What are “Natural Numbers Objects”?

And what do they have to do with recursive arithmetic?



The setting: a Cartesian category

- A terminal object 1

- Binary products A X B

Y
| :
¥

X1 %ﬂl X1 %X Xo —*—ﬂz X9




Natural Numbers Object (NNO)

- An object N

0 s
- Two arrows1 — N — N




Natural Numbers Object (NNO)

- An object N

0 s
- Two arrows 1 — N —

h
- For any arrows A 9, B and (A X N) X B— B, there exists a

: f :
unique arrow A X N — B such that these diagrams commute:

IAXS

Ax N s A x N

Ax N

(MV

A f <1A><N:'f> f

RB 1

(Ax N)x B h_, g

~




Huh?




Huh?

-SetA=1

Ax N

(IAV
f

Ax N 1A>’<S>A><N
<1A><N:'f> f
(AxN)x B —I B




Huh?

f

(In, f)

N x B




Huh?

- This reads:
f(0) =g f(sMm) = h(n f(m)
N N > N
y
? b N X h s




Huh?

- For example:

f(0) =1 f(s(m) = s() - f(n)

This uniquely defines f(n) = n!

N N B\

y
1 / (In, f) /
k’v ~ v
B NxB-—"sp




More generally

- Recursion with parameters:

f(@,0) = g(@ f(a,sm) = h(an, f (@)

Ax N 1A>’<S>A><N
Ax N

(14,04)
A / f (Laxw, f) /
X e

h>B

(Ax N)x B




More generally

-Set A=B =N, g=1d, h =5s0°py.

f(m,0) =m f(m,s(n)) = S(f(m, n))
NxNNX5 NN
(1n.0y) N x N
N> UN
N / f <1Nr><ia\}r?f> j
1n M + \E
N (N x N)x N 22PN,




More generally

-Set A=B =N, g=1d, h =s5s0°py.

f(m,0) =m f(m,s(m)) = s(f(m,n))
SUM(m,0) = m SUM(m, s(n)) = s(SUM(m,n))
NxN VX5 Ny
(1%% N x N
N f (Inxns f) f
. N (N x N)x N 22PN, §




Examples




Examples

- N 1s an NNO 1n the category of sets and functions




Examples

- N 1s an NNO 1n the category of sets and functions

- Let C be a cartesian closed category with coproducts.
Let N — ]—ITLEN 1




Notable example:
primitive recursive arithmetic




Notable example:
primitive recursive arithmetic

- Consider the following subcategory of Set:
* Objects are powers of N
- Arrows are primitive recursive functions N* - N™,

- Call it PRIM




Notable example:
primitive recursive arithmetic

- Basic functions N —» N:
- Z(x) =0
Sx)=x+1
* Projii(xq, .., Xn) = Xg




Notable example:
primitive recursive arithmetic

- Basic functions N —» N:
- Z(x) =0
Sx)=x+1
* Projii(xq, .., Xn) = Xg

- Generalized composition f = g o (hq, ..., hy,)
c Xy, e, X)) = g(hl(xl, ey Xon )y ooy R (4, ...,xm))




Notable example:
primitive recursive arithmetic

- Basic functions N —» N:
- Z(x) =0
Sx)=x+1
* Projii(xq, .., Xn) = Xg

- Generalized composition f = g o (hq, ..., hy,)
c Xy, e, X)) = g(hl(xl, ey Xon )y ooy R (4, ...,xm))

- Primitive recursion f = PR|g, h]
* flxg, o, X, 0) = g(xq, v, X)
. f(xl, ...,xm,S(k)) = h(xl, s X K, F (1, oy X, k))




Notable example:
primitive recursive arithmetic

- These are functions N™ — N. For functions N* - N™_ we use:

(fi, o fm)+ N* - N™




Notable example:
primitive recursive arithmetic

- These are functions N™ — N. For functions N* - N™_ we use:

(fi, ) fm)+ N* > N™

- The powers of N, together with these functions, give us a
category with NNO!

Ax N laxs Ax N
(14,04) AxN
A / Jf <1A><Naf>J f




Recap

We've seen the definition

We've seen examples




Recap

We’ve seen the definition
We've seen examples

How to study categories with NNO?




Make 1t a category!

- Objects: Cartesian categories with NNO




Make 1t a category!

- Objects: Cartesian categories with NNO

- Arrows: functors which preserve products and NNO

0 S F(0) F(s)
1 — N — é 1—>F(N)—S>F(N)




The category of cart. cats with NNO




The category of cart. cats with NNO




The category of cart. cats with NNO

- What 1s the initial object?




The 1nitial object

(in the category of cartesian categories with NNO)

- Mindset: freely generate our category using the minimal starting
building blocks.




The 1nitial object

(in the category of cartesian categories with NNO)

- Mindset: freely generate our category using the minimal starting
building blocks.




The 1nitial object

(in the category of cartesian categories with NNO)

- Mindset: freely generate our category using the minimal starting
building blocks.




The 1nitial object

(in the category of cartesian categories with NNO)

- Mindset: freely generate our category using the minimal starting
building blocks.




The 1nitial object

(in the category of cartesian categories with NNO)

- Mindset: freely generate our category using the minimal starting
building blocks.




The 1nitial object

(in the category of cartesian categories with NNO)

- Mindset: freely generate our category using the minimal starting
building blocks.




The 1nitial object

(in the category of cartesian categories with NNO)

- Mindset: freely generate our category using the minimal starting
building blocks.




This sounds familiar...

- Objects are powers of N | |

- Arrows are built out of: l

- Zero, Successor, Projections
- Composition

* Induction




This sounds familiar...

- Objects are powers of N | |

- Arrows are built out of: l

- Zero, Successor, Projections
- Composition

* Induction

- Is the initial object PRIM??




NO!




NO!

- The arrows are not built freely!




NO!

- The arrows are not built freely!

- We need a functor F : PRIM — C.
- Given f : N® - N, we’d define F(f) by induction on f.
- Why does f = g guarantee F(f) = F(g)??




What do we do 1nstead?

- We need a different notion of equality...




What do we do 1nstead?

- We need a different notion of equality...

- We have to turn to Goodstein’s arithmetic!




(Goodsteln’s arithmetic

- A formal logical system for doing arithmetic




(Goodsteln’s arithmetic

- A formal logical system for doing arithmetic

x+0=x
x+(y+)=(x+y)+1I

F(x, 0)= a(x)

Prod(x,0)=0 F(x, Sy)=b(x, y, F(x, y))

Prod(x, Sy) =Sum(x, Prod(x, y))

z+0=x

Sx+0=8x

Sz =8x

S(x+0)=8x

z+8y==8(x+y)

Sz +8Sy=8(Sz+y)
S(x +8Sy) =S(z+8y)
S(x +8y)=88(x+y)
Sx+y=8(x+y).




(Goodsteln’s arithmetic

- A formal logical system for doing arithmetic

x+0=x
x+{y+hH=(x+y)+lI

F(x, 0)= a(x)

Prod(x,0)=0 F(x, Sy)=b(x, y, F(x, y))

Prod(x, Sy) =Sum(x, Prod(x, y))

- Equality here is not set-theoretic!

z+0=x

Sx+0=S8x

Sz =8x

S(x+0)=8x

z+Sy=8(z+v)

Sz + Sy =88z +y)
S(x +8Sy) =S(z+8y)
S(x +8y)=88(x+y)
Sx+y=8(x+y).




Recap

- We've defined NNO and seen examples

- We've defined the category of categories with NNO
- We'’re searching for the 1nitial object

PRIM doesn’t work

So: we turn to Goodstein!




Going forward...

- We'll see how Goodstein’s system 1s defined
- Then, we’ll use it to build a cartesian category with NNO

- This will be our initial object!




(Goodstein’s arithmetic:
What are the components?

- We need to define:
* Terms
- Equality between terms

Prod(x, 0)=0
Prod(x, Sy) = Sum(x, Prod(x, y))




(Goodstein’s arithmetic: terms

- Terms: on either side of an equality

Prod(x, 0)=0
Prod(x, Sy) = Sum(x, Prod(x, y))




(Goodstein’s arithmetic: terms

- Terms: on either side of an equality
-0
- Variables
. 9

Prod(x, 0)=0
Prod(x, Sy) = Sum(x, Prod(x, y))




(Goodstein’s arithmetic: terms

- Terms: on either side of an equality - Functions: can be applied to terms

Prod(x,0)=0
Prod(x, Sy) =Sum(x, Prod(x, y))




(Goodstein’s arithmetic: terms

- Terms: on either side of an equality - Functions: can be applied to terms

- 01s a term
- Variables are terms

- If f 1s a function of arity n, and
ty, ..., t, are terms, then
f(tq, ..., t;) 1s a term.

Prod(x,0)=0
Prod(x, Sy) =Sum(x, Prod(x, y))




(Goodstein’s arithmetic: terms

- Terms: on either side of an equality - Functions: can be applied to terms
- 01s a term - § 1s a function of arity 1

* Variables are terms - If t 1s a term containing only

variables from x4, ..., x,;, then we can

* If f 1s a function of arity n, and form a function f of arity n defined by
ty, ..., t, are terms, then F(xg, o, X)) =t
) N .

f(tq, ..., t;) 1s a term.
* Induction

Prod(x,0)=0
Prod(x, Sy) =Sum(x, Prod(x, y))




An example: defining addition

7. x 1S a term.

2. 8(z) 1s a term.




An example: defining addition

7. x1s a term.

2. 8(z) 1s a term.

Then we can define f(x,y) by:
 f(x,0) =x

- f(x,SO) =S(f(x,y)




An example: defining addition

7. x1s a term.

2. 8(z) 1s a term.

Then we can define f(x,y) by:
 f(x,0) =x

- f(x,SO) =S(f(x,y)

T

This is (S(2))[z ~ f(x,y)]




An example: defining addition

7. x 1S a term.

2. 8(z) 1s a term.

Then we can define f(x,y) by: Le.:
- f(x,0) =x -x+0=x
- f(x,8() =S(f(x, 1) x4+ Sy) =Sx+y)

T

This is (S(2))[z ~ f(x,y)]




(Goodstein’s arithmetic: terms

- Terms - Functions
- 01s a term * § 1s a function of arity 1
* Variables are terms - If t 1s a term containing only variables
Tf fic a f . £ ap q from x4, ..., x,, then we can form a function
f 1s a function of arity n, an f of arity n defined by f (x4, ..., x,,) = t.
ty, ..., t, are terms, then
f(tq, ..., t;) 1s a term. * Induction:

- If T, 1s a term containing only variables from
x1’ Ty Xn;

- If T; 1s a term containing only variables from
k,z,x1, ..., Xp;

* Then we can form f of arity n + 1 defined by

f(O, X1, ...,xn) = Tb
f(S(k),xq, e, x) =Tilz - f(k,xq, ..., x)]




Goodstein’s arithmetic: equality

- Equality 1s a relation on terms.

- It 1s defined by its rules of inference.




Goodstein’s arithmetic: equality

- Equality 1s a relation on terms.

- It 1s defined by its rules of inference.

Rulel: A=1B A=C

B=C
A=RHB
Rule 2:
F[x » A] = F|x » B]
F=G
Rule 3




Goodstein’s arithmetic: equality

- Equality 1s a relation on terms.

- It 1s defined by its rules of inference.

Rulel: A=1B A=C

B=C
Rule 4: Function definitions
A=B
Rule 2:
F[x » A] = F|x » B]
P Rule 5: Uniqueness of inductive definitions
Rule 3 —




Equality: function definitions

- Suppose [ 1s a function defined explicitly by f (x4, ..., x,,) = t. Then:

Rule 4a:

flxq, ..., xy) =t

- Suppose f 1s a function defined inductively with T, and T;. Then:

Rule 4b:

f(O, X1, ...,Xn) = Tb

Rule 4c: f(S(k),Xp v Xp) =T; [z - f(k, X1, ...,Xn)]




Equality: induction uniqueness

- If f, g are functions and T; is a term, then:

f(0,%xq, .., %) = g(0,%xq, ..., X5)

f(S(k),xq, ., x) =Tilz » f(k,xq, .n, X)) ]

Rule 5- g(Sk),xq, ....,xn) =Tilz » g(k, xq, ..., %,)]
flk,xq,....,xp) = glk,xq, ..., x3)




Formalization in Coq

- Coq 1s an interactive theorem prover, which uses the theory of the
calculus of inductive constructions.

v




Coq: terms and functions

- The definitions of terms and functions are intertwined. In Coq, we
need to define them simultaneously! Then specify which i1s which.

Inductive PRA_object : Type :=

| var (x : varlable)

| zero

| succ_func

| explicit func (lvar : list variable) (def : PRA object)

| inductive_ func (k x : variable) (lvar : list variable) (base ind : PRA object)
| func_app (func : PRA object) (lterm : 1ist PRA_object).




Coq: terms and functions

- The definitions of terms and functions are intertwined. In Coq, we
need to define them simultaneously! Then specify which i1s which.

Inductive PRA_object : Type :=
var (x : varilable)

Zero

succ_Tfunc

explicit func (lvar : 1list variable) (def : PRA object)

inductive func (k x : variable) (lvar : list variable) (base ind : PRA_object)

|
|
|
I
| func_app (func : PRA object) (lterm : 1ist PRA_object).

Definition 1s func_ b (f : PRA object) := Definition 1s_term b (t : PRA_object) :=
match f with match t with
| sucec func == true | var _ == true
| explicit func == true | zero == true
| inductive func = == true | func_app _ _ == true
I == falsge I == 'FEI-I_E-E'
end. end.




Coq: terms and functions

Fixpoint valid object_b (f : PRA_object) :=
match f with

| var x == true
. | zero = true
- We need to Spec1fy | succ_func == true
which terms and | explicit func lvar def == (valid_object b def) &&
. . (1s_term b def) &&
functions are valid. (has_no_repeats_b Lvar) &
(only vars _from b lvar def)
¢ (We alSO need to deflne | inductive func k x lvar base ind =
. (valid object b baae] && (valid object b ind) &&
Eirltyh) (1s_term_b base) && (1s_term_b 1ind) &&
(has_no_repeats b (k :: x :: lvar)) &&
(only vars _from_b lvar base) &&
lonly vars_from b (k :: x :: lvar) ind)
| func_app func lterm == (valid_object_b func) &&

(1s func b func) &&
(forallb valid object b lterm) &&
(forallb 1s_term b lterm) &&

(object_arity func =? length lterm)
end.




Coq: term equality

[-: Equallt'_'," iE. dE‘ﬂC‘tE‘d —t= '::I | |
Inductive PRA_term_eq : PRA_object ->» PRA_object -> Prop :=

(* explicit function definition *)

. Equahty 1s defined | (explicit _func lvar def) =< lvar == =t= def
mductlvely. (# 1nductive function definition, base case *)
| (inductive func k x lvar base ind) =< 8 :: lvar =»> =t= base

- All the equahty (* 1nductive function definition, inductive case *)

conditions from before (* Set T = (inductive func k x lvar base ind) #)
| | T < S <k > :: lvar >= =t= 1nd [x |- I << k :: lvar ==]
are here!
(* A =t= B and A =t= C 1mply B =t «]

C
| (A =t=8B) -» (A =t=C) -» (B =t= C)

(* A =t= B 1mplies F(A) =t= F(B) for any Flx) =*)
| (A =t=B) -> F [x |-= A] =t=F [x |-> B]

(* F({x) =t= G(x) implies F(A) =t= G(A) for any A *)

| (F=t=0G) -= F [x |-= A] =t= G [x |-> a]

(* Induction unigueness *)

| (f1 == 8 :: lvar »» =t= f2 =< 0 :: lvar >=) -=
(fl == 5 =< k = :: lvar »>> =t= 1nd [x |[-> f1 == k :: lvar >=) -=
(f2 == S << k >= :: lvar >= =t= 1nd [x |-> f2 =< k :: lvar ==) -=

(fl1 == k :: lvar = =t= f2 =< k :: lvar ==)




Coq: some difficulties

F(x)=G(x) F(xq, ., %) = G(xq, e, X))
FO =6(T) ™Y  Fa T y=6¢y..T)

Does




Coq: some difficulties

F(x)=G(x) F(xq, ., %) = G(xq, e, X))
FO =6(T) ™Y  Fa T y=6¢y..T)

Does

F(xq,x3) = G(x1,x2)
F(Tl'xZ) — G(Tl!xZ)
F(Tilxy » T3], T3) = G(Ty[x, » T,], T)




Wait, wasn’t this about category theory?




Wait, wasn’t this about category theory?

- We want to use Goodstein’s arithmetic to form a category, which
we’ll call PRA.




Wait, wasn’t this about category theory?

- We want to use Goodstein’s arithmetic to form a category, which
we’ll call PRA.

- Objects: formal objects N™ for n = 0 (denote N° by 1).




Wait, wasn’t this about category theory?

- We want to use Goodstein’s arithmetic to form a category, which
we’ll call PRA.

- Objects: formal objects N™ for n = 0 (denote N° by 1).

- Arrows: an arrow f : N® - N™ is a list [f4, ..., f;,] Where each f; is a
function in Goodstein’s arithmetic.




Wait, wasn’t this about category theory?

- We want to use Goodstein’s arithmetic to form a category, which
we’ll call PRA.

- Objects: formal objects N™ for n = 0 (denote N° by 1).

- Arrows: an arrow f : N® - N™ is a list [f4, ..., f;,] Where each f; is a
function in Goodstein’s arithmetic.

- Two functions f, g are defined to be equal if they are both of the
same arity n and f(xq, ..., x,) = g(x4, ..., X,;) as terms.




Wait, wasn’t this about category theory?

- We want to use Goodstein’s arithmetic to form a category, which
we’ll call PRA.

- Objects: formal objects N™ for n = 0 (denote N° by 1).

- Arrows: an arrow f : N® - N™ is a list [f4, ..., f;,] Where each f; is a
function in Goodstein’s arithmetic.

- Two functions f, g are defined to be equal if they are both of the
same arity n and f(xq, ..., x,) = g(x4, ..., X,;) as terms.

- It might be that we can prove f(5%0) = g(5¥0) for each k, but we
CAN'T prove f(x) = g(x)!




PRA 1n Coq

- We define function equality, and then objects and arrows.

(* Function equality is denoted =f= *)
Inductive PRA_func_eq : PRA_object -> PRA_object -> Prop :=
| (has_no_repeats lvar) ->

(fl << Llvar >> =t= f2 << lvar >>) ->

(fl =f= f2)

Inductive object : Type :=
| ob (n : nat).

Inductive arrow : Type :=
| ar {n : nat) (1 : list PRA_object).

Definition valid_arrow (a : arrow) :=
match a with

| ar n 1 == forall f, (In f 1) -» ((valid func ) s\ (arity f n))
end.




PRA 1n Coq

- To form a category, we need to define the source and target maps,
as well as composition.

Definition source (a : arrow) := Definition target (a : arrow) :=
match a with match a with
|l arn 1l == ob n | ar n 1 == ob (length 1)
end. end.

Definition composition (f g : arrow) : arrow :=
(* Complicated *).

Motation "f @ g" := (composition f g).




PRA 1n Coq

- Finally, we also need to prove basic properties:
* Source, target, composition are preserved by equality
- Identity arrows exist
- Composition 1s associative

Theorem composition eq : forall (f1l t2 gl g2 : arrow),
(target f1 = source gl) -=
(fl == f2) -= (gl == g2) -= (fl @ gl) == (f2 @ g2).

Theorem composition assoc : forall (f g h : arrow),
(valid arrow f) -= (valid arrow g) -= (valid arrow h) -=
(target f = source g) -= (target g = source h) -=
(f@(g@h)) == ((f@g) @h).




PRA 1n Coq

- Finally, we also need to prove basic properties:
* Source, target, composition are preserved by equality
- Identity arrows exist
- Composition 1s associative

Theorem composition eq : forall (f1l t2 gl g2 : arrow),
(target f1 = source gl) -=
(fl == f2) -= (gl == g2) -= (fl @ gl) == (f2 @ g2).

Theorem composition assoc : forall (f g h : arrow),
(valid arrow f) -= (valid arrow g) -= (valid arrow h) -=
(target f = source g) -= (target g = source h) -=
(f@(g@h)) == ((f@g) @h).

- All together, this took about 4000 lines of code.



Recap

We're looking for the initial object in the category of Cartesian
categories with NNOs

I defined Goodstein’s arithmetic: terms, functions, and equality

Goodstein’s system can be used to build a category, PRA, whose
arrows are lists of function codes modulo equality




Recap

We're looking for the initial object in the category of Cartesian
categories with NNOs

I defined Goodstein’s arithmetic: terms, functions, and equality

Goodstein’s system can be used to build a category, PRA, whose
arrows are lists of function codes modulo equality

I claim PRA 1is the initial object we want!




PRA 1s a Cartesian category with NNO

- PRA has a terminal object: 1

- PRA has products:
Nn X Nm — Nn+m

- The NNO of PRA 1s N.




PRA 1s a Cartesian category with NNO

- PRA has a terminal object: 1

- PRA has products:
Nn X Nm — Nn+m

- The NNO of PRA 1s N.

* This 1s nontrivial! Compare the induction of Goodstein’s arithmetic to the

induction of NNOs.
G - flxy, o, x,0) = B(xq, oor) X))
oodstein: f(xy, o, 2, S(M)) = 121, oo, X1, 1, f (X, wer, g, 1))
AxN AXS Ax N
NNOs: f(a,0) = g(a) (4.04)_— AN
fla,s(m)) =h(an flan) 4 < lf <1A><N,f>‘ ‘f
g B h

(AXx Ny x B——— B




PRA 1s a Cartesian category with NNO

- To get induction with arbitrary domain, we just need to establish an
1Isomorphism N = N™,

- Luckily, the usual isomorphism N = N? is definable in PRA!




So, what does 1t mean to be 1initial?

- If C 1s a Cartesian category with NNO, we want to show there is a
unique functor F : PRA — C which preserves products and NNO.

PRA — C




So, what does 1t mean to be 1initial?

- If C 1s a Cartesian category with NNO, we want to show there is a
unique functor F : PRA — C which preserves products and NNO.

- This 1sn’t true! What if there are two distinct NNOs in ¢? Which do
we map our objects to?

PRA — C




“Pseudo-initial”

- If C 1s a Cartesian category with NNO, then:
* There exists a functor F : PRA — C which preserves products and NNO

« If F,G : PRA — C are functors which preserve products and NNO, then
there exists a unique natural transformation n: F = G.

Jl=x

PRA —




“Pseudo-initial”

- If C 1s a Cartesian category with NNO, then:
* There exists a functor F : PRA — C which preserves products and NNO

« If F,G : PRA — C are functors which preserve products and NNO, then
there exists a unique natural transformation n: F = G.

- The category PRA 1s initial in the 2-category of:
* Objects: Cartesian categories with NNO
« Arrows: functors which preserve products and NNO
- Arrows between arrows: natural transformations

Jl=x

PRA — C




Summary

We defined a “Natural Numbers Object” in a category

We considered the category of Cartesian categories with NNO
We saw how Goodstein’s system of arithmetic 1s constructed
We used Goodstein’s arithmetic to build a category PRA

We saw that PRA 1s initial in the 2-category of Cartesian
categories with NNO




Summary

We defined a “Natural Numbers Object” in a category

We considered the category of Cartesian categories with NNO
We saw how Goodstein’s system of arithmetic 1s constructed
We used Goodstein’s arithmetic to build a category PRA

We saw that PRA 1s initial in the 2-category of Cartesian
categories with NNO

The next challenge: finding the initial object for categories with
NNO and finite limits!




Thank you!

Special thanks to my supervisors, Professors Simon Henry and Philip Scott



