
Discreteness is not Morita invariant

Morgan Rogers

Laboratoire d’Informatique de Paris Nord (LIPN)

Morgan Rogers (LIPN) Discreteness is not Morita invariant 1 / 33



Outline

1 Categories of actions

2 Reconstructing topologies

3 Reconstructing monoids

4 Homomorphisms

5 The titular counterexample

Morgan Rogers (LIPN) Discreteness is not Morita invariant 2 / 33



Section 1

Categories of actions
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Discrete monoid actions

We may view a monoid M as a one-object category.

The category of presheaves on this category,

[Mop,Set] ' Set-M,

is precisely the category of right actions of M.
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Continuous monoid actions

We may equip a monoid M with a topology τ .1

We can then consider the full subcategory of [Mop,Set] on the actions
which are continuous with respect to τ (when sets are considered as
discrete spaces:

[Mop,Set]←↩ Cont(M, τ) : V .

This talk is about categories constructed in this way.

They happen to be examples of Grothendieck toposes.

1Don’t worry, you could just as well start from a genuine topological monoid!
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Morita equivalence

Definition

Two monoids with topologies (M, τ) and (M ′, τ ′) are said to be Morita
equivalent if Cont(M, τ) ' Cont(M ′, τ ′).

Clearly, isomorphic monoids are Morita equivalent.

As with other notions of Morita equivalence, this is a way of expressing
how much information is lost when we pass from a monoid to its category
of right actions.

A property of topological monoids which is recoverable from its category
of continuous right actions is called Morita invariant, since it must be
shared with all members of its Morita equivalence class.
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Some constraints

Morita invariant properties appear at first glance to be rare.

Example

Let M be any monoid. Then (M, τindisc) is Morita equivalent to the trivial
monoid, where τindisc is the indiscrete topology.

In other words, there can be no interesting purely algebraic
Morita-invariant property!

To get around this, we’ll first identify canonical representatives of Morita
equivalence classes, and then extract interesting invariants of these.
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Section 2

Reconstructing topologies
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Necessary clopens

Definition

Let M be a monoid equipped with a topology τ , X an M-set. A
necessary clopen for X is a set of the form,

Ipx := {m ∈ M | xm = xp},

where x ∈ X and p ∈ M.

Lemma

Let M be a monoid equipped with a topology τ and X an M-set. Then X
is an (M, τ)-set if and only if all necessary clopens for X are (cl)open in τ .

Note that for each x ∈ X , the subsets Ipx partition M, so that if these
subsets are all open they are also necessarily closed, hence the name
‘necessary clopen’.
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Right adjoint to V

Proposition

Suppose a monoid M is equipped with a topology τ . Then the forgetful
functor V : Cont(M, τ)→ [Mop,Set] is left exact and comonadic; its right
adjoint R sends an M-set X to:

R(X ) := {x ∈ X | ∀p, q ∈ M, Ipxq ∈ τ}.

Moreover, if τ makes the multiplication of M left continuous then the
expression for R(X ) simplifies to:

R(X ) := {x ∈ X | ∀p ∈ M, Ipx ∈ τ}.
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The situation

Set [Mop,Set] Cont(M, τ)

−×M

HomSet(M,−)

⊥

⊥
U

R
⊥
V

Theorem

Suppose M is a monoid equipped with a topology τ . Then there is a
topology τ̃ ⊆ τ generated by clopen sets such that
Cont(M, τ̃) = Cont(M, τ) as sub-categories of [Mop,Set]. Moreover, τ̃ is
the coarsest topology on M with this property.
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Action topology

Definition

We call τ̃ the (right) action topology induced by τ . More generally, we
say τ is an action topology if τ = τ̃ .

NB. Since we consider right actions, all of our definitions have an implicit
right-handedness, which we shall ignore in the remainder of the talk.

Proposition

The multiplication on M is continuous with respect to the action topology
τ̃ for any starting topology τ .

So we can safely restrict to topological monoids without missing any
Morita equivalence classes.
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Powder monoids

Another operation we can perform on (M, τ) without changing the
Morita-equivalence class is to take its Kolmogorov quotient, since
topologically indistinguishable elements of the monoid must act identically.

Definition

We say a topological monoid (M, τ) is a powder monoid if τ is a T0

action topology.

Theorem

Given a monoid with an arbitrary topology (M, τ), there is a canonical
powder monoid, which we shall by an abuse of notation denote by (M̃, τ̃),
such that Cont(M, τ) ' Cont(M̃, τ̃) and the canonical points of these
toposes coincide.
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Powder monoids

Powder monoids have nice properties. They are zero-dimensional, since
they have a base of clopen sets.

Examples

• Any discrete monoid is a powder monoid.

• Any prodiscrete monoid is a powder monoid. Consider the profinite
completion or p-adic completion of the integers or the profinite
completion of the natural numbers, say.

• The powder monoid corresponding to the real numbers under addition
(with their usual topology) is the trivial monoid.
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Section 3

Reconstructing monoids
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Best approximation

Suppose that we are given a topos E , i.e. a category with the basic
necessary properties to have a chance of being a category of continuous
actions of a monoid, and a point of such a topos:

Set E

p

Theorem

There is a canonical factorization of p through a topos of topological
monoid actions.
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Best approximation

Suppose that we are given a topos E , i.e. a category with the basic
necessary properties to have a chance of being a category of continuous
actions of a monoid, and a point of such a topos:

Set [Lop,Set] E

p

Theorem

There is a canonical factorization of p through a topos of topological
monoid actions.
Namely, consider the monoid L := End(p∗)op, dual to the monoid of
natural endomorphisms of p∗.
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Best approximation

Suppose that we are given a topos E , i.e. a category with the basic
necessary properties to have a chance of being a category of continuous
actions of a monoid, and a point of such a topos:

Set [Lop,Set] Cont(L, ρ) E

p

Theorem

There is a canonical factorization of p through a topos of topological
monoid actions.
Namely, consider the monoid L := End(p∗)op, dual to the monoid of
natural endomorphisms of p∗.
This comes equipped with the coarsest topology making all of the actions
of the form p∗(X ) continuous.
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Complete monoids

In particular, the given point expresses E as a topos of actions of a
topological monoid if and only if the comparison morphism
Cont(L, ρ)→ E is an equivalence.

Definition

We call a topological monoid complete if it is isomorphic to the
topological monoid of endomorphisms of its canonical point.

Every complete monoid is a powder monoid, but the converse is false.

Example

Consider Z equipped with the topology where all non-trivial subgroups
(and their cosets) are open. This is a powder monoid, but the procedure
above produces the profinite completion of the integers.
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Complete monoids

Complete monoids are the natural representatives of toposes of actions of
topological actions. It therefore makes sense to ask about Morita-invariant
properties of complete monoids.

Remark

A complete monoid is completely determined by the corresponding point
of its topos of actions. Morita equivalence is thus really a question of the
different points of a given topos.
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Examples

Example

A complete monoid produces has a topos of actions which is atomic if and
only if its group of units is dense. Hence this is a Morita-invariant property.

Example

If a complete monoid has a zero element, then each of its principal actions
has a unique fixed point. Since a complete monoid is recoverable as a limit
of its continuous principal actions and the fixed points assemble into a
cone over this diagram, we find that having a zero element is a Morita
invariant property.

Is discreteness Morita invariant?

Morgan Rogers (LIPN) Discreteness is not Morita invariant 21 / 33



Section 4

Homomorphisms
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Semigroup homomorphisms

Continuous semigroup homomorphisms induce geometric morphisms
between toposes of actions of topological monoids.

Remark

We use semigroup homomorphisms rather than monoid homomorphisms
because in the discrete case these correspond to functors between the
idempotent completions of the respective monoids, which are sufficient to
induce geometric morphisms.

This works exactly as one would expect: the inverse image functor is
restriction along the semigroup homomorphism.
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Morita equivalence for discrete monoids

Considering just the discrete case for a moment, any Morita equivalence of
discrete monoids is induced by a semigroup homomorphisms.

Proposition

Two discrete monoids M and N are Morita equivalent if and only if there
exists an idempotent e ∈ M and elements u, v ∈ M with N ∼= eMe,
uv = 1, ue = u and ev = v .

That is, N must be a subsemigroup of M (and vice versa)!

Unfortunately, continuous homomorphisms aren’t enough to determine
Morita equivalence for complete monoids.
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Continuous homomorphisms are insufficient

Lemma

A continuous monoid homomorphism between complete monoids inducing
an equivalence of toposes is an isomorphism. In particular, any non-trivial
equivalence must be induced by an inclusion of subsemigroups.

Example

The Schanuel topos is the classifying topos for infinite, decidable objects.
Equivalently, it is the topos of sheaves for the atomic topology on the
category of finite sets and injective functions.

Points of this topos correspond to infinite sets. the monoids of injective
endomorphisms of any such set provides a representing topological
monoid. But there are no non-identity idempotents of these monoids! In
particular, there is no continuous semigroup homomorphism inducing the
equivalence between the respective toposes of actions.
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Section 5

The titular counterexample
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The bicyclic monoid

Consider the bicyclic monoid, which has the following presentation:

B := 〈u, v | uv = 1〉.

Each element of B can be uniquely expressed in the form v iuj with
i , j ≥ 0. We equip this with the discrete topology.

Lemma

Points of a presheaf topos [Cop,Set] correspond to filtered colimits of
representable objects in [C,Set].

Therefore, consider the point of [Bop,Set] constructed as the colimit of
the following diagram in [B,Set],

B B B · · · .·u ·u ·u
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An explicit description

As a left B-set, we can identify A with the set having elements
{bpaq | p ∈ N, q ∈ Z}, and action determined by:

u · bpaq =

{
bp−1aq if p > 0

aq+1 if p = 0

v · bpaq = bp+1aq.

There is an epimorphism A→ B sending bpaq to vpuq if q ≤ 0 and to
vp+q if q < 0. This epimorphism splits; the most obvious splitting sends
v iuj back to biaj .
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The corresponding complete monoid

Let L := End(A)op. This monoid can be presented as,

L ∼= 〈a, a−1,w | aa−1 = 1 = a−1a, wakw = wak ,wa−kw = a−kw (k ≥ 0)〉,

where,

• a acts on A by sending bpaq to bpaq+1,

• a−1 is its inverse, and

• w is the idempotent endomorphism obtained as the composite
A→ B → A of the morphisms in the retraction described on the last
slide.

Note that elements of L can be presented in the form aiwaj or as ak with
i , j , k ∈ Z.
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The topology

To compute the topology on L, we use the construction described earlier.
To summarize, for any value of i and j , the singleton {aiwaj} is open.
Meanwhile, the basic open neighbourhoods of ak are infinite and of the
form {ak} ∪ {aiwaj | i + j ≥ k ′} for some k ′ ∈ Z.
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An example of an open set

a−4 a−3 a−2 a−1 a0 a1 a2 a3 a4

−4 −3 −2 −1 1 2 3 4

−2

−1

1

2

3

4

a3wa2
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The conclusion

We have by now seen that [Bop,Set] ' Cont(L, ρ).

As such, we have shown that discreteness is not a Morita-invariant
property of complete topological monoids.

On the other hand, observe that (L, ρ) does have a dense discrete
subsemigroup.
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The conclusion

Thanks for listening!

Any questions?
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