What is a 2-stack?

Elena Caviglia

University of Leicester

Category Theory Octoberfest 2023 29/10/2023

1/22

Let $\ensuremath{\mathcal{C}}$ be a category with pullbacks.

Definition.

A sieve S on an object $C \in \mathcal{C}$ is a collection of morphisms with codomain

C that is closed under precomposition with morphisms of C.

Let $\ensuremath{\mathcal{C}}$ be a category with pullbacks.

Definition.

A sieve S on an object $C \in \mathcal{C}$ is a collection of morphisms with codomain

C that is closed under precomposition with morphisms of C.

The sieve S can also be seen as a subfunctor of y(C), i.e. a <u>natural transformation</u>

$$S\colon R_S\Rightarrow y(C)$$

with injective components.

Here R_S assigns to every object $D \in C$ the set of arrows in S with domain D and it is defined on morphisms by precomposition.

Definition.

A **Grothendieck topology** τ on C is an assignment for each object $C \in C$ of a collection $\tau(C)$ of sieves on C, called **covering sieves**, in a way such that

- (T0) the maximal sieve y(C) is in $\tau(C)$;
- (T1) if $S \in \tau(C)$, then for every arrow $f: D \to C$ we have that $f^*S \in \tau(D)$;

(T2) if $S \in \tau(C)$ and R is a sieve on C such that for every $f : D \to C$ in S we have that $f^*R \in \tau(D)$, then $R \in \tau(C)$.

Descent data

Definition.

Let $F: C^{op} \to Cat$ be a pseudofunctor and let S be a sieve on $C \in C$. A **descent datum on** S **for** F is an assignment for every morphism $D \xrightarrow{f} C$ in S of an object $W_f \in F(D)$ and, for every pair of composable morphisms $D' \xrightarrow{g} D \xrightarrow{f} C$ with $f \in S$, of an isomorphism $\varphi^{f,g}: g^*W_f \xrightarrow{\simeq} W_{f \circ g}$ such that, given morphisms $D'' \xrightarrow{h} D' \xrightarrow{g} D \xrightarrow{f} C$ with $f \in S$, the following diagram is commutative

4 / 22

Descent data

Definition.

This descent datum is called **effective** if there exist an object $W \in F(C)$ and, for every morphism $D \xrightarrow{f} C \in S$, an isomorphism

$$\psi^f \colon f^*(W) \xrightarrow{\simeq} W_f$$

such that, given morphisms $D' \xrightarrow{g} D \xrightarrow{f} C$ with $f \in S$, the following diagram is commutative

$$egin{aligned} g^*(f^*(W)) & \stackrel{g^*\psi^f}{\longrightarrow} g^*(W_f) \ & & & \downarrow arphi^{f,g} \ & & \downarrow arphi^{f,g}. \end{aligned}$$

Definition of stack

Definition.

A pseudofunctor $F: C^{op} \rightarrow Cat$ is a **stack** if it satisfies the following conditions:

- Every descent datum for F is effective;
- (*Gluing of morphisms*) Given a covering sieve S on C, objects X and Y of F(C) and for every $f: D \to C$ in S a morphism $\varphi_f: f^*X \to f^*Y$ in F(D) such that $g^*(\varphi_f) = \varphi_{f \circ g}$, there exists a morphism $\eta: X \to Y$ such that $f^*\eta = \varphi_f$;
- (Uniqueness of gluings) Given a covering sieve S on C, objects X and Y of F(C) and morphisms $\varphi, \psi : X \to Y$ such that for every $f: D \to C$ in S $f^*\varphi = f^*\psi$, then $\varphi = \psi$.

Proposition (Street).

Let $F\colon \mathcal{C}^{op}\to \mathcal{C}at$ be a pseudofunctor. The following facts are equivalent:

- (1) F is a stack;
- (2) for every object $C \in C$ and every covering sieve $S \colon R_S \Rightarrow y(C)$ in $\tau(C)$ the functor

 $-\circ S: [\mathcal{C}^{op}, \mathcal{C}at](y(\mathcal{C}), \mathcal{F}) \longrightarrow [\mathcal{C}^{op}, \mathcal{C}at](\mathcal{R}_S, \mathcal{F})$

is an equivalence of categories.

Proposition (Street).

Let $F\colon \mathcal{C}^{op}\to \mathcal{C}at$ be a pseudofunctor. The following facts are equivalent:

- (1) F is a stack;
- (2) for every object $C \in C$ and every covering sieve $S \colon R_S \Rightarrow y(C)$ in $\tau(C)$ the functor

$$-\circ S: [\mathcal{C}^{op}, \mathcal{C}at](y(\mathcal{C}), F) \longrightarrow [\mathcal{C}^{op}, \mathcal{C}at](\mathcal{R}_S, F)$$

is an equivalence of categories.

- essentially surjective \approx every descent datum is effective
- full \approx gluing of morphisms
- faithful \approx uniqueness of gluings

Let $\mathcal K$ be a small 2-category with bi-iso-comma objects.

Definition (Street).

A **bisieve** S over $C \in \mathcal{K}$ is a fully faithful arrow $S \colon R \Rightarrow y(C)$ in $\mathcal{B}icat(\mathcal{K}^{op}, Cat)$.

- since *S* is a <u>pseudonatural transformation</u>, the bisieve is close under precomposition only up to isomorphism;
- for our purposes we can consider bisieves that are injective on objects.

Grothendieck topology on a 2-category

Definition (Street).

A **bitopology** τ on \mathcal{K} is an assignment for each object $\mathcal{C} \in \mathcal{K}$ of a collection $\tau(\mathcal{C})$ of bisieves on \mathcal{C} , called **covering bisieves**, in a way such that

- (T0) the identity of y(C) is in $\tau(C)$;
- (T1) for all $S: R \to y(C)$ in $\tau(\mathcal{Y})$ and all arrows $f: D \to C$ in \mathcal{K} , the bi-iso-comma object

has the top arrow is in $\tau(D)$;

(T2) being a bisieve in τ can be checked locally.

Definition (C.).

Let (\mathcal{K}, τ) be a bisite. A trihomomorphism $F : \mathcal{K}^{op} \to \mathcal{B}icat$ is a **2-stack** if for every object $C \in \mathcal{K}$ and every bisieve $S : R \Rightarrow y(C)$ in $\tau(C)$ the pseudofunctor

 $-\circ S$: $Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(y(C), F) \longrightarrow Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(S, F)$

is a biequivalence.

Theorem (Buhné).

Let $F\colon {\mathcal K}^{\rm op}\to {\mathcal Bicat}$ be a trihomomorphism. For every $C\in {\mathcal K}$ there exists a biequivalence

$$F: F(C) \longrightarrow Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(y(C), F)$$

which is natural in C.

- an object X ∈ F(C) corresponds to a tritransformation σ: y(C) ⇒ F
 of component σ_D: y(D) → F(D) that sends E ^f→ D to F(f)(X);
- a morphism $\psi: X \to Y$ in F(C) corresponds to a trimodification;
- a 2-cell in F(C) corresponds to a perturbation;

2-stacks: an equivalent definition

Definition (C.).

Let (\mathcal{K}, τ) be a bisite. A trihomomorphism $F : \mathcal{K}^{op} \to \mathcal{B}icat$ is a **2-stack** if for every object $\mathcal{C} \in \mathcal{K}$ and every bisieve $S : R \Rightarrow \mathcal{K}(-, \mathcal{C})$ in $\tau(\mathcal{C})$ the pseudofunctor

$$(-\circ S)\circ \Gamma \colon F(C) \longrightarrow Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(S, F)$$

is a biequivalence.

2-stacks: an equivalent definition

Definition (C.).

Let (\mathcal{K}, τ) be a bisite. A trihomomorphism $F : \mathcal{K}^{op} \to \mathcal{B}icat$ is a **2-stack** if for every object $\mathcal{C} \in \mathcal{K}$ and every bisieve $S : R \Rightarrow \mathcal{K}(-, \mathcal{C})$ in $\tau(\mathcal{C})$ the pseudofunctor

$$(-\circ S)\circ \Gamma\colon F(C)\longrightarrow Tricat(\mathcal{K}^{\operatorname{op}}, \operatorname{Bicat})(S, F)$$

is a biequivalence.

Remark.

Assuming the axiom of choice, biequivalence means:

- (1) surjective on equivalence classes of objects;
- (2) essentially surjective on morphisms;
- (3) fully-faithful on 2-cells.

12 / 22

Full on 2-cells

The fullness on 2-cells yields a condition of existence of gluings on 2-cells. Given two morphisms $a, b: X \to Y$ in F(C) and for every $D \xrightarrow{f} C \in S$ 2-cells $\alpha_f: f^*a \Rightarrow f^*b$ such that for every morphism $E \xrightarrow{g} D$ in \mathcal{K} we have

there exists a 2-cell α : $a \Rightarrow b$ in F(C) such that $f^*\alpha = \alpha_f$ for every $D \xrightarrow{f} C \in S$.

13/22

The faithfulness on 2-cells yields a condition of uniqueness of gluings on 2-cells.

Given 2-cells

in F(C) such that $f^*\alpha = f^*\beta$ for every $D \xrightarrow{f} C \in S$, we have $\alpha = \beta$.

Essentially surjective on morphisms

The essential surjectivity on morphisms yields the condition that every descent datum on morphisms is effective.

A descent datum on morphisms on S for F is an assignment for every morphism $D \xrightarrow{f} C$ in S of a morphism

$$w_f \colon f^*X \longrightarrow f^*Y$$

in F(D) and, for every pair of composable morphisms $D' \xrightarrow{g} D \xrightarrow{f} C$ with $f \in S$, of an invertible 2-cell

Essentially surjective on morphisms

Moreover, for every 2-cell $\gamma \colon f \Rightarrow f'$ with $f, f' \colon D \to C$ in S, we have an invertible 2-cell in F(D)

and these 2-cells satisfy some compatibility conditions.

Essentially surjective on morphisms

Moreover, for every 2-cell $\gamma: f \Rightarrow f'$ with $f, f': D \rightarrow C$ in S, we have an invertible 2-cell in F(D)

and these 2-cells satisfy some compatibility conditions.

Given morphisms $D'' \xrightarrow{h} D' \xrightarrow{g} D \xrightarrow{f} C$ with $f \in S$ the given 2-cells need to satisfy the **cocycle condition on morphisms**, that relates the 2-cells $h^*\varphi^{f,g}$, $\varphi^{\widetilde{f \circ g},h}$ and $\varphi^{f,g \circ h}$.

We also need to ask a condition involving the descent along the identity.

This descent datum on morphisms is effective if there exist a morphism

$$w: X \longrightarrow Y$$

in F(C) and, for every morphism $D \xrightarrow{f} C \in S$, an invertible 2-cell

such that the choice of the 2-cells is compatible w. r. to 2-cells between parallel morphisms and given morphisms $D' \xrightarrow{g} D \xrightarrow{f} C$ with $f \in S$, we have

$$\psi^{\widetilde{f \circ g}} \circ \varphi^{\widetilde{f \circ g}} = \varepsilon \circ g^* \psi^f.$$

Surjective on equivalence classes of objects

The surjectivity up to eq. classes of objects yields the condition that every *weak* descent datum (on objects) is *weakly* effective.

A weak descent datum on S for F is an assignment for every morphism $D \xrightarrow{f} C$ in S of an object $W_f \in F(D)$ and for every pair of composable morphisms $D' \xrightarrow{g} D \xrightarrow{f} C$ with $f \in S$, of an equivalence

$$\varphi^{f,g}: W_{\widetilde{f \circ g}} \xrightarrow{\sim} g^* W_f.$$

Moreover, we have an assignment for every 2-cell $\gamma \colon f \Rightarrow f'$ with $f, f' \colon D \to C$ in S of a morphism

$$w_{\gamma} \colon W_f \longrightarrow W_{f'}$$

in a pseudofunctorial way.

Given morphisms $D'' \xrightarrow{h} D' \xrightarrow{g} D \xrightarrow{f} C$ with $f \in S$, the given equivalences need to satisfy the **weak cocycle condition**, i.e. there exists an invertible 2-cell

We also need to ask a condition involving the descent along the identity and additional coherence conditions.

Surjective on equivalence classes of objects

This descent datum is **weakly effective** if there exist an object $W \in F(C)$ and, for every morphism $D \xrightarrow{f} C \in S$, an equivalence

$$\psi^f \colon W_f \xrightarrow{\sim} f^*(W)$$

such that, given morphisms $D' \xrightarrow{g} D \xrightarrow{f} C$ with $f \in S$, there exists an invertible 2-cell

We also need to ask additional coherence conditions.

Elena Caviglia

Definition (C.).

The quotient pre-2-stack $[\mathcal{X}/\mathcal{G}]$: $\mathcal{K}^{op} \to \mathcal{G}ray$ is defined as follows:

- for every object 𝒴 ∈ 𝒯 we define [𝒴/𝔅](𝒴) as the 2-category of pairs (𝒫, α) where π_𝒫: 𝒫 → 𝒴 is a principal 𝔅-2-bundle over 𝒴 and α: 𝒫 → 𝒴 is a 𝔅-equivariant morphism;
- for every morphism $f : \mathcal{Z} \to \mathcal{Y}$ in \mathcal{K} , we define the 2-functor $[\mathcal{X}/\mathcal{G}](f) = f^* : [\mathcal{X}/\mathcal{G}](\mathcal{Y}) \to [\mathcal{X}/\mathcal{G}](\mathcal{Z})$

via iso-comma object along f;

 for every 2-cell Λ: f ⇒ g: Z → Y, we define [X/G](Λ) using the universal property of the iso-comma object.

(日)

Thank you for your attention!