
Functorial Polymorphism

Dinaturality

Philip Scott

February 5, 2023

References

I [BFSS] E.S. Bainbridge, P.J. Freyd, A. Scedrov, P. J. Scott,
Functorial Polymorphism, Theoretical Comp. Science 70
(1990), 35-64

I [B-S] R. F. Blute, P.J.Scott, Linear Läuchli Semantics, APAL
(1996), 101-142.

I E J. Dubuc and R. Street, Dinatural Transformations, in:
Reports of the Midwest Category Seminar IV, Springer
Lecture Notes in Mathematics 137 (1973),126-138

I [GSS] J-Y Girard, A. Scedrov, P. J. Scott, Normal Forms and
Cut-free proofs as Natural Transformations., (1992), Logic
from Computer Science, Springer-Verlag.

I S. Mac Lane Categories for the Working Mathematician, 2nd
Ed.,1998, Springer (Chap. IX: Special Limits: Diagonal
Naturality, Ends, Co-Ends), 218-230

Diagonal Naturality (Dubuc & Street, 1973)

Consider functors of the form F : (Cop)n × Cn −→ D. For
exposition, we often take D = C. Official notation F (A;B), often
written as FAB, if clear.

Definition (Dinaturality)

Consider F ,G : (Cop)n × Cn −→ C. A dinatural transformation
θ : F → G is a family of C-arrows θ = {θA : FAA→ GAA | A ∈ Cn}
satisfying: for any n-tuple f : A→ B ∈ Cn:

Special Cases of Dinats

1. Suppose F ,G : C → C are covariant functors, construed as
functors Cop × C → C dummy in the first (contravariant)
argument, e,g. F (A; B) := F (B). Then the NE-oblique arrows
FfA = idFA, GfB = idGB , since there’s no contravariance. So

θ reduces to an ordinary natural transformation F
θ−→ G .

2. If F is covariant and G is contravariant (dummy in the
missing arguments) we get following shape (for f : A→ B):

Special Cases of Dinats

FA
✓A - GA

FB

Ff

? ✓B - GB

Gf

6

.
Exercise:
What is shape if F contra, G covariant?

Special Cases of Dinats

1. Suppose F ,G : C → C are covariant functors, construed as
functors Cop × C → C dummy in the first (contravariant)
argument, e,g. F (A; B) := F (B). Then the NE-oblique arrows
FfA = idFA, GfB = idGB , since there’s no contravariance. So

θ reduces to an ordinary natural transformation F
θ−→ G .

2. If F is covariant and G is contravariant (dummy in the
missing arguments) we get following shape (for f : A→ B):

Special Cases of Dinats

FA
✓A - GA

FB

Ff

? ✓B - GB

Gf

6

.
Exercise:
What is shape if F contra, G covariant?

Special Cases of Dinats II

3. (Wedges) A wedge or extranatural transformation is a
dinatural transformation from F to G where one of F or G is a
constant functor. For example, suppose F = KD , the constant
functor with value D. Then the dinatural hexagon becomes a
family {θA : D → GAA | A ∈ C} satisfying, for f : A→ B :

Special Cases of Dinats

D
✓A - GAA

GBB

✓B

? GfB- GAB

GAf

?

(note: C can be Cn, so we get n-tuples of objects & arrows).

Examples of Dinats I

1. Polymorphic Identity: Consider a ccc C and let K1 be the
constant functor on 1. Consider a wedge θ : K1 → ()()

where θA : 1→ AA is the ”name” of the identity (given by the

bijection

1× A
π2−→ A

1
θA−→ AA). In λ-calculus, θA = λx :A. x .

Dinaturality says:

Special Cases of Dinats

1
✓A - AA

BB

✓B

?
B f

- BA

f A

?

This amounts to saying: f ◦ idA = idB ◦ f , which is true!
(There is an “external” version (Mac Lane): consider

Cop × C hom−→ Set and a dinat θ : K1 → hom.)

Important: θA is a family of uniform algorithms: the identity!

Examples of Dinats II

2. Polymorphic Church Numerals: Consider a ccc C (e.g. Sets)
and a uniform family n : ()() −→ ()(), where
nA : AA → AA is given by (on generic arrows f ∈ AA),
nA(f) = f n = f ◦ · · · ◦ f (n times). This makes sense in any
ccc. The reader can compute that the dinaturality condition
becomes: for any f : BA, g : AB , f ◦ (g ◦ f)n = (f ◦ g)n ◦ f ,
which is always true (a special instance of associativity).

Question([BFSS]): In Sets, does this characterize the dinats
()() −→ ()()? No. There is a proper class of such dinats.
Let k be any cardinal number, define θk(A) : AA → AA by:
θk(h) = h , if card (fix(h) = k); otherwise, θk(h) = idA. A
detailed calculation shows this is a dinat. But there is a
proper class of cardinals k !

Examples of Dinats III

3. Simple Application(Mac Lane):
Consider a ccc C (e.g. Sets) and a fixed object D. Consider
the dinatural transformation app : D() × ()→ KD , where
appA : DA × A→ D. The hexagon condition reduces to the
following (co)wedge: for any f : A→ B,

A0A ⇥ A A0

A0B ⇥ A B 0

B 0B ⇥ B B 0

A0f ⇥A

AppAA0

f 0

B0
AppBB0

f 0B⇥f

DA ⇥ A

DB ⇥ A D

DB ⇥ B

Df ⇥A appA

DB⇥f
appB

For g : DB , a : A, this says: (g ◦ f)(a) = g(f (a)), always true
in a ccc.

Note: key example of dinaturality: the variable A in appA occurs
both contra-variantly and co-variantly.

Examples of Dinats IV

4. Generalized Application. For a ccc C consider the application
AppAA′ : A′A × A→ A′. Then for f : A→ B, f ′ : A′ → B ′, we
have a dinatural hexagon:

A0A ⇥ A A0

A0B ⇥ A B 0

B 0B ⇥ B B 0

A0f ⇥A

AppAA0

f 0

B0
AppBB0

f 0B⇥f

For g : A′B , a : A, this says f ′((g ◦ f)(a)) = (f ′ ◦ g)(f (a)).
This is always true in a ccc.

Note: there is a precise sense in which we have a dinatural
transformation App : F → G between functors
F ,G : (C2)op × C2 → C, with the dinat family
AppAA′ : F (AA′; AA′)→ G (AA′; AA′). See the BFSS paper.

Examples of Dinats IV

5. Fixed Point Combinators. In many ccc’s C used in theoretical
CS (Continuous Lattices, ω-CPO, etc) we have least fixed
point combinators. These give dinaturals Y : ()() −→ id ,
where YA(f) = the least fixed point of f . In general,
Y = {YA : AA → A} satisfies, for any f : A→ B,

AA A

AB B

BB B

Af

YA

f

B

YB

f B

This says if g : AB , f (YA(g ◦ f)) = YB(f ◦ g). In particular,
setting A = B and g = idA, this confirms f (YA(f)) = YA(f), so Y
is a fixed point combinator at each object A.

Examples of Dinats V

6. Traced Symmetric Monoidal Categories. We’ll just recall this
briefly. Joyal-Street-Verity (1996) introduced an abstract
trace on an smc C, where

’l,shldr-(

Oqnonrhshnm 5-02 ’Nqhfhm]k Dvdbtshnm Enqltk](Ids ν ad W oqnne ne
∧ ZΓ“.�- Sgdm hm FhqWqcflr lncdk Ghka1*

’’0� ρ1(
′⊎

m3+

ν ’ρ ν (m’0� ρ1((m·m ; DoT
1k

TmεTm’’0⊕ –ρ(ν (

vgdqd ’>(m·m hr sgd rtalWsqhw ne > bnmrhrshmf ne sgd ffqrs m qnvr Wmc sgd ffqrs
m bnktlmr-

Hm sgd mdws svn rdbshnmr vd chrbtrr etqsgdq fdmdqˆkhyˆshnmr ne sgd mnshnmr ne
sqˆbd ˆmc nqsgnfnmˆkhsx- Sgdrd mnshnmr okˆx bqtbhˆk qnkdr hm FnH hmsdqoqdsˆshnmr-

6 O]qsh]k Sq]bd]mc ?arsq]bs Nqsgnfnm]khsx

Hm sghr rdbshnm vd knnj ˆs oˆqshˆk sqˆbdr- Sgd hcdˆ ne fdmdqˆkhyhmf sgd ˆarsqˆbs
sqˆbd ne ZIRU85“ sn sgd oˆqshˆk rdsshmf hr mns mdv- Enq dwˆlokd+ oˆqshˆk sqˆbdr
vdqd ˆkqdˆcx rstchdc hm vnqj ne ?aqˆlrjx+ Aktsd+ ˆmc Oˆmˆmfˆcdm Z?AO88“+
hm tmotakhrgdc kdbstqd mnsdr ne Fnqcnm Oknsjhm ZOk/2“+ vnqj ne Aktsd+ Bnbj,
dss+ ˆmc Rddkx ZABR//“ ’rdd Qdlˆqj 6-1(+ ˆmc nsgdqr- Sgd fthchmf dwˆlokd hm
Z?AO88“ hr sgd qdkˆshnmrgho adsvddm sqˆbd bkˆrr nodqˆsnqr nm ˆ Ghkadqs roˆbd
ˆmc Ghkadqs,Rbglhcs nodqˆsnqr- Sghr ˆkknvr sgd ˆtsgnqr sn drsˆakhrg ˆ bknrd bnq,
qdronmcdmbd adsvddm sqˆbd ˆmc mtbkdˆq hcdˆkr hm ˆ sdmrnq ×,bˆsdfnqx- Oknsjhm&r
vnqj cdudknor ˆ sgdnqx ne Bnmvˆx hcdˆkr nm ahoqnctbs bˆsdfnqhdr+ ˆmc ˆm ˆr,
rnbhˆsdc bˆsdfnqhbˆk sqˆbd sgdnqx- Tmenqstmˆsdkx mnmd ne sgdrd dwsˆms sgdnqhdr
hr ˆooqnoqhˆsd enq Fhqˆqc&r FnH- Rn vd oqdrdms ˆm ˆwhnlˆshyˆshnm enq oˆqshˆk
sqˆbdr rthsˆakd enq ntq otqonrdr-

Qdbˆkk+ enkknvhmf Inxˆk+ Rsqdds+ ˆmc Udqhsx ZIRU85“+ ˆ ’oˆqˆldsqhb(sqˆbd hm ˆ
rxlldsqhb lnmnhcˆk bˆsdfnqx ’B.⊕. H. r(hr ˆ eˆlhkx ne lˆor

DoTWεX 9 B’W ⊕ T. X ⊕ T(�∼ B’W. X (.

rˆshrexhmf uˆqhntr vdkk,jmnvm mˆstqˆkhsx dptˆshnmr- ? oWqshWk ’oˆqˆldsqhb(
sqˆbd qdpthqdr hmrsdˆc sgˆs dˆbg DoTWεX ad ˆ oˆqshˆk lˆo ’vhsg cnlˆhm cdmnsdc
NTWεX (ˆmc rˆshrex uˆqhntr bknrtqd bnmchshnmr-

Cd�mhshnm 6-0 ’Sq]bd Bk]rr(Kds ’B.⊕. H. r(ad ˆ rxlldsqhb lnmnhcˆk bˆs,
dfnqx- ? ’oWqWldsqhb(sqWbd bkWrr hm B hr ˆ bgnhbd ne ˆ eˆlhkx ne rtardsr+ enq
dˆbg naidbs T ne B+ ne sgd enql

NTWεX ≡ B’W ⊕ T. X ⊕ T(enq ˆkk naidbsr W+ X ne B

36

satisfies:

e

W

T

X

T

✦

✦

✦

✦

Ehf- 5- Sgd sq]bd @pTWεX ’e(

Sghr oWodq hmsqnctbdr Wwhnlr enq Wm WarsqWbs sqWbd nm W lnmnhcWk bWsdfnqx-
Sghr sqWbd bWm ad hmsdqoqdsdc hm uWqhntr bnmsdwsr vgdqd hs bntkc WksdqmWshudkx
ad bWkkdc bnmsqWbshnm* eddcaWbj* LWqjnu sqWbd nq aqWhc bknrtqd↪ ↪ ↪

Sgdqd gˆud addm uˆqhntr dwsdmrhnmr ne sqˆbdr ˆmc oˆqshˆk sqˆbdr9 vd chrbtrr
lnqd ne sghr hm Rdbshnm 6 ˆr vdkk ˆr hm Qdlˆqj 3-3 adknv-

Cd�mhshnm 3-0 ? sqWbdc rxlldsqhb lnmnhcWk bWsdfnqx hr ˆ rxlldsqhb lnmnhcˆk
bˆsdfnqx ’B.⊕. H. r(vhsg ˆ eˆlhkx ne etmbshnmr DoTWεX 9 B’W ⊕ T. X ⊕ T(�∼
B’W. X (ohbstqdc hm Ehftqd 5+ bˆkkdc ˆ sqWbd+ rtaidbs sn sgd enkknvhmf ˆwhnlr9

’0(M]stq]k hm W+ DoTWεX ’e(f ; DoTW∗εX ’e’f ⊕ 0T((+ vgdqd e 9 W ⊕ T �∼
X ⊕ T + f 9 W ∼ �∼ W+

’1(M]stq]k hm X + fDoTWεX ’e(; DoTWεX ∗’’f ⊕ 0T(e(+ vgdqd e 9 W ⊕ T �∼
X ⊕ T + f 9 X �∼ X ∼+

’2(Chm]stq]k hm T + DoTWεX ’’0X ⊕ f(e(; DoT
∗

WεX ’e’0W ⊕ f((+ vgdqd e 9
W ⊕ T �∼ X ⊕ T ∼+ f 9 T ∼ �∼ T +

’3(U]mhrghmf ’H* HH(+ DoHWεX ’e(; e ˆmc DoT⊕U
WεX ’f(; DoTWεX ’Do

U
W⊕TεX⊕T’f((+

enq e 9 W ⊕ H �∼ X ⊕ H ˆmc f 9 W ⊕ T ⊕ U �∼ X ⊕ T ⊕ U -

’4(Rtodqonrhmf+

f ⊕ DoTWεX ’e(; DoTV⊕WεY⊕X ’f ⊕ e(

enq e 9 W ⊕ T �∼ X ⊕ T ˆmc f 9 V �∼ Y -

’5(X]mjhmf+ DoTTεT’rTεT(; 0T -

Fhudm e 9 W ⊕T ∼ X ⊕T + vd sghmj ne DoTWεX ’e(ˆr [eddcaˆbj ˆknmf T!+ ˆr hm
Ehftqd 5- Rhlhkˆqkx+ sgd ˆwhnlr ne sqˆbdc lnmnhcˆk bˆsdfnqhdr gˆud rthsˆakd fdn,
ldsqhbˆk qdoqdrdmsˆshnm+ fhudm hm ?oodmchw ? ’be- ˆkrn ZIRU85+?GR/1+Gˆr/7“(-

Nardqud sgˆs he W ; X ; H+ to sn hrnlnqoghrl vd gˆud DoTWεX ’e(9 B’T.T(∼
B’H. H(hr ˆ rbWkWq,uWktdc sqˆbd ’be- Oqnonrhshnm 1-2(-

Dvdqbhrd 3-1 ’Fdmdq]khydc X]mjhmf(Kds B ad ˆ sqˆbdc rxlldsqhb lnmnhcˆk
bˆsdfnqx+ vhsg ˆqqnvr e 9 W∼X ˆmc f 9 X∼Y- Sgdm f=e ; DoXWεY’rXεY=’e⊕f((↪
Fdnldsqhbˆkkx+ rsˆqd ˆs sgd chˆfqˆl hm Ehftqd 6 + ˆmc cn ˆ [rsqhmf,otkkhmf! ˆq,
ftldms ’Enq ˆm ˆkfdaqˆhb oqnne+ rdd Oqnonrhshnm 1-3 hm Z?GR/1“(

13

and also (4) Vanishing I, II, (5) Superposing, (6)Yanking.

Let’s illustrate the graphical calculus of (2)-(3):

Examples of Dinats VI: naturality of trace graphically

ZQdf81[K- Qdfmhdq ’0881(+ KWlacW,bWkbtk ds Qd̀rdWtw+ OgC Sgdrhr+ Tmhudqrhsd̀ O]qhr
UHH-

ZRbg/6[T- Rbg–noo+ Rsq]shffdc Antmcdc ?flmd Knfhb enq Knf]qhsglhb Ro]bd+ Oqnb-
Knfhb hm Bnlotsdq Rbhdmbd ’KHBR(+ HDDD+ 1//6+ 300,31/-

ZRb//[O- Rbnss+ Rnld ?rodbsr ne B]sdfnqhdr hm Bnlotsdq Rbhdmbd+ hm
GWmcanni ne :kfdaqW+ Unk- 1 + L- G]ydvhmjdk+ dc-+ 1///+ Dkrduhdq+oo- 2z66-

ZRdd78[Q-?-F- Rddkx- Khmd]q knfhb+),]tsnmnlntr b]sdfnqhdr]mc bneqdd bn]kfdaq]r-
BnmsdlonqWqx LWsgdlWshbr+ Unktld 81- ?ldqhb]m L]sgdl]shb]k Rnbhdsx+
’0878(-

ZRsd//[F- Rsde]mdrbt- Mdsvnqi :kfdaqW+ Roqhmfdq,Udqk]f+ 1///-

ZSqRbgv[?- R- Sqndkrsq]]mc G- Rbgvhbgsdmadqf- AWrhb Oqnne Sgdnqx+ B]la- T-
Oqdrr+ 0885-

? Fq]oghb]k Pdoqdrdms]shnm ne Sgd Sq]bd ?vhnlr

�U �U

’
g

Y Y
f f

g g

XX

gg

� �

g

Mˆstqˆkhsx hm W

’
g

Y
f

g g

X� XU

g

Y

� XU

g g

Xf

Mˆstqˆkhsx hm X

’
X

Y

g

X

g

�

g

X

f

X

gU

Y
f

�

ggU

’
��

Chmˆstqˆkhsx hm T

56

So what’s wrong with Dinats?

In general, they don’t compose!

Functorial polymorphism 41

This means (using set-theoretic notation): if g: AH, f(YA(g of)) - u,(~o 9). In

particular, setting A G B and g = Ax : A.x (tt-?e identity on A), we see YA must be Q

fixed point combinabor ab each type A (cf. &SC Apper?dix A.2).

The most perverse aspect of the calculus of dinatural transformations is the failure
of composition. ne attempts to compose two dinatural transformations u : F + G

and v:G+ by horizontally “merging” the two hexag fine their corn--
posite u, v the formula (er; v), = UA; 2)A. Then for an consider

While both hexagons individually commute, the outer hexagon need not commute.
We now give two examples.

Example. In the category S T, consider the dinatural transformation v : ()’ ‘--,

K B O O L E 9 w h e r e E = (0, 1) and the map VA: AA + LE, where VA is 0 or 1
depending upon whether the number of fixed points of ument is even or odd,
understanding a as even. Consider the polymorphic identity u : K, + ()’) (see
Example 1.1(i)). The map (24; &: LE depends on A (it is not constant in
A); so u; v cannot be a dinatural transformation between constant functors.

Example. Let Ce be a ccc. Take any dinatural transformation Y: ()’) + () (cf.
Example I .l (iv)). If we were able to compose Y with the polymorphic identity
K, + ()’ j9 thee &e category % would be degenerate (i.e. given any ordered pair of
ob_iects, there is a uniqw map from the first to the second). See Appendix A.4.

1.2. Fact. If the middle diamond in (**) is a pullback, then we can in fact compose
the dinatural tra:r $ormabions u : F 3 G and v : G + H above. For in this case, there
exists a horizontaf arrow FBA + GBA making everything in sight commute.

The p.,oblem of composing dinatural and other classes of generalized natural
transformations has been examined by various authors (e.g. [17,311). At a general
level these problems are quite intricate dnd oniy partial solutions are known. In
Sections 2 and 3, these obstacles to compositionality will be resolved for certain
large classes of multivariant functors and dinatural transformations intrinsic to PER
and I-IEO-like models (cf. [4l, 5,361). We show that this includes at least those
functors and dinatural transformations definable in secon IhiC

lambda calculus.
For the remainder of this section we stay at a general level: some class Qf

multivariant func$ors wit some (not necessari inatural transfor-
mations between them. ut the reader shoul always

But if the middle diamond is a weak pullback (or weak pushout)
they do compose (exercise!) More possibilities:

• Dinats compose with nats.
• Dinats wrt restricted morphisms f can compose (e.g. f iso)
• Question: do extranaturals (wedges or co-wedges) compose?

Some constructions on multivariant functors

Products: Given functors F = F (A; B) : (Cop)n × Cn → C and
G = G (A; B) : (Cop)n × Cn → C, define their product pointwise:

(F × G)(A; B) = F (A; B)× G (A; B) .

Twisted Exponential: Given Functors F = F (A; B), and
G = G (A; B), define F ⇒ G : (Cop)n × Cn → C as follows:

(F ⇒ G)(A; B) = F (B; A)⇒ G (A; B)

In certain CCC’s, the above constructions may lead to a
compositional model: e.g. in BFSS, we studied the original
Realizability Topos.

In general, as Peter Freyd said, dinats form a cartesian closed
non-category!

Generalized Application, again

Covariant Projection: Define Pn
i : (Cop)n × Cn → C by:

Pn
i (A; B) = Bi ,where B = B1 . . .Bn.

Recall: generalized application

A0A ⇥ A A0

A0B ⇥ A B 0

B 0B ⇥ B B 0

A0f ⇥A

AppAA0

f 0

B0
AppBB0

f 0B⇥f

Tricky calculation:

appP2
1 ,P

2
2

: (P2
1 ⇒ P2

2)× P2
1 −→ P2

2

determines a dinatural transformation agreeing with generalized
application, e.g. (appP2

1 ,P
2
2
)AA′ = AppAA′ : A′A × A −→ A′.

Ends and Co-ends (Yoneda)
Given multivariant functor G , we seek a universal wedge into G.
This is an object E with wedge KE

u−→ G s.t. for any other object
D and wedge KD

v−→ G , there is a unique map D
m−→ E such that

AA A

AB B

BB B

Af

YA

f

B

YB

f B

KD

KE Gu

v that is

D G (A, A)

G (A, B)

E G (B , B)

uA

GAf

GfB

uB

m

vA

vB

We write E =
∫
A GAA. It is called the end of G .

In many concrete categories, when defined, it’s a limit:∫
A GAA = {g ∈∏

A GAA | GAf (gA) = GfB(gB) for all f : A→ B}
In functorial polymorphism, it is a kind of “parametric” universal
quantifier: ∀A.GAA

Co-Ends (Yoneda)

The dual of end is co-end, denoted
∫ A

GAA. It is a solution to the
co-universal problem:

AA A

AB B

BB B

Af

YA

f

B

YB

f B

KD

KE Gu

v

KD

KE Gu

v

Again, in appropriate concrete categories, it’s a colimit:∫ A
GAA =]{GAA | A ∈ Cn}/∼ , where

∼ is the smallest equivalence relation on]{GAA | A ∈ Cn}
satisfying: given (x ,A) and (y ,B), with x ∈ GAA , y ∈ GBB

(x ,A) ∼ (y ,B) iff there exists z ∈ GBA and A
f−→ B

such that x = (GfA)(z) & y = (GBf)(z)

Naturality Formulas

Let F ,G : C → D. Consider the hom functor
D(F−,G−) : (Cop)× C → Set. For any set X , the wedge
τ : KX → D(F−,G−), satisfies: for any f : A→ B

(†)

D G (A, A)

G (A, B)

E G (B , B)

uA

GAf

GfB

uB

m

vA

vB

D(FA, GA)

X D(FA, GB)

D(FB , GB)

⌧A
D(FA,Gf)

⌧B D(Ff ,GB)

X

Nat(F , G) D(FA, GA)
!A

⌧A

∀x ∈ X ,Gf τA,x = τB,xFf .

• Claim: this says ∀x ∈ X , τ−,x ∈ Nat(F ,G).

• Consider the family of maps
ω = {ωA : Nat(F ,G)→ D(FA,GA) | A ∈ C}
given by ωA(θ) = θA : FA→ GA, for a natural transformation
θ ∈ Nat(F ,G). Claim: ω : KNat(F ,G) → D(F−,G−) determines a
wedge (as in (†) .

Naturality Formulas II

Summarizing the previous discussion:

Proposition (Mac Lane)

Let Nat(F ,G)
ωA−→ D(FA,GA) assign θ 7→ θA on nat θ. The

function m := x 7→ τ−,x : X → Nat(F ,G) is the unique map

making ω a universal wedge:

X D(FA, GA)

D(FA, GB)

Nat(F , G) D(FB , GB)

!A

D(FA,Gf)

D(Ff ,GB)

!B

m

⌧A

⌧B

Hence Nat(F ,G) ∼=
∫
AD(FA,GA)

A similar result holds for dinats: if F ,G : Cop × C → D, we get

Dinat(F ,G) ∼=
∫
AD(F (A; A),G (A; A)) .

Functorial Polymorphism

In the papers [GSS] and [BFSS], we consider some compositional
models for dinaturals arising from logic.
(i) In [GSS], we looked at cut-free proofs as determining a
dinatural modelling in a cartesian-closed setting.
(ii) In [BFSS] we found a “parametric” model of Girard’s System
F , in which dinats compose, based on certain dinats in the original
Realizability topos and ∀α is interpreted as an end.
(iii) In the Blute-Scott (et.al.) papers, we were interested in
proving certain concrete categorical models Dinat(C) for
multiplicative linear logic admitted a full interpretation, i.e. the
unique free functor F → Dinat(C) is full, where F is the free
(syntactically generated) category of a fragment of LL.

Functorial Polymorphism: the paper [GSS]

Consider (free) cartesian closed categories (equivalently, simply
typed λ-calculus or a simple typed functional programming
language). Question: Are there ”unexpected” equations between
terms (beyond simple β, η equality)? Answer: Yes, dinatural
equations!

Example

Consider a simple closed term r : α× α⇒ α× α. What can we
say about r? For each type A, consider rA : A× A⇒ A× A.
Suppose f : A⇒ B is a closed term. Then we show:

(f × f) ◦ rA = rB ◦ (f × f)

This says r : F → F is a natural transformation, where
F (−) = (−)× (−).

Functorial Polymorphism: the paper [GSS] II

More generally, the previous example r seems to depend on
f : A⇒ B. So consider the more general term:

mα,β : (α⇒ β)⇒ (α× α⇒ β × β)

What could it be? First guess: m maps f 7→ f × f for f : A⇒ B.

In fact we show: for any types A,B, and any closed term
f : A⇒ B,

mAB(f) = (f × f) ◦mAA(1A) = mBB(1B) ◦ (f × f)

So any instantiation of mα,β really is f 7→ f × f up to an
endomorphism of the domain or codomain.

Functorial Polymorphism: the paper [GSS] III

Let C be a ccc. For each type expression σ(α1 . . . , αn) with
type variables αi , define its interpretation ||σ|| : (Cop)n×Cn → C as:

Now consider a term t : τ with typing x1 : σ1, . . . , xk : σk . t : τ .
We interpret this as a dinat family

||t|| = {||t||A : (||σ1|| × . . .× ||σk ||)AA→ ||τ ||AA | A ∈ Cn}

where A = A1,. . . , An and Ai = ||αi ||, by induction:

Functorial Polymorphism: the paper [GSS] IV

The interpretations of terms is as follows:

Functorial Polymorphism: the paper [GSS] V

Theorem (GSS, Thm. 2.2)

Let L be simply typed lambda calculus with type variables, let C
be any ccc, and let α1, . . . , αn be a list of type variables. Then any
type τ(α1, . . . , αn) with the indicated type variables induces a
functor ||τ || : (Cop)n × Cn → C. Furthermore, any legal typing
judgement x1 : σ1, . . . , xk : σk . t : τ induces a family of lambda
terms ||t|| = {||t||A | A ∈ Cn} which is actually a dinatural
transformation ||t|| : ||σ1|| × · · · × ||σk || → ||τ ||. Beta-eta equal
lambda terms give the same dinatural family.

Functors and dinatural transformations induced by lambda terms
(i.e. arrows in a free ccc) will be called definable. The point is that
under type and term-substitution, definable dinats actually do
compose. This leads to the following theorem:

Functorial Polymorphism: the paper [GSS] VI

Theorem (GSS, Thm. 2.3)

Let C be any ccc. Then for each n the definable multivariate
functors (Cop)n × Cn → C and definable dinatural transformations
between them form a ccc. The cartesian closed structure on
definable functors is given by products and twisted exponentials. In
fact, they form an indexed category (hyperdoctrine, without the
quantifiers) of ccc’s, with base = natural numbers, and the fibre
over n the definable multivariate n-ary functors, and maps the
definable dinats between them.

Functorial Polymorphism: the paper [GSS] VIII.

Recall the typing judgement:
x : α⇒ β . m(x) : α× α⇒ β × β

There are 2 variables, so this is a dinat (Cop)2 × C2 m−→ C.
Variables are covariant projections, so this becomes:

(P1 ⇒ P2)
m−→ (P1 × P1)⇒ (P2 × P2)

Calculating the LHS at (A′B ′; AB) and RHS at (AB; A′B ′) for
arrows a : A→ A′ and b : B → B ′, we have

Functorial Polymorphism: the paper [GSS] VIII.

Letting A′ = B ′ = B, b = 1B , a = f leads to

Chasing 1B : B ⇒ B on LHS around the diagram, we obtain:

mAB(f) = mBB(1B) ◦ (f × f)

and similarly for the dual situation of an endomorphism of the
domain.

Functorial Polymorphism: the paper [GSS] VII

Idea of the proof of the main theorem. Subtle problems arise!

1. Definable dinats between definable functors are uniformly
given by (instantiations of) a single lambda term. But lambda
terms are closed under usual substitution.

2. The types themselves σ(α1, . . . , αn) also permit substitutions
of arbitrary formulas Bi for the αi .

3. Dinats, in general, don’t compose. But definables do. Why?

4. Idea: we will represent the definable dinats in a Gentzen
Sequent Calculus (for ⇒,×) which admits Cut-Elimination.
In a cut-free system, we can essentially ignore using the
cut-rule for composing dinats. But this is very subtle:
substitution doesn’t disappear, but is hidden in the basic rules.
We show this by a non-trivial interpretation of sequent
calculus into ND, then looking at the inherited Curry-Howard
lambda-term assignment of cut-free proofs from within ND.

[GSS]: Intuitionist Sequent Calculus for {⇒,∧}

[GSS]: Inherited λ-terms (within ND) for sequent proofs

[GSS]: Inherited λ-terms (within ND) for sequent proofs II

[GSS]: Conclusion of [GSS]

The “real” meaning of Cut-elimination ([GSS], p.15):

All general instances of term substitution arising from the
cut rule are already derivable (up to equality of terms)
from the special instances of substitution used in the
other rules.

We obtain, as a Corollary of the main proof in [GSS], the following:

• Cut-free proofs are represented by closed terms in normal form,
thus arrows in C.

• Any arrow m : A→ B (qua closed normal form of type A⇒ B)
induces a dinatural transformation between definable functors
||A|| → ||B||. These normal forms compose by substitution.

• m provably satisfies the dinaturality equations.

Aside: An example of an end calculation

Recall last time we mentioned Mac Lane’s Proposition:
Nat(F ,G) ∼=

∫
AD(FA,GA). We illustrate this:

Consider a monoid M. A (left) M-set is a set X with a left

action M× X
λ−→ X satisfying well-known axioms; equivalently,

it’s a set X and a monoid hom M→ (End(X), ◦). A morphism of
M-sets (X , λ)→ (Y , µ) is an equivariant map.

The category of M-sets and homs can be thought of as the
functor category SetM, where M is a category with one object.

Example: By cartesian-closedness, the monoid multiplication

M×M→M induces an action M λL−→ (Endo(M), ◦) called left
representation, defined by m 7→ (n 7→ mn). We write
ML = (M, λL) for this M-set.

Aside: An example of an end calculation II
• Consider the forgetful functor U : SetM → Set, mapping
(X , λ) 7→ X . Claim: U is representable: U ∼= HomSetM(ML,−).

Exercise 1: Prove U is representable. Hence,

Nat(U,U) ∼= Nat(HomSetM(ML,−),HomSetM(ML,−))
∼= HomSetM(ML,ML) by Yoneda’s Lemma
∼= M by Exercise 2 below; (actually a monoid iso).

Exercise 2: Prove HomSetM(ML, (S , λ)) ∼= S by mapping
f 7→ f (e), for f equivariant.

Hence, by Mac Lane,
∫
C∈SetM(U(C),U(C)) ∼= Nat(U,U) ∼=M .

• For any category C, Nat(IdC , IdC) ∼=
∫
A∈C HomC(A,A).

Related to Picard Group of a category, etc.

• See also Tannakian Duality on nLab.

Girard’s System F : Polymorphic λ-calculus

Consider all the formulas of second-order intuitionistic
propositional logic built out of propositional variables using ∀,⇒.

A,B ::= Prop.Vbls | A⇒ B | ∀α.A

Examples: (α⇒ α), ∀α.(α⇒ α), ∀α.(α⇒ β), etc. We will call
these formulas Types, or Polymorphic Types to be precise.
Notice, the first type has free α, the second has no free type
variables, the last has β free and α bound.

We write Γ ` B to say hypotheses Γ entail B, where
Γ = {A1 . . . ,An} is a finite set of hypotheses.

Girard’s System F : Polymorphic λ-calculus II

1. Γ,A ` A

2.
Γ ` A ∆,A ` B

Γ,∆ ` B

3.
Γ,A ` B

Γ ` A⇒ B

4.
Γ ` A(α)

Γ ` ∀αA(α)
∀-I

α 6∈ FTV (Γ)

5.
Γ ` ∀αA(α)

Γ ` A[α := B]
∀-E

for any B.

Remarks: Notice in #5, the formula B is of arbitrary
complexity–it can even contain ∀αA(α) as a subformula! So Rule
#5 definitely increases complexity.

We now discuss Girard’s second-order (polymorphic) λ-calculus
and the assignment of proof terms (à la Curry-Howard) to
second-order propositional calculus.

Girard’s System F and Polymorphic λ-calculus IV

(var)
Γ, x:A ⊢ x : A

(app) Γ ⊢ M : A → B Γ ⊢ N : A
Γ ⊢ MN : B

(abs) Γ, x:A ⊢ M : B
Γ ⊢ λxA.M : A → B

(typeapp) Γ ⊢ M : ∀α.A

Γ ⊢ MB : A[B/α]

(typeabs) Γ ⊢ M : A α ̸∈ FTV (Γ)

Γ ⊢ Λα.M : ∀α.A

Table 6: Typing rules for System F

• FTV (∀α.A) = FTV (A) \ {α}.

We also write A[B/α] for the result of replacing all free occurrences of α by B in
A. Just like the substitution of terms (see Section 2.3), this type substitution must
be capture-free, i.e., special care must be taken to rename any bound variables of
A so that their names are different from the free variables of B.

The terms of System F are:

Terms: M, N ::= x MN λxA.M MA Λα.M

Of these, variables x, applications MN , and lambda abstractions λxA.M are ex-
actly as for the simply-typed lambda calculus. The new terms are type application
MA, which is the application of a type function M to a type A, and type abstrac-
tion Λα.M , which denotes the type function that maps a type α to a term M . The
typing rules for System F are shown in Table 6.

We also write FTV (M) for the set of free type variables in the term M . We need
a final notion of substitution: if M is a term, B a type, and α a type variable, we
write M [B/α] for the capture-free substitution of B for α in M .

8.2 Reduction rules

In System F, there are two rules for β-reduction. The first one is the familiar rule
for the application of a function to a term. The second one is an analogous rule

69

Equations: β and η rules for both lambdas, that is:

(i) (λx : A.ϕ)a =β ϕ[x := a] and λx : A(fx) =η f , where
x 6∈ FV (f).

(ii) (Λα.M)[B] =β2 M[α := B] and Λα.(M[α]) =η2 M,
where α 6∈ FTV (M).

The power of Girard’s System F , II

Consider (λx :α.x) : α⇒ α, i.e. idα. In fact, the type-indexed
family of identity functions {idα}α of type ∀α.(α⇒ α) suggests a
dinatural transformation. This led to Functorial Polymorphism...

Continuing with the power of 2nd-order logic, here’s a chart (from
Selinger’s notes) for defining most of the usual logical connectives:

“arbitrary” has been formalized in the logic by requiring that α does not appear in
any of the hypotheses that were used to derive A, or in other words, that α is not
among the free type variables of Γ.

The ∀-elimination rule is also known as universal specialization. It is the simple
principle that if some statement is true for all propositions α, then the same state-
ment is true for any particular proposition B. Note that, unlike the ∀-introduction
rule, this rule does not require a side condition.

Finally, we note that the side condition in the ∀-introduction rule is of course the
same as that of the typing rule (typeabs) of Table 6. From the point of view of
logic, the side condition is justified because it asserts that α is “arbitrary”, i.e.,
no assumptions have been made about it. From a lambda calculus view, the side
condition also makes sense: otherwise, the term λxα.Λα.x would be well-typed
of type α → ∀α.α, which clearly does not make any sense: there is no way that an
element x of some fixed type α could suddenly become an element of an arbitrary
type.

8.6 Supplying the missing logical connectives

It turns out that a logic with only implication → and a second-order universal
quantifier ∀ is sufficient for expressing all the other usual logical connectives, for
example:

A ∧ B ⇐⇒ ∀α.(A → B → α) → α, (1)
A ∨ B ⇐⇒ ∀α.(A → α) → (B → α) → α, (2)

¬ A ⇐⇒ ∀α.A → α, (3)
⊤ ⇐⇒ ∀α.α → α, (4)
⊥ ⇐⇒ ∀α.α, (5)

∃β.A ⇐⇒ ∀α.(∀β.(A → α)) → α. (6)

Exercise 34. Using informal intuitionistic reasoning, prove that the left-hand side
is logically equivalent to the right-hand side for each of (1)–(6).

Remark 8.4. The definitions (1)–(6) are somewhat reminiscent of De Morgan’s
laws and double negations. Indeed, if we replace the type variable α by the con-
stant F in (1), the right-hand side becomes (A → B → F) → F, which is
intuitionistically equivalent to ¬¬(A ∧ B). Similarly, the right-hand side of (2)
becomes (A → F) → (B → F) → F, which is intuitionistically equivalent to

74

There are no Set-theoretical models of Girard’s System F . Goal:
find a model based on definable functors and some class of
dinatural transformations over a base category C.

The power of Girard’s System F , II

Consider (λx :α.x) : α⇒ α, i.e. idα. In fact, the type-indexed
family of identity functions {idα}α of type ∀α.(α⇒ α) suggests a
dinatural transformation. This led to Functorial Polymorphism...

Continuing with the power of 2nd-order logic, here’s a chart (from
Selinger’s notes) for defining most of the usual logical connectives:

“arbitrary” has been formalized in the logic by requiring that α does not appear in
any of the hypotheses that were used to derive A, or in other words, that α is not
among the free type variables of Γ.

The ∀-elimination rule is also known as universal specialization. It is the simple
principle that if some statement is true for all propositions α, then the same state-
ment is true for any particular proposition B. Note that, unlike the ∀-introduction
rule, this rule does not require a side condition.

Finally, we note that the side condition in the ∀-introduction rule is of course the
same as that of the typing rule (typeabs) of Table 6. From the point of view of
logic, the side condition is justified because it asserts that α is “arbitrary”, i.e.,
no assumptions have been made about it. From a lambda calculus view, the side
condition also makes sense: otherwise, the term λxα.Λα.x would be well-typed
of type α → ∀α.α, which clearly does not make any sense: there is no way that an
element x of some fixed type α could suddenly become an element of an arbitrary
type.

8.6 Supplying the missing logical connectives

It turns out that a logic with only implication → and a second-order universal
quantifier ∀ is sufficient for expressing all the other usual logical connectives, for
example:

A ∧ B ⇐⇒ ∀α.(A → B → α) → α, (1)
A ∨ B ⇐⇒ ∀α.(A → α) → (B → α) → α, (2)

¬ A ⇐⇒ ∀α.A → α, (3)
⊤ ⇐⇒ ∀α.α → α, (4)
⊥ ⇐⇒ ∀α.α, (5)

∃β.A ⇐⇒ ∀α.(∀β.(A → α)) → α. (6)

Exercise 34. Using informal intuitionistic reasoning, prove that the left-hand side
is logically equivalent to the right-hand side for each of (1)–(6).

Remark 8.4. The definitions (1)–(6) are somewhat reminiscent of De Morgan’s
laws and double negations. Indeed, if we replace the type variable α by the con-
stant F in (1), the right-hand side becomes (A → B → F) → F, which is
intuitionistically equivalent to ¬¬(A ∧ B). Similarly, the right-hand side of (2)
becomes (A → F) → (B → F) → F, which is intuitionistically equivalent to

74

There are no Set-theoretical models of Girard’s System F . Goal:
find a model based on definable functors and some class of
dinatural transformations over a base category C.

PER models [BFSS]

A partial equivalence relation (per) E on a set A is a symmetric
transitive relation on A. The domain of a per E = domE =
{a ∈ A | aEa}.
So, E is an e.r. on its domain, hence partitions the domain into
disjoint classes. We’ll consider Per(N) as a category, as follows:

(i) Objects of Per(N) are pers on N. (i.e. partitions of subsets of
N).

(ii) Arrows E → E ′ are (named by) partial recursive functions f
preserving the partition, i.e. whenever nEm, then f (n) ↓, f (m) ↓
and f (n)E ′f (m). Equality of arrows: given f , g : E → E ′, f = g if
for all m, n ∈ domE , nEm implies f (n) ↓, g(m) ↓ and f (n)E ′g(m).
In particular, f and g name the same morphism if for all
n ∈ domE , f (n)E ′g(n).

PER models [BFSS] II

Theorem
Per(N) forms a ccc.

Proof Sketch: uses some elementary recursive function theory. 1 is
any per with a unique equivalence class. Given A,B ∈ Per(N),
〈m, n〉(A× B)〈p, q〉 iff mAp and nBq, where 〈 , 〉 : N2 → N is a
chosen recursive bijection. m(BA)n iff m and n are codes of equal
morphisms A→ B. The fundamental bijection
C × A→ B ∼= C → BA uses the S-m-n theorem of Recursion
Theory.

A fundamental subcategory of Per(N) is I , the inclusions. So
f : E → E ′ if f is (named by) the identity map idN. The maps are
not intuitively “inclusions”, since they may not be monos, indeed
they may be surjections set-theoretically!

PER models [BFSS] III

Proposition (BFSS)

Every morphism in Per(N) may be decomposed into an iso,
followed by an (I)-map, followed by an iso.

Aside: A subcategory Ñ of Per(N) was introduced by Lambek and
Scott in a paper “An exactification of the monoid of primitive
recursive functions”. Objects of Ñ are recursively enumerable pers.

There is a somewhat similar Proposition for Ñ to the above.

Proposition (L-S)

In the category Ñ of r.e. pers, every map can be factored as
(I)-map, followed by an iso, followed by an (I)-map. The first
(I)-map is a canonical surjection, and the last (I)-map is a
canonical injection.

PER models and Realizable Functors

Definition
A realizable functor F : Per(N)→ Per(N) takes I to I and is such
that there is an endomap Φ of partial recursive functions such that

if E
f−→ E ′ then F (E)

F (f)−→ F (E ′), where F (f) is named by Φ(f).

Any functor definable in Girard’s System F is realizable. Realizable
functors are closed under all usual operations: pointwise products,
twisted exponentials, substitution.

PER models [BFSS] Realizable Dinats

Definition
Let C = Per(N). For realizable functors F ,G : (Cop)n × Cn → C, a
family u = {uA : FAA→ GAA | A ∈ Cn} (not necessarily dinat) is
realizable if there is a single partial recursive function ϕ that names
each component uA.

Theorem
On Per(N), realizable dinatural transformations (between
realizable functors) compose.

Corollary

For each n, the realizable functors
F ,G : (Per(N)op)n × Per(N)n → Per(N) and realizable dinats
form a ccc.

PER models: horizontal and vertical merging of dinats

• Dinats wrt isos compose (i.e. we can horizontally merge dinat
families restricted to isos), as the middle “diamond” is a pullback!

• Realizable dinats wrt I -maps horizontally compose...basically, it’s
the same partial recursive function at each level, pre and post
composed with an identity inclusion. Compose them horizontally.

In Per(N), a map f is a composition of iso; inclusion; iso. So to
get a general dinat (with respect to an arbitrary map f), begin
with a 3× 2 array of 6 composable dinat hexagons. These 6
hexagons are in 3 horizontal rows of two composable dinats each.
The first row consists of two composable dinats wrt iso maps. The
second row are two composable dinats wrt to ”inclusion” maps.
And the third row is again two composable dinats wrt to isos.
After composing each row, the 3 remaining hexagons are vertically
merged pairwise into a big dinat for arbitrary f represented as
iso;inc;iso (see next page).

PER models [BFSS] (pairwise vertical merging)

Pairwise vertical merging of dinats into one bigger dinat wrt
composite maps. So three dinat hexagons can be vertically
composed wrt 3 composite maps f ; g ; h. Apply this to arbitrary
maps in Per(N) factored as iso; inclusion; iso to get dinats wrt
arbitrary maps.

42 E.S. Bainbridge et al.

specialize the entire frame\vorl-. to some nice model where, among other things,
compositionality holds.

We can say a bit more about compositionality at the general level. Until further
notice, let us fix functors F, 6, W : (%“)n x Vi”’ + %. Let U, v denote fa

A : FAA -+ GAA, VA : GAA + HAA, A E %, not necess ily dinatural. Let
be the set off for which the family u is dinatural; that is f c ,, iff the hexagon

(*) in Definition 1.0 commutes. [, and II; I,’ are defined similarly.

o&ion (Vertical merging). is a subcategory.

trivially contains identity arrows. Given f: and g:
stare at the following diagram, using functoriality of F and G on the obliyvle outer
edges:

FCC uc - GCC

osition (Horizontal merging with respect to isomorphisms). Any isomorph-
is necessarily in u;L”

Suppose f is an isomorphism (iso) in both U and L,. Observe that the
le diamond in (**) has each side the G-image of an iso. Since functors preserve

isos, we obtain a diamond whose sides are all isos, and such a diagram is of course
a pullback; now use Fact 1.2. 0

e can build new ctors from old by various Jperations. For the rxord, given
two functcrs F and ct is constructed pointwise; that is, on objects,

, while their exponential or function space GF is
It is a remarkable fact that GF is the categori-

ecial situations, an exd
.6, an e recent war _

PER models [BFSS] System F modelling

We continue with the functorial polymorphism program: what
about modelling ∀α.τ in Girard’s System F ? That’s what
polymorphism is about!

Proposition

In Per(N), Realizable ends exist, i.e, the per
∫
A GAA exists.

Idea of proof: Intersections of pers exist. So take the intersection
of all pers GAA then take the subper E corresponding to the
dinaturality condition. Officially, mEn iff for any f : A→ A′

GAA′ relates G (A, f)(m) to G (f ,A′)(n). For details, see [BFSS],
Thm. 2.11.

PER models [BFSS] System F modelling II

To model Girard’s ∀α, we use realizable ends:

||∀αi .τ || =

∫
Q
||τ ||A[Ai := Q]B[Bi := Q]

E.g. ||∀α(α× (α⇒ β))||(A1A2; B1B2) =∫
Q ||α× (α⇒ β))||(QA2,QB2) =∫
Q Q × (Q ⇒ B2)

PER models [BFSS] : System F Soundness

Given a derivable typing judgement
~xi : σi . t : τ in System F , we can consider the term et = Erase(t)
which erases all the type information from t. It is an untyped
lambda term, and can denote a partial recursive function (see
[BFSS], Appendix A.1).

Theorem (Soundness of Realizable Dinats)

Given a derivable typing judgement in System F , ~xi : σi . t : τ with
free type variables among α1, . . . , αk . Then et names a realizable
dinat ||σ1 × · · · × σn|| → ||τ || : (Cop)k × Ck → C, where
C = Per(N). Provably β, η equal System F terms name the same
dinat family, up to equality of dinats.

Some relations of dinats to linear logic

Many of the previous ideas work in the monoidal/linear logic world.
For example let C be symmetric monoidal closed. If
F ,G : (Cop)n × Cn → C, we define the following operations on
multivariant functors:

I (F ⊗ G)(A; B) = F (A; B)⊗ G (A; B)

I (F −◦ G)(A; B) = F (B; A) −◦ G (A; B)

If C is actually *-autonomous (in the sense of Barr), we can lift the
basic interpretation of {−◦,⊗} to formulas of multiplicative linear
logic (MLL), {⊗, (−)⊥}. To the inductive clauses for definable
functors, add

I If ϕ(α1, . . . , αn) ≡ (αi)
⊥ , define ϕ (A; B) = (Ai)

∗, the
linear negation of the ith contravariant projection.

See work of Blute-Scott (e.g. Linear Läuchli Semantics) on Full
Completeness and earlier papers of Blute.

Day’s Construction: A bit of History I

In 1970, SLN 137 published an important issue “Reports of the
Midwest Category Seminar IV”. There we see two important
papers, which form the basis of this seminar:

(i) Brian Day: On Closed Categories of Functors,

(ii) Eduardo Dubuc and Ross Street: Dinatural Transformations

Day convolution was defined in this paper, of course using the
co-end calculus, arising in (ii). I will leave the abstract treatment
to other speakers. But I will now mention some concrete versions
of Day’s ideas.

Day’s Construction: A bit of History II

The use of Day’s tensor on functor categories SetC (C monoidal)
was popularized in CS in the period 1997-2000 by various
researchers (e.g. Marcelo Fiore, Ian Stark, Moggi, Sangiorgi, et.al.)
who were trying to find fully-abstract models of π-calculus (a
language by Robin Milner for concurrency) as well as an early
theory of “names” and “fresh names” .

My student Guy Beaulieu wrote an MSc thesis in 2002, entitled
“Finding Presheaf Models for the Finite π-calculus”, based on
Day’s tensor. The detailed calculations are in his thesis, available
online: https://ruor.uottawa.ca/handle/10393/6206

Day’s Construction on Functor Categories: concretely

Given the category of Sets with its usual ccc structure
(Set,×, 1,⇒) and if (C,⊗, I) is monoidal (not necessarily closed),
we can define a structure (SetC ,⊗day , IDay ,−◦Day) on the functor
category. Given S ,T ∈ SetC , and s,X ,Y ∈ C, define

(S ⊗Day T)(s) =

∫ X

SX ×
∫ Y

TY × C(X ⊗ Y , s)

=

∫ X ,Y

SX × TY × C(X ⊗ Y , s)

= ΣX ,Y SX × TY × C(X ⊗ Y , s)/ ∼
(a quotient by an e.r.)

IDay = C(I ,−)

(S −◦Day T)(s) = HomSetC(S ,T (s ⊗−))

Day’s Construction on Functor Categories II

Guy Beaulieu points out the following results:

Proposition

(−⊗Day S) is left adjoint to (S −◦Day −), i.e.

Hom(B ⊗Day S ,T) ∼= Hom(B, S −◦Day T)

Proposition

If C is symmetric monoidal, ⊗Day is symmetric

Also, if SetC has its usual cartesian closed structure, then SetC has
two monoidal closed structures; moreover it has finite coproducts,
so is often called a bicartesian closed category (and is a model of
the O’Hearn-Pym “Bunched Logic”)

Day’s Construction on Functor Categories III

Given S ,T ∈ SetC , and s,X ,Y ∈ C, recall

(S ⊗Day T)(s) =

∫ X

SX ×
∫ Y

TY × C(X ⊗ Y , s)

=

∫ X ,Y

SX × TY × C(X ⊗ Y , s)

= ΣX ,Y SX × TY × C(X ⊗ Y , s)/ ∼

where the equivalence relation ∼ is generated from :

(x ∈ SX , y ∈ TY , η : X ⊗ Y → s) ∼
(x ′ ∈ SX ′, y ′ ∈ TY ′, η′ : X ′ ⊗ Y ′ → s ′)

iff ∃f : X ′ → X ,∃g : Y ′ → Y s.t. Sf (x ′) = x ,Tg(y ′) = y and
η(f ⊗ g) = η′.

Day’s Construction on Functor Categories IV

Exercise: Define ⊗Day , −◦Day on maps.

Beaulieu shows: for S ∈ SetC , that S ⊗Day IDay
∼= S .

Exercise: Check out the calculations with the notation here (there
are some typos in Beaulieu!)

