\mathbb{E}_{n}-algebras in $(m+1)$-categories Category Theory Octoberfest 2023

Amartya Shekhar Dubey ${ }^{\dagger}$

joint work in progress with Yu Leon Liu *

October 29, 2023
\dagger School of Mathematical Sciences
National Institute of Science Education and Research, India
\% Department of Mathmatics Harvard University, USA

Outline

- Intro and Motivations
- Stasheff's associahedron
- \mathbb{E}_{2}-algebras in an m-category
- Main Theorem
- Proof Sketch

Intro and Motivation

To get started, let's recall what an $(m+1)$-category ${ }^{1}$ is

[^0]
Intro and Motivation

To get started, let's recall what an $(m+1)$-category ${ }^{1}$ is
Definition
A category \mathcal{C} is an $(m+1)$-category if $\operatorname{Hom}_{\mathcal{C}}(x, y)$ is m-truncated for $x, y \in \operatorname{Ob}(\mathcal{C})$

[^1]
Intro and Motivation

To get started, let's recall what an $(m+1)$-category ${ }^{1}$ is

Definition

A category \mathcal{C} is an $(m+1)$-category if $\operatorname{Hom}_{\mathcal{C}}(x, y)$ is m-truncated for $x, y \in \operatorname{Ob}(\mathcal{C})$

For $m \geq-1$, a space X is m-truncated if $\pi_{i}(X, x)=0$ for $i>m$ (for any basepoint $x \in X$). $m=-2, X$ is -2 -truncated if it is contractible.

[^2]
Intro and Motivation

To get started, let's recall what an ($m+1$)-category ${ }^{1}$ is
Definition
A category \mathcal{C} is an $(m+1)$-category if $\operatorname{Hom}_{\mathcal{C}}(x, y)$ is m-truncated for $x, y \in \operatorname{Ob}(\mathcal{C})$

For $m \geq-1$, a space X is m-truncated if $\pi_{i}(X, x)=0$ for $i>m$ (for any basepoint $x \in X$). $m=-2, X$ is -2 -truncated if it is contractible.

Example

An ordinary category is a 1-category. The category of n-truncated spaces is a $n+1$-category.

[^3]
Motivation

Already for ordinary categories, there's a rich theory of monoidal/braided monoidal/symmetric monoidal structures. We would like to extend this to higher categories.

Motivation

Already for ordinary categories, there's a rich theory of monoidal/braided monoidal/symmetric monoidal structures. We would like to extend this to higher categories.

While we already know that the homotopic generalization of these monoidal structures are \mathbb{E}_{n} operads and their algebras, there is currently no nice explicit data for them. For example, the notion of braided monoidal $\left(\mathbb{E}_{2}\right)$ algebras for higher categories.

Motivation

Already for ordinary categories, there's a rich theory of monoidal/braided monoidal/symmetric monoidal structures. We would like to extend this to higher categories.
While we already know that the homotopic generalization of these monoidal structures are \mathbb{E}_{n} operads and their algebras, there is currently no nice explicit data for them. For example, the notion of braided monoidal $\left(\mathbb{E}_{2}\right)$ algebras for higher categories.
In this talk we are interested in the following question:

Question

How do we construct \mathbb{E}_{n}-algebras in $(m+1)$-categories?

Some defintions

Before moving further, I'll recall some basic definitions

Definition

A map of operads $f: \mathcal{A} \rightarrow \mathcal{B}$ is said to be n-connected if

$$
\operatorname{Mul}_{\mathcal{A}}\left(X_{1}, \cdots, X_{n}, Y\right) \rightarrow \operatorname{Mul}_{\mathcal{B}}\left(f\left(X_{1}\right), \cdots, f\left(X_{n}\right), f(Y)\right)
$$

is n-connected.

Some defintions

Before moving further, I'll recall some basic definitions
Definition
A map of operads $f: \mathcal{A} \rightarrow \mathcal{B}$ is said to be n-connected if

$$
\operatorname{Mul}_{\mathcal{A}}\left(X_{1}, \cdots, X_{n}, Y\right) \rightarrow \operatorname{Mul}_{\mathcal{B}}\left(f\left(X_{1}\right), \cdots, f\left(X_{n}\right), f(Y)\right)
$$

is n-connected.

Definition

A map of operads $f: \mathcal{A} \rightarrow \mathcal{B}$ is said to be n-truncated if

$$
\operatorname{Mul}_{\mathcal{A}}\left(X_{1}, \cdots, X_{n}, Y\right) \rightarrow \operatorname{Mul}_{\mathcal{B}}\left(f\left(X_{1}\right), \cdots, f\left(X_{n}\right), f(Y)\right)
$$

is n-truncated.

Definition
\mathcal{O} is an ($m+1$)-operad if $\mathcal{O} \rightarrow \mathbb{E}_{\infty}$ is m-truncated.

Definition

\mathcal{O} is an $(m+1)$-operad if $\mathcal{O} \rightarrow \mathbb{E}_{\infty}$ is m-truncated.

Lemma

\mathcal{C} is a symmetric monoidal ∞-category, then \mathcal{C}^{\otimes} is $(m+1)$-operad iff \mathcal{C} is a $(m+1)$-category.

Definition

\mathcal{O} is an $(m+1)$-operad if $\mathcal{O} \rightarrow \mathbb{E}_{\infty}$ is m-truncated.

Lemma

\mathcal{C} is a symmetric monoidal ∞-category, then \mathcal{C}^{\otimes} is $(m+1)$-operad iff \mathcal{C} is a ($m+1$)-category.

Lemma
$A \rightarrow B$-truncated, \mathcal{C} a symmetric monoidal $(m+1)$-category

$$
\operatorname{Alg}_{B}(\mathcal{C}) \rightarrow \operatorname{Alg}_{A}(\mathcal{C})
$$

is an equivalence.

$\mathbb{E}_{1 \text {-algebras }}$ in an m-category

Let's answer the question in the case of \mathbb{E}_{1}-algebras:

\mathbb{E}_{1}-algebras in an m-category

Let's answer the question in the case of \mathbb{E}_{1}-algebras:
Turns out, as we all know, we already have an answer due to Stasheff.

\mathbb{E}_{1}-algebras in an m-category

Let's answer the question in the case of \mathbb{E}_{1}-algebras:
Turns out, as we all know, we already have an answer due to Stasheff.
We have the filtration

$$
\mathbb{E}_{0}=\mathbb{A}_{1} \rightarrow \mathbb{A}_{2} \rightarrow \cdots \rightarrow \mathbb{A}_{\infty}=\mathbb{E}_{1}
$$

\mathbb{E}_{1}-algebras in an m-category

Let's answer the question in the case of \mathbb{E}_{1}-algebras:
Turns out, as we all know, we already have an answer due to Stasheff.
We have the filtration

$$
\mathbb{E}_{0}=\mathbb{A}_{1} \rightarrow \mathbb{A}_{2} \rightarrow \cdots \rightarrow \mathbb{A}_{\infty}=\mathbb{E}_{1}
$$

Basically, moving from $\mathbb{A}_{n} \rightarrow \mathbb{A}_{n+1}$, we first fill in a $K_{n} \simeq S^{n-1} \rightarrow D^{n-1}$ cell in $\operatorname{Hom}\left(\mathcal{C}^{\otimes n+1}, \mathcal{C}\right)$, and then the higher cell for units.

\mathbb{E}_{1}-algebras in an m-category

Let's answer the question in the case of \mathbb{E}_{1}-algebras:
Turns out, as we all know, we already have an answer due to Stasheff.
We have the filtration

$$
\mathbb{E}_{0}=\mathbb{A}_{1} \rightarrow \mathbb{A}_{2} \rightarrow \cdots \rightarrow \mathbb{A}_{\infty}=\mathbb{E}_{1}
$$

Basically, moving from $\mathbb{A}_{n} \rightarrow \mathbb{A}_{n+1}$, we first fill in a $K_{n} \simeq S^{n-1} \rightarrow D^{n-1}$ cell in $\operatorname{Hom}\left(\mathcal{C}^{\otimes n+1}, \mathcal{C}\right)$, and then the higher cell for units.
Now importantly, $\mathbb{A}_{n} \rightarrow \mathbb{A}_{n+1}$ is $(n-3)$ connected and $\mathbb{A}_{n}(I) \rightarrow \mathcal{A}_{n+1}(I)$ for $I \leq n$

\mathbb{E}_{1}-algebras in an m-category

Let's answer the question in the case of \mathbb{E}_{1}-algebras:
Turns out, as we all know, we already have an answer due to Stasheff.
We have the filtration

$$
\mathbb{E}_{0}=\mathbb{A}_{1} \rightarrow \mathbb{A}_{2} \rightarrow \cdots \rightarrow \mathbb{A}_{\infty}=\mathbb{E}_{1}
$$

Basically, moving from $\mathbb{A}_{n} \rightarrow \mathbb{A}_{n+1}$, we first fill in a $K_{n} \simeq S^{n-1} \rightarrow D^{n-1}$ cell in $\operatorname{Hom}\left(\mathcal{C}^{\otimes n+1}, \mathcal{C}\right)$, and then the higher cell for units.
Now importantly, $\mathbb{A}_{n} \rightarrow \mathbb{A}_{n+1}$ is $(n-3)$ connected and $\mathbb{A}_{n}(I) \rightarrow \mathcal{A}_{n+1}(I)$ for $I \leq n$
This implies

$$
\operatorname{Alg}_{\mathbb{E}_{1}(\mathcal{C})} \simeq \operatorname{Alg}_{\mathbb{A}_{n+1}}(\mathcal{C})
$$

where \mathcal{C} is an ($m+1$)-category.

\mathbb{E}_{2}-algebras in $(m+1)$-categories

Hang on a sec, lemme grab my pen.

Main Theorem

Theorem(Yu Liu, D.)
Given $n_{1} \leq n_{2} \leq \cdots \leq n_{1}$, with the first i equal

Main Theorem

Theorem(Yu Liu, D.)
Given $n_{1} \leq n_{2} \leq \cdots \leq n_{l}$, with the first i equal

$$
\mathbb{A}_{n_{1}} \otimes \mathbb{A}_{n_{2}} \otimes \cdots \otimes \mathbb{A}_{n_{1}} \rightarrow \mathbb{E}_{/}
$$

is $\left(k n_{1}-2-i\right)$-connected.

Consequences of Main Theorem I

Here's some consequences of this:
Corollary
$\mathbb{A}_{k_{1}} \otimes \mathbb{A}_{k_{2}} \rightarrow \mathbb{E}_{2}$ is

$$
\begin{cases}2 k_{1}-3 & \text { when } k_{1} \leq k_{2}-1 \tag{1}\\ k_{1}+k_{2}-4 & \text { when } k_{1} \geq k_{2}-1\end{cases}
$$

-connected. Therefore for $D+1$ category, \mathbb{E}_{2} algebras are equivalent to

$$
\begin{cases}\mathbb{A}_{d+2} \otimes \mathbb{A}_{d+2} & \text { when } D=2 d \tag{2}\\ \mathbb{A}_{d+2} \otimes \mathbb{A}_{d+3} & \text { when } D=2 d+1\end{cases}
$$

Consequences of Main Theorem II

m-category	$\mathbb{A}_{k_{1}} \otimes \mathbb{A}_{k_{2}}$
1	$(2,2)$
2	$(2,3)$
3	$(3,3)$
4	$(3,4)$
5	$(4,4)$

Consequences of Main Theorem II

m-category	$\mathbb{A}_{k_{1}} \otimes \mathbb{A}_{k_{2}}$
1	$(2,2)$
2	$(2,3)$
3	$(3,3)$
4	$(3,4)$
5	$(4,4)$

We see that when we go from m-category to $(m+1)$-categories, we increase one of the k_{1} while "hugging the diagonal". This also gives us a way to explicitly construct \mathbb{E}_{2} algebras by filling in the appropriate Stasheff associahedrons.

Consequences of Main Theorem II

m-category	$\mathbb{A}_{k_{1}} \otimes \mathbb{A}_{k_{2}}$
1	$(2,2)$
2	$(2,3)$
3	$(3,3)$
4	$(3,4)$
5	$(4,4)$

We see that when we go from m-category to $(m+1)$-categories, we increase one of the k_{1} while "hugging the diagonal". This also gives us a way to explicitly construct \mathbb{E}_{2} algebras by filling in the appropriate Stasheff associahedrons. Furthermore, all of this generalises to $\mathbb{E}_{\text {/ }}$.

Proof Sketch

We first begin by defining k-restricted operads

Proof Sketch

We first begin by defining k-restricted operads

Definition

A k-restricted operad $\mathcal{O}_{\leq k}$ can be defined as

- (Lurie) i.e. $\mathcal{O}_{\leq k} \rightarrow \mathcal{F i n}_{* \leq k}$ with \ldots

Proof Sketch

We first begin by defining k-restricted operads

Definition

A k-restricted operad $\mathcal{O}_{\leq k}$ can be defined as

- (Lurie) i.e. $\mathcal{O}_{\leq k} \rightarrow \mathcal{F i n}_{* \leq k}$ with \ldots
- (Dendroidal) A Segal Presheaf on $\Omega_{\leq k}$ (aka tress with valence $\leq k)$

Proof Sketch

We first begin by defining k-restricted operads

Definition

A k-restricted operad $\mathcal{O}_{\leq k}$ can be defined as

- (Lurie) i.e. $\mathcal{O}_{\leq k} \rightarrow \mathcal{F i n}_{* \leq k}$ with \ldots
- (Dendroidal) A Segal Presheaf on $\Omega_{\leq k}$ (aka tress with valence $\leq k)$

Proof Sketch

We first begin by defining k-restricted operads

Definition

A k-restricted operad $\mathcal{O}_{\leq k}$ can be defined as

- (Lurie) i.e. $\mathcal{O}_{\leq k} \rightarrow \mathcal{F} \mathrm{Fin}_{* \leq k}$ with \ldots
- (Dendroidal) A Segal Presheaf on $\Omega_{\leq k}$ (aka tress with valence $\leq k)$

Now the functor

$$
O p \xrightarrow{(-)_{\leq k}} O p_{\leq k}
$$

has a left adjoint L_{k} defined as

Proof Sketch

We first begin by defining k-restricted operads

Definition

A k-restricted operad $\mathcal{O}_{\leq k}$ can be defined as

- (Lurie) i.e. $\mathcal{O}_{\leq k} \rightarrow \mathcal{F} \mathrm{in}_{* \leq k}$ with \ldots
- (Dendroidal) A Segal Presheaf on $\Omega_{\leq k}$ (aka tress with valence $\leq k)$

Now the functor

$$
O p \xrightarrow{(-)_{\leq k}} O p_{\leq k}
$$

has a left adjoint L_{k} defined as
$L_{k}\left(\mathcal{O}_{\leq k}(n)\right)=\left\{\begin{array}{c}\text { all ways to construct } \\ \leq k \text {-ary morphisms; }\end{array} \quad\right.$-ary morphisms from $\}$

We, however, have a subtlety with the right adjoint.

We, however, have a subtlety with the right adjoint. We have a right adjoint when restricted to unital operads, i.e.

$$
O p^{u n} \longrightarrow O p_{\leq k}^{u n}
$$

has a right adjoint R_{k} with

We, however, have a subtlety with the right adjoint.
We have a right adjoint when restricted to unital operads, i.e.

$$
O p^{u n} \longrightarrow O p_{\leq k}^{u n}
$$

has a right adjoint R_{k} with
$\mathrm{R}_{k}\left(\mathcal{O}_{\leq k}(n)\right)=\left\{\begin{array}{l}\text { all ways to construct } \\ \mathrm{k} \text {-ary morphisms by plugging in units }\end{array}\right\}$

We, however, have a subtlety with the right adjoint.
We have a right adjoint when restricted to unital operads, i.e.

$$
O p^{u n} \longrightarrow O p_{\leq k}^{u n}
$$

has a right adjoint R_{k} with
$\mathrm{R}_{k}\left(\mathcal{O}_{\leq k}(n)\right)=\left\{\begin{array}{l}\text { all ways to construct } \\ k \text {-ary morphisms by plugging in units }\end{array}\right\}$
We have generally

Prop

For \mathcal{C}, a symmetric monoidal, unital ∞-category with colimits we have

$$
R_{k} \mathcal{C}_{\leq k}^{\otimes}\left(X_{1}, \cdots, X_{n}, Y\right)=\operatorname{Hom}_{\mathcal{C}}\left(\left.\operatorname{colim} f_{X_{1}, \cdots, X_{n}}\right|_{\leq k}, Y\right)
$$

where $f_{X_{1}, \cdots, X_{n}}: \mathcal{P}(\{1, \cdots, n\}) \rightarrow \mathcal{C}$ is

Theorem

$f: P \rightarrow Q$ is d_{1}-connected, $P_{\leq k} \rightarrow Q_{\leq k}$ an equivalence and R, d_{2}-connected then

$$
P \otimes Q \rightarrow R \otimes Q
$$

is $\left(d_{1}+k\left(d_{2}-2\right)\right)$-connected.

Theorem

$f: P \rightarrow Q$ is d_{1}-connected, $P_{\leq k} \rightarrow Q_{\leq k}$ an equivalence and R, d_{2}-connected then

$$
P \otimes Q \rightarrow R \otimes Q
$$

is $\left(d_{1}+k\left(d_{2}-2\right)\right)$-connected.

Prop(Yu Liu, D.)
R is d-connected, coherent, then
$\left.\operatorname{colim} f_{X_{1}, \cdots X_{n}}\right|_{\leq k} \rightarrow X_{1} \times \cdots \times X_{n}$
is $(k(d+2)-2)$-connected.

Theorem

$f: P \rightarrow Q$ is d_{1}-connected, $P_{\leq k} \rightarrow Q_{\leq k}$ an equivalence and R, d_{2}-connected then

$$
P \otimes Q \rightarrow R \otimes Q
$$

is $\left(d_{1}+k\left(d_{2}-2\right)\right)$-connected.

Prop(Yu Liu, D.)

R is d-connected, coherent, then
$\left.\operatorname{colim} f_{X_{1}, \cdots X_{n}}\right|_{\leq k} \rightarrow X_{1} \times \cdots \times X_{n}$
is $(k(d+2)-2)$-connected.
Note that the operads \mathbb{E}_{n} are coherent, but \mathbb{A}_{n} are not! This is one of the complications of the proof.

[^0]: ${ }^{1}$ in this talk $(m+1)$-category means $(m+1,1)$-categories

[^1]: ${ }^{1}$ in this talk $(m+1)$-category means $(m+1,1)$-categories

[^2]: ${ }^{1}$ in this talk $(m+1)$-category means $(m+1,1)$-categories

[^3]: ${ }^{1}$ in this talk $(m+1)$-category means $(m+1,1)$-categories

