $\mathbb{E}_2$  algebras are

equivalent to

$$\begin{cases} \mathbb{A}_{d+2} \otimes \mathbb{A}_{d+2} & \text{when } D = 2d \\ \mathbb{A}_{d+2} \otimes \mathbb{A}_{d+3} & \text{when } D = 2d+1 \end{cases}$$
(2)

(1)

# Consequences of Main Theorem II

| <i>m</i> -category | $\mathbb{A}_{k_1}\otimes\mathbb{A}_{k_2}$ |
|--------------------|-------------------------------------------|
| 1                  | (2,2)                                     |
| 2                  | (2,3)                                     |
| 3                  | (3,3)                                     |
| 4                  | (3,4)                                     |
| 5                  | (4,4)                                     |

# Consequences of Main Theorem II

| <i>m</i> -category | $\mathbb{A}_{k_1}\otimes\mathbb{A}_{k_2}$ |
|--------------------|-------------------------------------------|
| 1                  | (2,2)                                     |
| 2                  | (2,3)                                     |
| 3                  | (3,3)                                     |
| 4                  | (3,4)                                     |
| 5                  | (4,4)                                     |

We see that when we go from *m*-category to (m + 1)-categories, we increase one of the  $k_1$  while "hugging the diagonal". This also gives us a way to explicitly construct  $\mathbb{E}_2$  algebras by filling in the appropriate Stasheff associahedrons.

# Consequences of Main Theorem II

| <i>m</i> -category | $\mathbb{A}_{k_1}\otimes\mathbb{A}_{k_2}$ |
|--------------------|-------------------------------------------|
| 1                  | (2,2)                                     |
| 2                  | (2,3)                                     |
| 3                  | (3,3)                                     |
| 4                  | (3,4)                                     |
| 5                  | (4,4)                                     |

We see that when we go from *m*-category to (m + 1)-categories, we increase one of the  $k_1$  while "hugging the diagonal". This also gives us a way to explicitly construct  $\mathbb{E}_2$  algebras by filling in the appropriate Stasheff associahedrons. Furthermore, all of this generalises to  $\mathbb{E}_l$ .

We first begin by defining k-restricted operads

We first begin by defining k-restricted operads

## Definition

A k-restricted operad  $\mathcal{O}_{\leq k}$  can be defined as

• (Lurie) i.e.  $\mathcal{O}_{\leq k} \rightarrow \mathcal{F}in_{*\leq k}$  with  $\cdots$ 

We first begin by defining k-restricted operads

Definition

A k-restricted operad  $\mathcal{O}_{\leq k}$  can be defined as

- (Lurie) i.e.  $\mathcal{O}_{\leq k} \to \mathcal{F}in_{*\leq k}$  with  $\cdots$
- (Dendroidal) A Segal Presheaf on  $\Omega_{\leq k}$  (aka tress with valence  $\leq k$ )

We first begin by defining k-restricted operads

Definition

A k-restricted operad  $\mathcal{O}_{\leq k}$  can be defined as

- (Lurie) i.e.  $\mathcal{O}_{\leq k} \to \mathcal{F}in_{*\leq k}$  with  $\cdots$
- (Dendroidal) A Segal Presheaf on  $\Omega_{\leq k}$  (aka tress with valence  $\leq k$ )

We first begin by defining k-restricted operads

Definition

A k-restricted operad  $\mathcal{O}_{\leq k}$  can be defined as

- (Lurie) i.e.  $\mathcal{O}_{\leq k} \to \mathcal{F}in_{*\leq k}$  with  $\cdots$
- (Dendroidal) A Segal Presheaf on  $\Omega_{\leq k}$  (aka tress with valence  $\leq k$ )

Now the functor

$$\mathit{Op} \xrightarrow{(-)_{\leq k}} \mathit{Op}_{\leq k}$$

has a left adjoint  $L_k$  defined as

We first begin by defining k-restricted operads

Definition

A k-restricted operad  $\mathcal{O}_{\leq k}$  can be defined as

- (Lurie) i.e.  $\mathcal{O}_{\leq k} \to \mathcal{F}in_{*\leq k}$  with  $\cdots$
- (Dendroidal) A Segal Presheaf on  $\Omega_{\leq k}$  (aka tress with valence  $\leq k$ )

Now the functor

$$Op \xrightarrow{(-)_{\leq k}} Op_{\leq k}$$

has a left adjoint  $L_k$  defined as

 $\mathsf{L}_{k}(\mathcal{O}_{\leq k}(n)) = \left\{ \begin{array}{l} \text{all ways to construct} \quad k\text{-ary morphisms from} \\ \leq k\text{-ary morphisms;} \end{array} \right\}$ 

We, however, have a subtlety with the right adjoint.

We, however, have a subtlety with the right adjoint. We have a right adjoint when restricted to unital operads, i.e.

$$Op^{un} \longrightarrow Op^{un}_{\leq k}$$

has a right adjoint  $R_k$  with

We, however, have a subtlety with the right adjoint. We have a right adjoint when restricted to unital operads, i.e.

$$Op^{un} \longrightarrow Op^{un}_{< k}$$

has a right adjoint  $R_k$  with  $R_k(\mathcal{O}_{\leq k}(n)) = \begin{cases} all ways to construct \\ k-ary morphisms by plugging in units \end{cases}$  We, however, have a subtlety with the right adjoint. We have a right adjoint when restricted to unital operads, i.e.

$$Op^{un} \longrightarrow Op^{un}_{\leq k}$$

has a right adjoint 
$$R_k$$
 with  
 $R_k(\mathcal{O}_{\leq k}(n)) = \begin{cases} all ways to construct \\ k-ary morphisms by plugging in units \end{cases}$   
We have generally

#### Prop

For  $\mathcal C,$  a symmetric monoidal, unital  $\infty\text{-category}$  with colimits we have

$$R_k \mathcal{C}_{\leq k}^{\otimes}(X_1, \cdots, X_n, Y) = \operatorname{Hom}_{\mathcal{C}}(\operatorname{colim} f_{X_1, \cdots, X_n} \mid_{\leq k}, Y)$$

where  $f_{X_1,\cdots,X_n}:\mathcal{P}(\{1,\cdots,n\}) 
ightarrow \mathcal{C}$  is



#### Theorem

 $f:P\to Q$  is  $d_1\text{-connected},\ P_{\leq k}\to Q_{\leq k}$  an equivalence and R,  $d_2\text{-connected}$  then

$$P\otimes Q \to R\otimes Q$$

is  $(d_1 + k(d_2 - 2))$ -connected.

#### Theorem

 $f:P\to Q$  is  $d_1\text{-connected},\ P_{\leq k}\to Q_{\leq k}$  an equivalence and R,  $d_2\text{-connected}$  then

$$P\otimes Q \to R\otimes Q$$

is  $(d_1 + k(d_2 - 2))$ -connected.

Prop(Yu Liu, D.)

R is d-connected, coherent, then

$$\operatorname{colim} f_{X_1, \cdots, X_n} \mid_{\leq k} \to X_1 \times \cdots \times X_n$$

is (k(d+2)-2)-connected.

#### Theorem

f:P
ightarrow Q is  $d_1$ -connected,  $P_{\leq k}
ightarrow Q_{\leq k}$  an equivalence and R,  $d_2$ -connected then

$$P\otimes Q \to R\otimes Q$$

is  $(d_1 + k(d_2 - 2))$ -connected.

Prop(Yu Liu, D.)

R is d-connected, coherent, then

$$\operatorname{\mathsf{colim}} f_{X_1,\cdots X_n}\mid_{\leq k} \to X_1\times \cdots \times X_n$$

is (k(d+2)-2)-connected.

Note that the operads  $\mathbb{E}_n$  are coherent, but  $\mathbb{A}_n$  are not! This is one of the complications of the proof.