Functorial Polymorphism

Dinaturality

Philip Scott

February 5, 2023

References

» [BFSS] E.S. Bainbridge, P.J. Freyd, A. Scedrov, P. J. Scott,
Functorial Polymorphism, Theoretical Comp. Science 70
(1990), 35-64

» [B-S] R. F. Blute, P.J.Scott, Linear Lauchli Semantics, APAL
(1996), 101-142.

» E J. Dubuc and R. Street, Dinatural Transformations, in:
Reports of the Midwest Category Seminar IV, Springer
Lecture Notes in Mathematics 137 (1973),126-138

» [GSS] J-Y Girard, A. Scedrov, P. J. Scott, Normal Forms and
Cut-free proofs as Natural Transformations., (1992), Logic
from Computer Science, Springer-Verlag.

» S. Mac Lane Categories for the Working Mathematician, 2nd
Ed.,1998, Springer (Chap. IX: Special Limits: Diagonal
Naturality, Ends, Co-Ends), 218-230

Diagonal Naturality (Dubuc & Street, 1973)

Consider functors of the form F : (C°P)" x C" — D. For
exposition, we often take D = C. Official notation F(A;B), often
written as FAB, if clear.

Definition (Dinaturality)

Consider F, G : (C°P)" x C" — C. A dinatural transformation
0 : F — G is a family of C-arrows 8 = {64 : FAA — GAA| A€ C"}
satisfying: for any n-tuple f : A— B € C":

Fad %1, qaa
Ff A/ \GA f
FBA GAB
FB f\ 5 /¢ GfB

FBB ——— GBB

Special Cases of Dinats
F.-XALGAA

FfAs \GAf
FBA GAB
FBf\ 6n / GfB

FBB —— GBB

1. Suppose F, G : C — C are covariant functors, construed as
functors C°? x C — C dummy in the first (contravariant)
argument, e,g. F(A; B) := F(B). Then the NE-oblique arrows
FfA = idpa, GfB = idgg, since there's no contravariance. So

. . 0
0 reduces to an ordinary natural transformation F — G.

Special Cases of Dinats
F.-XALGAA

FfAs \GAf
FBA GAB
FBf\ 6n / GfB

FBB —— GBB

1. Suppose F, G : C — C are covariant functors, construed as
functors C°? x C — C dummy in the first (contravariant)
argument, e,g. F(A; B) := F(B). Then the NE-oblique arrows
FfA = idpa, GfB = idgg, since there's no contravariance. So
0 reduces to an ordinary natural transformation F 6.

2. If F is covariant and G is contravariant (dummy in the

missing arguments) we get following shape (for f : A — B):
0a

FA GA
Exercise:
Ff cf What is shape if F contra, G covariant?
B8 . o

Special Cases of Dinats Il

3. (Wedges) A wedge or extranatural transformation is a
dinatural transformation from F to G where one of F or G is a
constant functor. For example, suppose F = Kp, the constant
functor with value D. Then the dinatural hexagon becomes a
family {64 : D — GAA | A € C} satisfying, for f : A— B :

Oa

D GAA
0p GAf
GBB ofB GAB

(note: C can be C", so we get n-tuples of objects & arrows).

Examples of Dinats |

1. Polymorphic Identity: Consider a ccc C and let Kj be the
constant functor on 1. Consider a wedge 6 : K; — ()()
where 04 : 1 — A is the "name" of the identity (given by the

1xA% A

bijection 1 RNy). In A-calculus, 04 = M:A. x
Dinaturality says:
O

1 AA
0s A
BB B’ BA

This amounts to saying: f o ida = idg o f, which is true!
(There is an “external” version (Mac Lane): consider

C% x C ™% Set and a dinat 0 : Ky — hom.)

Important: 0, is a family of uniform algorithms: the identity!

Examples of Dinats Il

2. Polymorphic Church Numerals: Consider a ccc C (e.g. Sets)
and a uniform family n: ()() — ()(), where
ny : A4 — A% is given by (on generic arrows f € A%),
na(f)=f"=fo---of (ntimes). This makes sense in any
ccc. The reader can compute that the dinaturality condition
becomes: for any f : BA,g: AB, fo(gof)'=(fog)'of,
which is always true (a special instance of associativity).

Question([BFSS]): In Sets, does this characterize the dinats
()\) — ())? No. There is a proper class of such dinats.
Let k be any cardinal number, define 6,(A) : AA — AA by:
Ox(h) = h , if card (fix(h) = k); otherwise, Ox(h) = ida. A
detailed calculation shows this is a dinat. But there is a
proper class of cardinals k !

Examples of Dinats IlI

3. Simple Application(Mac Lane):
Consider a ccc C (e.g. Sets) and a fixed object D. Consider
the dinatural transformation app : D{) x () = Kp, where
appa : D* x A — D. The hexagon condition reduces to the
following (co)wedge: for any f : A — B,

DAx A
DV w
D

DB x A

Dm AB
BxB

D
For g : DB, a: A, this says: (g o f)(a) = g(f(a)), always true
in a ccc.

Note: key example of dinaturality: the variable A in appa occurs
both contra-variantly and co-variantly.

Examples of Dinats IV

4. Generalized Application. For a ccc C consider the application
Appap : A x A— A Thenforf:A— B, f': A — B, we
have a dinatural hexagon:

AA A D

= N

B/B % B Appgp! B/
For g : A’B, a: A, this says f'((g o f)(a)) = (f' o g)(f(a)).
This is always true in a ccc.

Note: there is a precise sense in which we have a dinatural
transformation App : F — G between functors

F,G :(C?)° x C? — C, with the dinat family

Appan - F(AA'; AA") — G(AA'; AA'). See the BFSS paper.

Examples of Dinats IV

5. Fixed Point Combinators. In many ccc's C used in theoretical
CS (Continuous Lattices, w-CPO, etc) we have least fixed
point combinators. These give dinaturals Y : ()() — id,
where Y(f) = the least fixed point of f. In general,

Y = {Ys: AA — A} satisfies, for any f : A — B,

A Yn L p

V \
AB B

~ o,

BB —*f B

This says if g : AB, f(Ya(gof)) = Ys(f og). In particular,
setting A = B and g = ida, this confirms f(Ya(f)) = Ya(f), so Y
is a fixed point combinator at each object A.

Examples of Dinats V

6. Traced Symmetric Monoidal Categories. We'll just recall this
briefly. Joyal-Street-Verity (1996) introduced an abstract
trace on an smc C, where

Trl, :C(X U Y @U) — C(X,Y)
satisfies:

(1) Natural in X, Tr§y(f)g = Trk y(f(9 ® 1y)) , where f: X @ U —
YeU,g: X' — X,

(2) Natural in Y, ¢Tr§y(f) = Tr§y (9 @ 1v)f) , where f: X @ U —
YU,g:Y —Y

(3) Dinatural in U, Tr{,((ly ® 9)f) = Tr¥{(f(lx ® g)) , where f :
XU —YU,g:U —U,

and also (4) Vanishing |, II, (5) Superposing, (6)Yanking.
Let's illustrate the graphical calculus of (2)-(3):

Examples of Dinats VI: naturality of trace graphically

X X v P Y
s ! L
U U I, v — U U
Naturality in Y
X Y ly Y 4
f T _ /
U vil It — U

Dinaturality in U

So what's wrong with Dinats?

In general, they don’'t compose!

FAA —2 GAA—"— HAA

ny' ch \\G‘Af \:M

FBA GBA GAB HAB

an\‘ GBf\\ %fﬂ /‘!ﬂ?
u v,

FBB ——> GBB—>— HBB

But if the middle diamond is a weak pullback (or weak pushout)
they do compose (exercise!) More possibilities:

e Dinats compose with nats.
e Dinats wrt restricted morphisms f can compose (e.g. f iso)
e Question: do extranaturals (wedges or co-wedges) compose?

Some constructions on multivariant functors

Products: Given functors F = F(A; B) : (C°?)" x C" — C and
G = G(A;B): (C°P)" x C" — C, define their product pointwise:

(F x G)(A;B) = F(A;B) x G(A;B) .
Twisted Exponential: Given Functors F = F(A; B), and
G = G(A; B), define F = G : (C°?)" x C" — C as follows:

(F = G)(A; B) = F(B; A) = G(A; B)

In certain CCC's, the above constructions may lead to a
compositional model: e.g. in BFSS, we studied the original
Realizability Topos.

In general, as Peter Freyd said, dinats form a cartesian closed
non-category!

Generalized Application, again

Covariant Projection: Define P : (C°P)" x C" — C by:

P'(A; B) = B;,where B =B, ... B,

AA % A Appaar A

e N
Recall: generalized application A% xA B

Py e

BB x B PP, p

Tricky calculation:
appr,PZQ:(P122>P22)X’D12—>’D22

determines a dinatural transformation agreeing with generalized
application, e.g. (appP127P22)AA, = Appan : AA x A— A

Ends and Co-ends (Yoneda)

Given multivariant functor G, we seek a universal wedge into G.
This is an object E with wedge Kg — G s.t. for any other object
D and wedge Kp — G, there is a unique map D — E such that

D —2 5 G(AA)

Kp \
¢ G(A B

v that is)

KE 45 G
E - G(B, B
We write E = fA GAA. lt is called the end of G.
In many concrete categories, when defined, it's a limit:
[4 GAA = {g € [[4 GAA | GAf(ga) = GfB(gg) for all f : A— B}

In functorial polymorphism, it is a kind of “parametric” universal
quantifier: VA.GAA

Co-Ends (Yoneda)

The dual of end is co-end, denoted fA GAA. It is a solution to the
co-universal problem:

Kp
KE <T G
Again, in appropriate concrete categories, it's a colimit:
[* GAA=W{GAA | AcC"}/~ where
~ is the smallest equivalence relation on W{GAA | A€ C"}

satisfying: given (x,A) and (y, B), with x € GAA , y € GBB

(x,A) ~ (y,B) iff there exists zec GBAand A—> B
such that x = (GfA)(z) & y = (GBf)(z)

Naturality Formulas

Let F,G : C — D. Consider the hom functor
D(F—,G—) : (C°P) x C — Set. For any set X, the wedge
7 : Kx = D(F—, G—), satisfies: forany f : A— B

D(FA, GA)

% \D(F/j,cn

D(FA.GB) Vx € X, GfTa, = T xFF.

() X
R %(Ffﬁcm

D(FB, GB)
e Claim: this says Vx € X, 7_ . € Nat(F, G).

e Consider the family of maps

w={wa : Nat(F,G) — D(FA,GA) | AcC}

given by wa(0) = 64 : FA — GA, for a natural transformation

0 € Nat(F,G). Claim: w: Knag(r,6) — D(F—, G—) determines a
wedge (as in (f) .

Naturality Formulas Il

Summarizing the previous discussion:

Proposition (Mac Lane)

Let Nat(F,G) =2 D(FA, GA) assign 6 — 04 on nat 6. The
function m := x — 7_ , : X — Nat(F, G) is the unique map

X —— 2 D(FA, GA)
D(FA,Gf)

w,

making w a universal wedge: m D(FA, GB)

D(ny

Nat(F, G) — 5, D(FB, GB)

Hence Nat(F, G) = [, D(FA, GA)
A similar result holds for dinats: if F, G : C°? x C — D, we get
Dinat(F,G) = [, D(), G(A; A)) .

Functorial Polymorphism

In the papers [GSS] and [BFSS], we consider some compositional
models for dinaturals arising from logic.

(i) In [GSS], we looked at cut-free proofs as determining a
dinatural modelling in a cartesian-closed setting.

(i) In [BFSS] we found a “parametric’ model of Girard's System
JF, in which dinats compose, based on certain dinats in the original
Realizability topos and Ve is interpreted as an end.

(iii) In the Blute-Scott (et.al.) papers, we were interested in
proving certain concrete categorical models Dinat(C) for
multiplicative linear logic admitted a full interpretation, i.e. the
unique free functor F — Dinat(C) is full, where F is the free
(syntactically generated) category of a fragment of LL.

Functorial Polymorphism: the paper [GSS]

Consider (free) cartesian closed categories (equivalently, simply
typed A-calculus or a simple typed functional programming
language). Question: Are there "unexpected” equations between
terms (beyond simple 3,7 equality)? Answer: Yes, dinatural
equations!

Example

Consider a simple closed term r : a x a = «a x a. What can we
say about r? For each type A, consider rp : AX A= A X A.
Suppose f : A= B is a closed term. Then we show:

(fFxf)ora=rgo(f xf)

This says r : F — F is a natural transformation, where

F(-) = () % (=),

Functorial Polymorphism: the paper [GSS] I

More generally, the previous example r seems to depend on
f : A= B. So consider the more general term:

Mo s (a=B)=(axa=§xp)

What could it be? First guess: m maps f — f x f for f : A= B.

In fact we show: for any types A, B, and any closed term
f:A= B,

mAB(f) = (f X f) o mAA(lA) = mBB(lg) o (f X f)

So any instantiation of m, g really is f — f x f up to an
endomorphism of the domain or codomain.

Functorial Polymorphism: the paper [GSS] Il
Let C be a ccc. For each type expression o(asg ..., ap) with

type variables «, define its interpretation ||o|| : (C°P)" xC" — C as:

1. fo=a,, ||o||(A;B) = B; , the projection onto the ith component of
B.

2. If ¢ = C, a ground constant interpreted as an object of C, then
lloll(A; B) = K¢, the constant functor with value C.

3. (Product) If 0 = 7 X 75 , then [|o||(A;B) = ||11]/(A;B) x ||2[|(A; B).

4. (Twisted Exponential) If 0 = 7y = 7 then ||o]|(A;B) = ||71||(B; A) =
I/l (A;B).

Now consider a term t : 7 with typing X3 :01,..., Xk : o>t T.
We interpret this as a dinat family

1]} = {llel[A = ([loall x ... x [lo[)AA = [|7[|[AA | A € C"}

where A =A;,..., A, and A; = ||e]|, by induction:

Functorial Polymorphism: the paper [GSS] IV

The interpretations of terms is as follows:

1.

If ¢:o0; is the variable x;, then [[¢]| : ||o|| X -+ X |lok|| — ||ou]| is
the ith projection.

If t:0 =171 is Ax : or, where ||| : |og] x -+ % |low]| X
loll — Ii7ll, then [[¢] < los] -+ x [log]l — [l = 7] is defined
by: ||It||A = (||r]]A)*, the curryfication (or exponential transpose) of
the arrow ||7]|A : ||o1||AA X --- X ||ok||AA x ||o||AA — ||7|| AA in
the ccc C (cf. [19], p.61).

If ¢:7 1iswua, where v : 0 = 7 and a : o, then ||t is eve <
||,]|a|]| >. where ev denotes the appropriate evaluation map and
denotes composition in C.

If t:m X7 is t=<ty,ty>and ||t : ||oo]| X -« X [|owl| — |I7]|
fori=1,2, then [[t]|A =< |t1]]A,|/t2]]A >.

If t:7 is IL(¢) (i =1,2) where |t/ : [|og]|x---X]||lok]| — || 71 X 72 ||
then [|TL;(#')|| is IL;o||#'||, where II; is the ith projection.

Functorial Polymorphism: the paper [GSS] V

Theorem (GSS, Thm. 2.2)

Let L be simply typed lambda calculus with type variables, let C
be any ccc, and let oy, ..., «a, be a list of type variables. Then any
type T(au, ..., an) with the indicated type variables induces a
functor ||T]| : (C°P)" x C" — C. Furthermore, any legal typing
judgement x1 : 01,...,X : O >t T induces a family of lambda
terms ||t|| = {||t||A | A € C"} which is actually a dinatural
transformation ||t|| : ||o1|| X -+ X ||ok|| = ||7||. Beta-eta equal
lambda terms give the same dinatural family.

Functors and dinatural transformations induced by lambda terms
(i.e. arrows in a free ccc) will be called definable. The point is that
under type and term-substitution, definable dinats actually do
compose. This leads to the following theorem:

Functorial Polymorphism: the paper [GSS] VI

Theorem (GSS, Thm. 2.3)

Let C be any ccc. Then for each n the definable multivariate
functors (C°P)" x C" — C and definable dinatural transformations
between them form a ccc. The cartesian closed structure on
definable functors is given by products and twisted exponentials. In
fact, they form an indexed category (hyperdoctrine, without the
quantifiers) of ccc’s, with base = natural numbers, and the fibre
over n the definable multivariate n-ary functors, and maps the
definable dinats between them.

Functorial Polymorphism: the paper [GSS] VIII.

Recall the typing judgement:
x:a=pp> mx)iaxa=Fxp
There are 2 variables, so this is a dinat (C%?)? x €2 - C.
Variables are covariant projections, so this becomes:
(Pl = P2) l> (Pl X Pl) = (P2 X Pg)
Calculating the LHS at (A'B’; AB) and RHS at (AB; A'B’) for
arrows a: A— A" and b: B — B’, we have

A= B Mas Ax A= BxB

oa/(\{)Xb)o_

A=B AxA= B xB

b \ /:(a X @)

A= B A'xA =B xDB

ma'p

Functorial Polymorphism: the paper [GSS] VIII.

Letting A = B’ = B,b=1g,a = f leads to
A=B—"48 . AxA=BxB

OM \}BX13)°

B=B Ax A= BxB

13\ /O(fxf>

B=DB BxB=BxDB

mpB

Chasing 15 : B = B on LHS around the diagram, we obtain:

mag(f) = mpg(1g) o (f x f)

and similarly for the dual situation of an endomorphism of the
domain.

Functorial Polymorphism: the paper [GSS] VII

Idea of the proof of the main theorem. Subtle problems arise!

1. Definable dinats between definable functors are uniformly
given by (instantiations of) a single lambda term. But lambda
terms are closed under usual substitution.

2. The types themselves o(aq,. .., a,) also permit substitutions
of arbitrary formulas B; for the «;.

3. Dinats, in general, don't compose. But definables do. Why?

4. ldea: we will represent the definable dinats in a Gentzen
Sequent Calculus (for =, x) which admits Cut-Elimination.
In a cut-free system, we can essentially ignore using the
cut-rule for composing dinats. But this is very subtle:
substitution doesn't disappear, but is hidden in the basic rules.
We show this by a non-trivial interpretation of sequent
calculus into ND, then looking at the inherited Curry-Howard
lambda-term assignment of cut-free proofs from within ND.

[GSS]: Intuitionist Sequent Calculus for {=-, A}

Aziom: AR A
o A AAEB
ut: IAFB
I'A,B,A+C
Structural: Exchange "I.B,AAFC
Contraction TAAFC
ontraction T.AFC
. r+c
Weakening T.ArC
Logical:
A EC -
M TaagEe TThE AR
oL 'A A/BEC - R

T .AA=BFC

'-A AFB

T AFAAB

T AFB

I'-A= 1B

[GSS]: Inherited A-terms (within ND) for sequent proofs

Axiom : r:A> o A
Cut - Z:Tp>tEd:A §y:Az:Ap fly.z]: B
' Z:0,9: A > flg,t[7]/z] - B
) Z:Dy:Az:Bw: A t[7yzd:C
Structural Exchange T:0,z:Byy: AW : A t°[2,z,y,d] : C

where t°[Z, z,y, W] = t[Z, y, z, W]
. T:Dyy:Az: A t[E,y,z]:C
Contraction T Ty AD fF g C
where t°[Z, y] = [T, y, y/z].
. Z:T >t :C
Weakening Fily A t9[f,y]: C
where t"[Z, y] = t[Z] .

[GSS]: Inherited A-terms (within ND) for sequent proofs Il

, T,y A > t[T, g : C
AL, i=1,2 T:D,z: ApNAy > VT, 2] C
where t"[T, z] = t[T, mi(z)/yi]
AR fFDS[f]: y:A D>ty :B
T:T.¢7: A > <s[@,ty] > ANB
L, B A A B glidiC
Z:T,9:Au: A= B> glyuf[d]/z]: C

where Jif w o : A then

Logical :

A= Band a:
ua : B denotes application of u to argument
a.

Dy Ao t[Z,y]: B
> My At[d,y]: A= B

SRS

=R

[GSS]: Conclusion of [GSS]

The “real” meaning of Cut-elimination ([GSS], p.15):

All general instances of term substitution arising from the
cut rule are already derivable (up to equality of terms)
from the special instances of substitution used in the
other rules.

We obtain, as a Corollary of the main proof in [GSS], the following:

e Cut-free proofs are represented by closed terms in normal form,
thus arrows in C.

e Any arrow m : A — B (qua closed normal form of type A = B)
induces a dinatural transformation between definable functors
[|Al| = ||B]|. These normal forms compose by substitution.

e m provably satisfies the dinaturality equations.

Aside: An example of an end calculation

Recall last time we mentioned Mac Lane's Proposition:

Nat(F,G) = [, D(FA, GA). We illustrate this:

Consider a monoid M. A (left) M-set is a set X with a left
action M x X -5 X satisfying well-known axioms; equivalently,
it's a set X and a monoid hom M — (End(X), o). A morphism of
M-sets (X,\) = (Y, p) is an equivariant map.

The category of M-sets and homs can be thought of as the
functor category Set™, where M is a category with one object.

Example: By cartesian-closedness, the monoid multiplication

L
M x M — M induces an action M 2 (Endo(M), o) called left
representation, defined by m — (n — mn). We write
ME = (M, Ab) for this M-set.

Aside: An example of an end calculation Il

e Consider the forgetful functor U : Set™ — Set, mapping
(X,) = X. Claim: U is representable: U =~ Homggm(ME, —).

Exercise 1: Prove U is representable. Hence,
Nat(U, U) I\Iat(’l_lom.SetM (MLv _)7 HomSetM (MLv _))
Homgem(ME, ML) by Yoneda's Lemma

M by Exercise 2 below; (actually a monoid iso).

1R

1

Exercise 2: Prove Homgm(ME, (S, \)) = S by mapping
f — f(e), for f equivariant.

Hence, by Mac Lane, [g, m(U(C), U(C)) = Nat(U, U) = M .
e For any category C, Nat(lde, Idc) = fAeC Home(A, A).
Related to Picard Group of a category, etc.

e See also Tannakian Duality on nLab.

Girard's System F: Polymorphic A-calculus

Consider all the formulas of second-order intuitionistic
propositional logic built out of propositional variables using V,=.

A,B ::= Prop.Vbls | A= B | Va.A

Examples: (a = «), Va.(a = «), Ya.(a = §), etc. We will call
these formulas Types, or Polymorphic Types to be precise.
Notice, the first type has free «, the second has no free type
variables, the last has 8 free and a bound.

We write [= B to say hypotheses I entail B, where
I'={A1..., A} is a finite set of hypotheses.

Girard's System F: Polymorphic A-calculus I

1.AFA M= A(o)
, 'TFVaA(a)
"THFA AAFB ag FTV(T)
AFB
M= VaA(x) £
T o7 Y-
rA-B It Al := B]
rFA= B for any B.

Remarks: Notice in #b5, the formula B is of arbitrary
complexity—it can even contain YaA(«) as a subformula! So Rule
#5 definitely increases complexity.

We now discuss Girard's second-order (polymorphic) A-calculus
and the assignment of proof terms (a la Curry-Howard) to
second-order propositional calculus.

Girard's System F and Polymorphic A-calculus IV

(var) T oAbz A
(app) r-M:A—B '-N:A
I'MN:B
(abs) I'e:A-M:B
I'XxxAM:A— B
(typeapp) T'FM:Va.A
' MB: A[B/q]
(typeabs) -M:A a g FTV(T)

't Aa.M :Va. A

Equations: 8 and 7 rules for both lambdas, that is:
(i) (Ax:Agp)a =3 ¢[x:=a] and Ax:A(fx) =, f, where
x & FV(f).
(i) (ANa.M)[B] =p2 M[a:=B] and Aa.(M[a]) =, M,
where o & FTV(M).

The power of Girard's System F, Il

Consider (Ax:a.x) : a = «, i.e. id,. In fact, the type-indexed
family of identity functions {id,}, of type Va.(a = «) suggests a
dinatural transformation. This led to Functorial Polymorphism...

Continuing with the power of 2nd-order logic, here's a chart (from
Selinger's notes) for defining most of the usual logical connectives:

AANB < Va(A— B-—a)—a (1)
AVB < Va(A—=a)—= (B—=a)—a, 2)
A < Va.A-—a, 3)
T < VYaa—a, @)

1l <= Vaa, 5
PBA = VYa.(V6.(A—a)) — a. (6)

The power of Girard's System F, Il

Consider (Ax:a.x) : a = «, i.e. id,. In fact, the type-indexed
family of identity functions {id,}, of type Va.(a = «) suggests a
dinatural transformation. This led to Functorial Polymorphism...

Continuing with the power of 2nd-order logic, here's a chart (from
Selinger's notes) for defining most of the usual logical connectives:

AANB < Va(A— B-—a)—a (1)
AVB < Va(A—=a)—= (B—=a)—a, 2)
A < Va.A-—a, 3)
T < VYaa—a, @)

1l <= Vaa, 5
IB.A <= Va.(V6.(A — a)) — a. (6)

There are no Set-theoretical models of Girard’s System F. Goal:
find a model based on definable functors and some class of
dinatural transformations over a base category C.

PER models [BFSS]

A partial equivalence relation (per) E on a set A is a symmetric
transitive relation on A. The domain of a per E = domg =
{a € A| aEa}.

So, E is an e.r. on its domain, hence partitions the domain into
disjoint classes. We'll consider Per(N) as a category, as follows:

(i) Objects of Per(N) are pers on N. (i.e. partitions of subsets of
N).

(ii) Arrows E — E’ are (named by) partial recursive functions f
preserving the partition, i.e. whenever nEm, then f(n) |, f(m) |
and f(n)E'f(m). Equality of arrows: given f,g: E — E', f =g if
for all m,n € domg , nEm implies f(n) |, g(m) | and f(n)E'g(m).
In particular, f and g name the same morphism if for all

n € domg, f(n)E'g(n).

PER models [BFSS] I

Theorem
Per(N) forms a ccc.

Proof Sketch: uses some elementary recursive function theory. 1 is
any per with a unique equivalence class. Given A, B € Per(N),
{m, n)(A x B)(p, q) iff mAp and nBq, where (,):N? - N is a
chosen recursive bijection. m(B”)n iff m and n are codes of equal
morphisms A — B. The fundamental bijection

C x A— B = C — B* uses the S-m-n theorem of Recursion
Theory.

A fundamental subcategory of Per(N) is I, the inclusions. So

f: E — E'if fis (named by) the identity map idy. The maps are
not intuitively “inclusions”, since they may not be monos, indeed
they may be surjections set-theoretically!

PER models [BFSS] Il

Proposition (BFSS)

Every morphism in Per(N) may be decomposed into an iso,
followed by an (I)-map, followed by an iso.

Aside: A subcategory N of Per(N) was introduced by Lambek and
Scott in a paper “An exactification of the monoid of primitive
recursive functions”. Objects of N are recursively enumerable pers.

There is a somewhat similar Proposition for N to the above.
Proposition (L-S)

In the category N of re. pers, every map can be factored as
(1)-map, followed by an iso, followed by an (I)-map. The first

(1)-map is a canonical surjection, and the last (1)-map is a
canonical injection.

PER models and Realizable Functors

Definition
A realizable functor F : Per(N) — Per(N) takes I to I and is such
that there is an endomap ® of partial recursive functions such that

if E 5 E' then F(E) ") F(E"), where F(f) is named by o(f).

Any functor definable in Girard's System F is realizable. Realizable
functors are closed under all usual operations: pointwise products,
twisted exponentials, substitution.

PER models [BFSS] Realizable Dinats

Definition

Let C = Per(N). For realizable functors F, G : (C°P)" x C" — C, a
family u = {ua : FAA — GAA | A € C"} (not necessarily dinat) is
realizable if there is a single partial recursive function ¢ that names
each component up.

Theorem
On Per(N), realizable dinatural transformations (between
realizable functors) compose.

Corollary

For each n, the realizable functors
F,G : (Per(N)°P)" x Per(N)" — Per(N) and realizable dinats
form a ccc.

PER models: horizontal and vertical merging of dinats

e Dinats wrt isos compose (i.e. we can horizontally merge dinat
families restricted to isos), as the middle “diamond” is a pullback!

e Realizable dinats wrt I-maps horizontally compose...basically, it's
the same partial recursive function at each level, pre and post
composed with an identity inclusion. Compose them horizontally.

In Per(N), a map f is a composition of iso; inclusion; iso. So to
get a general dinat (with respect to an arbitrary map f), begin
with a 3 x 2 array of 6 composable dinat hexagons. These 6
hexagons are in 3 horizontal rows of two composable dinats each.
The first row consists of two composable dinats wrt iso maps. The
second row are two composable dinats wrt to "inclusion” maps.
And the third row is again two composable dinats wrt to isos.
After composing each row, the 3 remaining hexagons are vertically
merged pairwise into a big dinat for arbitrary f represented as
iso;inc;iso (see next page).

PER models [BFSS] (pairwise vertical merging)

Pairwise vertical merging of dinats into one bigger dinat wrt
composite maps. So three dinat hexagons can be vertically
composed wrt 3 composite maps f; g; h. Apply this to arbitrary
maps in Per(N) factored as iso; inclusion; iso to get dinats wrt
arbitrary maps.

PER models [BFSS] System F modelling

We continue with the functorial polymorphism program: what
about modelling Va.7 in Girard's System F ? That's what
polymorphism is about!

Proposition
In Per(N), Realizable ends exist, i.e, the per [A GAA exists.

Idea of proof: Intersections of pers exist. So take the intersection
of all pers GAA then take the subper E corresponding to the
dinaturality condition. Officially, mEn iff for any f: A — A’
GAA’ relates G(A, f)(m) to G(f,A")(n). For details, see [BFSS],
Thm. 2.11.

PER models [BFSS] System F modelling I

To model Girard's Vo, we use realizable ends:

Vary.r| = /Q I7/|AA; = QIBIB; = Q]

Eg. [[Va(a x (a= B))|[(A1A2; B1B:) =
Jolla x (@ = B))|[(QA2, @B,) =
fQ Q = 82)

PER models [BFSS] : System F Soundness

Given a derivable typing judgement

X; o> t: 7 in System F, we can consider the term e; = Erase(t)
which erases all the type information from t. It is an untyped
lambda term, and can denote a partial recursive function (see
[BFSS], Appendix A.1).

Theorem (Soundness of Realizable Dinats)

Given a derivable typing judgement in System F, X; : o; >t : T with
free type variables among a1, ...,a,. Then e; names a realizable
dinat ||oy % --- x || = ||7]| : (CP)K x CK — C, where

C = Per(N). Provably 3,n equal System F terms name the same
dinat family, up to equality of dinats.

Some relations of dinats to linear logic

Many of the previous ideas work in the monoidal/linear logic world.
For example let C be symmetric monoidal closed. If

F,G :(C°)" x C" — C, we define the following operations on
multivariant functors:

» (F® G)(A;B)=F(A;B)® G(A; B)

» (F o G)(A;B)=F(B;A) — G(A;B)
If C is actually *-autonomous (in the sense of Barr), we can lift the
basic interpretation of {—o,®} to formulas of multiplicative linear
logic (MLL), {®, (=)*}. To the inductive clauses for definable
functors, add

> If p(oa,...,an) = (a;)t, define [](A; B) = (Aj)*, the

linear negation of the ith contravariant projection.

See work of Blute-Scott (e.g. Linear Lauchli Semantics) on Full
Completeness and earlier papers of Blute.

Day's Construction: A bit of History |

In 1970, SLN 137 published an important issue “Reports of the
Midwest Category Seminar IV". There we see two important
papers, which form the basis of this seminar:

(i) Brian Day: On Closed Categories of Functors,

(ii) Eduardo Dubuc and Ross Street: Dinatural Transformations
Day convolution was defined in this paper, of course using the
co-end calculus, arising in (ii). | will leave the abstract treatment

to other speakers. But | will now mention some concrete versions
of Day's ideas.

Day's Construction: A bit of History Il

The use of Day’s tensor on functor categories Set® (C monoidal)
was popularized in CS in the period 1997-2000 by various
researchers (e.g. Marcelo Fiore, lan Stark, Moggi, Sangiorgi, et.al.)
who were trying to find fully-abstract models of m-calculus (a
language by Robin Milner for concurrency) as well as an early
theory of “names” and “fresh names” .

My student Guy Beaulieu wrote an MSc thesis in 2002, entitled
“Finding Presheaf Models for the Finite m-calculus”, based on
Day's tensor. The detailed calculations are in his thesis, available
online: https://ruor.uottawa.ca/handle/10393,/6206

Day's Construction on Functor Categories: concretely

Given the category of Sets with its usual ccc structure

(Set, x,1,=) and if (C,®,) is monoidal (not necessarily closed),
we can define a structure (Set, ®Qdays IDay, —0Day) on the functor
category. Given S, T € Set€, and s, X, Y € C, define

(S @by T)(s) = /XSXX/YTYXC(X®Y,5)

X,Y
= / SXxTY XC(X®Y,s)
= ZX,YSXx TYXC(X® Y,S)/N
(a quotient by an e.r.)
IDay = C(/7_)
(5 —ODay T)(S) = HomSetC(Sv T(S ® *))

Day's Construction on Functor Categories Il

Guy Beaulieu points out the following results:

Proposition
(— ®pay S) is left adjoint to (S —opay, —), ie.

Hom(B ®Day 57 T) = HOITI(B, S —©Day T)

Proposition
If C is symmetric monoidal, ®p,, is symmetric

Also, if Set® has its usual cartesian closed structure, then Set® has
two monoidal closed structures; moreover it has finite coproducts,
so is often called a bicartesian closed category (and is a model of
the O'Hearn-Pym “Bunched Logic")

Day's Construction on Functor Categories |lI

Given S, T € Set®, and s, X, Y € C, recall

(S @pay T)(s) = /XSXX/YTYXC(X®Y,5)
XY

- / CSXxTYxC(X®Y,s)
= IxySXxTYXC(X®Y,s)/ ~
where the equivalence relation ~ is generated from :
(xeSX,yeTY,n: XY —s) ~
(XeSX,yeTY' n XoY =)

iff 3f : X' - X, 3g: Y = Y st. SF(X')=x, Tg(y') =y and
n(feg)=r.

Day's Construction on Functor Categories IV

Exercise: Define ®p,,, —o0pas, on maps.
Beaulieu shows: for S € Set®, that S ®p,y Ipay = S.

Exercise: Check out the calculations with the notation here (there
are some typos in Beaulieu!)

