
What are “Natural Numbers Objects”?

And what do they have to do with recursive arithmetic?



The setting: a Cartesian category

• A terminal object 1

• Binary products 𝐴 × 𝐵



Natural Numbers Object (NNO)

• An object 𝑁

• Two arrows 1
0
𝑁

𝑠
𝑁



Natural Numbers Object (NNO)

• An object 𝑁

• Two arrows 1
0
𝑁

𝑠
𝑁

• For any arrows 𝐴
𝑔

𝐵 and 𝐴 × 𝑁 × 𝐵
ℎ

𝐵, there exists a 

unique arrow 𝐴 × 𝑁
𝑓

𝐵 such that these diagrams commute:



Huh?



Huh?

• Set 𝐴 = 1



Huh?



Huh?

• This reads:

𝑓 0 = 𝑔 𝑓 𝑠 𝑛 = ℎ 𝑛, 𝑓 𝑛



Huh?

• For example:

𝑓 0 = 1 𝑓 𝑠 𝑛 = 𝑠 𝑛 ⋅ 𝑓(𝑛)

This uniquely defines 𝑓 𝑛 = 𝑛!



More generally

• Recursion with parameters:

𝑓 𝑎, 0 = 𝑔(𝑎) 𝑓 𝑎, 𝑠 𝑛 = ℎ 𝑎, 𝑛, 𝑓 𝑎, 𝑛



More generally

• Set 𝐴 = 𝐵 = 𝑁, 𝑔 = 𝐼𝑑, ℎ = 𝑠 ∘ 𝑝𝑁.

𝑓 𝑚, 0 = 𝑚 𝑓 𝑚, 𝑠 𝑛 = 𝑠 𝑓 𝑚, 𝑛



More generally
• Set 𝐴 = 𝐵 = 𝑁, 𝑔 = 𝐼𝑑, ℎ = 𝑠 ∘ 𝑝𝑁.

• 𝑓 𝑚, 0 = 𝑚 𝑓 𝑚, 𝑠 𝑛 = 𝑠 𝑓 𝑚, 𝑛

SUM 𝑚, 0 = 𝑚 SUM 𝑚, 𝑠 𝑛 = 𝑠 𝑆𝑈𝑀 𝑚, 𝑛



Examples



Examples

• ℕ is an NNO in the category of sets and functions



Examples

• ℕ is an NNO in the category of sets and functions

• Let 𝒞 be a cartesian closed category with coproducts.
Let 𝑁 = .𝑛∈ℕ1ח



Notable example:
primitive recursive arithmetic



Notable example:
primitive recursive arithmetic

• Consider the following subcategory of Set:

 Objects are powers of ℕ

 Arrows are primitive recursive functions ℕ𝑛 → ℕ𝑚.

 Call it PRIM



Notable example:
primitive recursive arithmetic

• Basic functions ℕ𝑛 → ℕ:

 𝑍 𝑥 = 0

 𝑆 𝑥 = 𝑥 + 1

 𝑃𝑟𝑜𝑗𝑘
𝑛 𝑥1, … , 𝑥𝑛 = 𝑥𝑘



Notable example:
primitive recursive arithmetic

• Basic functions ℕ𝑛 → ℕ:

 𝑍 𝑥 = 0

 𝑆 𝑥 = 𝑥 + 1

 𝑃𝑟𝑜𝑗𝑘
𝑛 𝑥1, … , 𝑥𝑛 = 𝑥𝑘

• Generalized composition 𝑓 = 𝑔 ∘ ⟨ℎ1, … , ℎ𝑛⟩

 𝑓 𝑥1, … , 𝑥𝑚 = 𝑔 ℎ1 𝑥1, … , 𝑥𝑚 , … , ℎ𝑛 𝑥1, … , 𝑥𝑚



Notable example:
primitive recursive arithmetic

• Basic functions ℕ𝑛 → ℕ:

 𝑍 𝑥 = 0

 𝑆 𝑥 = 𝑥 + 1

 𝑃𝑟𝑜𝑗𝑘
𝑛 𝑥1, … , 𝑥𝑛 = 𝑥𝑘

• Generalized composition 𝑓 = 𝑔 ∘ ⟨ℎ1, … , ℎ𝑛⟩

 𝑓 𝑥1, … , 𝑥𝑚 = 𝑔 ℎ1 𝑥1, … , 𝑥𝑚 , … , ℎ𝑛 𝑥1, … , 𝑥𝑚

• Primitive recursion 𝑓 = 𝑃𝑅 𝑔, ℎ
 𝑓 𝑥1, … , 𝑥𝑚, 0 = 𝑔 𝑥1, … , 𝑥𝑚
 𝑓 𝑥1, … , 𝑥𝑚, 𝑆 𝑘 = ℎ 𝑥1, … , 𝑥𝑚, 𝑘, 𝑓 𝑥1, … , 𝑥𝑚, 𝑘



Notable example:
primitive recursive arithmetic

• These are functions ℕ𝑛 → ℕ. For functions ℕ𝑛 → ℕ𝑚, we use:

𝑓1, … , 𝑓𝑚 ∶ ℕ𝑛 → ℕ𝑚



Notable example:
primitive recursive arithmetic

• These are functions ℕ𝑛 → ℕ. For functions ℕ𝑛 → ℕ𝑚, we use:

𝑓1, … , 𝑓𝑚 ∶ ℕ𝑛 → ℕ𝑚

• The powers of ℕ, together with these functions, give us a 
category with NNO!



Recap

• We’ve seen the definition

• We’ve seen examples



Recap

• We’ve seen the definition

• We’ve seen examples

• How to study categories with NNO?



Make it a category!

• Objects: Cartesian categories with NNO



Make it a category!

• Objects: Cartesian categories with NNO

• Arrows: functors which preserve products and NNO

1
0
𝑁

𝑠
𝑁 1

𝐹 0
𝐹 𝑁

𝐹 𝑠
𝐹 𝑁

𝐴
𝑝𝐴

𝐴 × 𝐵
𝑝𝐵

𝐵 𝐹 𝐴
𝐹 𝑝𝐴

𝐹 𝐴 × 𝐵
𝐹 𝑝𝐵

𝐹 𝐵



The category of cart. cats with NNO



The category of cart. cats with NNO



The category of cart. cats with NNO

• What is the initial object?



The initial object
(in the category of cartesian categories with NNO)

• Mindset: freely generate our category using the minimal starting 
building blocks.



The initial object
(in the category of cartesian categories with NNO)

• Mindset: freely generate our category using the minimal starting 
building blocks.

1
𝑁



The initial object
(in the category of cartesian categories with NNO)

• Mindset: freely generate our category using the minimal starting 
building blocks.

1
𝑁

×



The initial object
(in the category of cartesian categories with NNO)

• Mindset: freely generate our category using the minimal starting 
building blocks.

1
𝑁

1
0
𝑁𝑁

𝑠
𝑁

×



The initial object
(in the category of cartesian categories with NNO)

• Mindset: freely generate our category using the minimal starting 
building blocks.

1
𝑁

1
0
𝑁𝑁

𝑠
𝑁

×

𝐴
𝑝𝐴

𝐴 × 𝐵
𝑝𝐵

𝐵



The initial object
(in the category of cartesian categories with NNO)

• Mindset: freely generate our category using the minimal starting 
building blocks.

1
𝑁

1
0
𝑁𝑁

𝑠
𝑁

×
∘

𝐴
𝑝𝐴

𝐴 × 𝐵
𝑝𝐵

𝐵



The initial object
(in the category of cartesian categories with NNO)

• Mindset: freely generate our category using the minimal starting 
building blocks.

1
𝑁

1
0
𝑁𝑁

𝑠
𝑁

×
∘

𝐴
𝑝𝐴

𝐴 × 𝐵
𝑝𝐵

𝐵



This sounds familiar…

• Objects are powers of 𝑁

• Arrows are built out of:

 Zero, Successor, Projections

 Composition

 Induction



This sounds familiar…

• Objects are powers of 𝑁

• Arrows are built out of:

 Zero, Successor, Projections

 Composition

 Induction

• Is the initial object PRIM??



NO!



NO!

• The arrows are not built freely!



NO!

• The arrows are not built freely!

• We need a functor 𝐹 ∶ 𝑃𝑅𝐼𝑀 → 𝒞.

• Given 𝑓 ∶ ℕ𝑛 → ℕ, we’d define 𝐹(𝑓) by induction on 𝑓.

• Why does 𝑓 = 𝑔 guarantee 𝐹 𝑓 = 𝐹(𝑔)??



What do we do instead?

• We need a different notion of equality…



What do we do instead?

• We need a different notion of equality…

• We have to turn to Goodstein’s arithmetic!



Goodstein’s arithmetic

• A formal logical system for doing arithmetic



Goodstein’s arithmetic

• A formal logical system for doing arithmetic



Goodstein’s arithmetic

• A formal logical system for doing arithmetic

• Equality here is not set-theoretic!



Recap

• We’ve defined NNO and seen examples

• We’ve defined the category of categories with NNO

• We’re searching for the initial object

• PRIM doesn’t work

• So: we turn to Goodstein!



Going forward…

• We’ll see how Goodstein’s system is defined

• Then, we’ll use it to build a cartesian category with NNO

• This will be our initial object!



Goodstein’s arithmetic:
What are the components?

• We need to define:

 Terms

 Equality between terms



Goodstein’s arithmetic: terms

• Terms: on either side of an equality



Goodstein’s arithmetic: terms

• Terms: on either side of an equality

 0

 Variables

 ?



Goodstein’s arithmetic: terms

• Terms: on either side of an equality • Functions: can be applied to terms



Goodstein’s arithmetic: terms

• Terms: on either side of an equality

 0 is a term

 Variables are terms

 If 𝑓 is a function of arity 𝑛, and
𝑡1, … , 𝑡𝑛 are terms, then
𝑓 𝑡1, … , 𝑡𝑛 is a term.

• Functions: can be applied to terms



Goodstein’s arithmetic: terms

• Terms: on either side of an equality

 0 is a term

 Variables are terms

 If 𝑓 is a function of arity 𝑛, and
𝑡1, … , 𝑡𝑛 are terms, then
𝑓 𝑡1, … , 𝑡𝑛 is a term.

• Functions: can be applied to terms

 𝑆 is a function of arity 1

 If 𝑡 is a term containing only 
variables from 𝑥1, … , 𝑥𝑛, then we can 
form a function 𝑓 of arity 𝑛 defined by 
𝑓 𝑥1, … , 𝑥𝑛 = 𝑡.

 Induction



An example: defining addition

1. 𝑥 is a term.

2. 𝑆(𝑧) is a term.



An example: defining addition

1. 𝑥 is a term.

2. 𝑆(𝑧) is a term.

Then we can define 𝑓(𝑥, 𝑦) by:

• 𝑓 𝑥, 0 = 𝑥

• 𝑓 𝑥, 𝑆 𝑦 = 𝑆 𝑓 𝑥, 𝑦



An example: defining addition

1. 𝑥 is a term.

2. 𝑆(𝑧) is a term.

Then we can define 𝑓(𝑥, 𝑦) by:

• 𝑓 𝑥, 0 = 𝑥

• 𝑓 𝑥, 𝑆 𝑦 = 𝑆 𝑓 𝑥, 𝑦

This is 𝑆 𝑧 𝑧 ↦ 𝑓 𝑥, 𝑦



An example: defining addition

1. 𝑥 is a term.

2. 𝑆(𝑧) is a term.

Then we can define 𝑓(𝑥, 𝑦) by:

• 𝑓 𝑥, 0 = 𝑥

• 𝑓 𝑥, 𝑆 𝑦 = 𝑆 𝑓 𝑥, 𝑦

This is 𝑆 𝑧 𝑧 ↦ 𝑓 𝑥, 𝑦

I.e.:

• 𝑥 + 0 = 𝑥

• 𝑥 + 𝑆(𝑦) = 𝑆 𝑥 + 𝑦



Goodstein’s arithmetic: terms

• Terms

 0 is a term

 Variables are terms

 If 𝑓 is a function of arity 𝑛, and
𝑡1, … , 𝑡𝑛 are terms, then
𝑓 𝑡1, … , 𝑡𝑛 is a term.

• Functions

 𝑆 is a function of arity 1

 If 𝑡 is a term containing only variables 
from 𝑥1, … , 𝑥𝑛, then we can form a function 
𝑓 of arity 𝑛 defined by 𝑓 𝑥1, … , 𝑥𝑛 = 𝑡.

 Induction:

 If 𝑇𝑏 is a term containing only variables from 
𝑥1, … , 𝑥𝑛;

 If 𝑇𝑖 is a term containing only variables from 
𝑘, 𝑧, 𝑥1, … , 𝑥𝑛;

 Then we can form 𝑓 of arity 𝑛 + 1 defined by 
𝑓 0, 𝑥1, … , 𝑥𝑛 = 𝑇𝑏
𝑓 𝑆 𝑘 , 𝑥1, … , 𝑥𝑛 = 𝑇𝑖 𝑧 ↦ 𝑓 𝑘, 𝑥1, … , 𝑥𝑛



Goodstein’s arithmetic: equality

• Equality is a relation on terms.

• It is defined by its rules of inference.



Goodstein’s arithmetic: equality

• Equality is a relation on terms.

• It is defined by its rules of inference.

𝐴 = 𝐵 𝐴 = 𝐶

𝐵 = 𝐶

Rule 1:

𝐴 = 𝐵

𝐹[𝑥 ↦ 𝐴] = 𝐹[𝑥 ↦ 𝐵]
Rule 2:

𝐹 = 𝐺

𝐹[𝑥 ↦ 𝐴] = 𝐺[𝑥 ↦ 𝐴]
Rule 3:



Goodstein’s arithmetic: equality

• Equality is a relation on terms.

• It is defined by its rules of inference.

𝐴 = 𝐵 𝐴 = 𝐶

𝐵 = 𝐶

Rule 1:

Rule 4: Function definitions

Rule 5: Uniqueness of inductive definitions

𝐴 = 𝐵

𝐹[𝑥 ↦ 𝐴] = 𝐹[𝑥 ↦ 𝐵]
Rule 2:

𝐹 = 𝐺

𝐹[𝑥 ↦ 𝐴] = 𝐺[𝑥 ↦ 𝐴]
Rule 3:



Equality: function definitions

• Suppose 𝑓 is a function defined explicitly by 𝑓 𝑥1, … , 𝑥𝑛 = 𝑡. Then:

• Suppose 𝑓 is a function defined inductively with 𝑇𝑏 and 𝑇𝑖. Then:

𝑓 𝑥1, … , 𝑥𝑛 = 𝑡
Rule 4a:

𝑓 0, 𝑥1, … , 𝑥𝑛 = 𝑇𝑏
Rule 4b:

𝑓 𝑆 𝑘 , 𝑥1, … , 𝑥𝑛 = 𝑇𝑖 𝑧 ↦ 𝑓 𝑘, 𝑥1, … , 𝑥𝑛
Rule 4c:



Equality: induction uniqueness

• If 𝑓, 𝑔 are functions and 𝑇𝑖 is a term, then:

𝑓 0, 𝑥1, … , 𝑥𝑛 = 𝑔(0, 𝑥1, … , 𝑥𝑛)

𝑓 𝑆 𝑘 , 𝑥1, … , 𝑥𝑛 = 𝑇𝑖 𝑧 ↦ 𝑓 𝑘, 𝑥1, … , 𝑥𝑛
𝑔 𝑆 𝑘 , 𝑥1, … , 𝑥𝑛 = 𝑇𝑖 𝑧 ↦ 𝑔 𝑘, 𝑥1, … , 𝑥𝑛

𝑓 𝑘, 𝑥1, … , 𝑥𝑛 = 𝑔(𝑘, 𝑥1, … , 𝑥𝑛)
Rule 5:



Formalization in Coq

• Coq is an interactive theorem prover, which uses the theory of the 
calculus of inductive constructions.



Coq: terms and functions

• The definitions of terms and functions are intertwined. In Coq, we 
need to define them simultaneously! Then specify which is which.



Coq: terms and functions

• The definitions of terms and functions are intertwined. In Coq, we 
need to define them simultaneously! Then specify which is which.



Coq: terms and functions

• We need to specify 
which terms and 
functions are valid.

• (We also need to define 
arity!)



Coq: term equality

• Equality is defined 
inductively. 

• All the equality 
conditions from before 
are here!



Coq: some difficulties

𝐹(𝑥) = 𝐺(𝑥)

𝐹(𝑇) = 𝐺(𝑇)
Does imply

𝐹(𝑥1, … , 𝑥𝑛) = 𝐺(𝑥1, … , 𝑥𝑛))

𝐹(𝑇1, … , 𝑇𝑛) = 𝐺(𝑇1, … , 𝑇𝑛)
?



Coq: some difficulties

𝐹(𝑥) = 𝐺(𝑥)

𝐹(𝑇) = 𝐺(𝑇)
Does imply

𝐹(𝑥1, … , 𝑥𝑛) = 𝐺(𝑥1, … , 𝑥𝑛))

𝐹(𝑇1, … , 𝑇𝑛) = 𝐺(𝑇1, … , 𝑇𝑛)
?

𝐹(𝑥1, 𝑥2) = 𝐺(𝑥1, 𝑥2)

𝐹 𝑇1, 𝑥2 = 𝐺(𝑇1, 𝑥2)

𝐹 𝑇1 𝑥2 ↦ 𝑇2 , 𝑇2 = 𝐺(𝑇1 𝑥2 ↦ 𝑇2 , 𝑇2)



Wait, wasn’t this about category theory?



Wait, wasn’t this about category theory?

• We want to use Goodstein’s arithmetic to form a category, which 
we’ll call PRA.



Wait, wasn’t this about category theory?

• We want to use Goodstein’s arithmetic to form a category, which 
we’ll call PRA.

• Objects: formal objects 𝑁𝑛 for 𝑛 ≥ 0 (denote 𝑁0 by 1).



Wait, wasn’t this about category theory?

• We want to use Goodstein’s arithmetic to form a category, which 
we’ll call PRA.

• Objects: formal objects 𝑁𝑛 for 𝑛 ≥ 0 (denote 𝑁0 by 1).

• Arrows: an arrow 𝑓 ∶ 𝑁𝑛 → 𝑁𝑚 is a list 𝑓1, … , 𝑓𝑚 where each 𝑓𝑖 is a 
function in Goodstein’s arithmetic.



Wait, wasn’t this about category theory?

• We want to use Goodstein’s arithmetic to form a category, which 
we’ll call PRA.

• Objects: formal objects 𝑁𝑛 for 𝑛 ≥ 0 (denote 𝑁0 by 1).

• Arrows: an arrow 𝑓 ∶ 𝑁𝑛 → 𝑁𝑚 is a list 𝑓1, … , 𝑓𝑚 where each 𝑓𝑖 is a 
function in Goodstein’s arithmetic.

• Two functions 𝑓, 𝑔 are defined to be equal if they are both of the 
same arity 𝑛 and 𝑓 𝑥1, … , 𝑥𝑛 = 𝑔(𝑥1, … , 𝑥𝑛) as terms.



Wait, wasn’t this about category theory?

• We want to use Goodstein’s arithmetic to form a category, which 
we’ll call PRA.

• Objects: formal objects 𝑁𝑛 for 𝑛 ≥ 0 (denote 𝑁0 by 1).

• Arrows: an arrow 𝑓 ∶ 𝑁𝑛 → 𝑁𝑚 is a list 𝑓1, … , 𝑓𝑚 where each 𝑓𝑖 is a 
function in Goodstein’s arithmetic.

• Two functions 𝑓, 𝑔 are defined to be equal if they are both of the 
same arity 𝑛 and 𝑓 𝑥1, … , 𝑥𝑛 = 𝑔(𝑥1, … , 𝑥𝑛) as terms.

• It might be that we can prove 𝑓 𝑆𝑘0 = 𝑔(𝑆𝑘0) for each 𝑘, but we 

CAN’T prove 𝑓 𝑥 = 𝑔(𝑥)!



PRA in Coq

• We define function equality, and then objects and arrows.



PRA in Coq

• To form a category, we need to define the source and target maps, 
as well as composition.



PRA in Coq

• Finally, we also need to prove basic properties:

 Source, target, composition are preserved by equality

 Identity arrows exist

 Composition is associative



PRA in Coq

• Finally, we also need to prove basic properties:

 Source, target, composition are preserved by equality

 Identity arrows exist

 Composition is associative

• All together, this took about 4000 lines of code.



Recap

• We’re looking for the initial object in the category of Cartesian 
categories with NNOs

• I defined Goodstein’s arithmetic: terms, functions, and equality

• Goodstein’s system can be used to build a category, PRA, whose 
arrows are lists of function codes modulo equality



Recap

• We’re looking for the initial object in the category of Cartesian 
categories with NNOs

• I defined Goodstein’s arithmetic: terms, functions, and equality

• Goodstein’s system can be used to build a category, PRA, whose 
arrows are lists of function codes modulo equality

• I claim PRA is the initial object we want!



PRA is a Cartesian category with NNO

• PRA has a terminal object: 1

• PRA has products:
𝑁𝑛 × 𝑁𝑚 = 𝑁𝑛+𝑚

• The NNO of PRA is 𝑁.



PRA is a Cartesian category with NNO

• PRA has a terminal object: 1

• PRA has products:
𝑁𝑛 × 𝑁𝑚 = 𝑁𝑛+𝑚

• The NNO of PRA is 𝑁.

 This is nontrivial! Compare the induction of Goodstein’s arithmetic to the 
induction of NNOs.

Goodstein:

NNOs:

𝑓 𝑥1, … , 𝑥𝑘 , 0 = 𝐵(𝑥1, … , 𝑥𝑘)
𝑓 𝑥1, … , 𝑥𝑘 , 𝑆 𝑛 = 𝐼 𝑥1, … , 𝑥𝑘 , 𝑛, 𝑓 𝑥1, … , 𝑥𝑘 , 𝑛

𝑓 𝑎, 0 = 𝑔 𝑎
𝑓 𝑎, 𝑠 𝑛 = ℎ 𝑎, 𝑛, 𝑓 𝑎, 𝑛



PRA is a Cartesian category with NNO

• To get induction with arbitrary domain, we just need to establish an 
isomorphism 𝑁 ≅ 𝑁𝑛.

• Luckily, the usual isomorphism 𝑁 ≅ 𝑁2 is definable in PRA!



So, what does it mean to be initial?

• If 𝒞 is a Cartesian category with NNO, we want to show there is a 
unique functor 𝐹 ∶ 𝑃𝑅𝐴 → 𝒞 which preserves products and NNO.

𝐏𝐑𝐀
∃!

𝒞



So, what does it mean to be initial?

• If 𝒞 is a Cartesian category with NNO, we want to show there is a 
unique functor 𝐹 ∶ 𝑃𝑅𝐴 → 𝒞 which preserves products and NNO.

• This isn’t true! What if there are two distinct NNOs in 𝒞? Which do 
we map our objects to?

𝐏𝐑𝐀
∃?

𝒞



“Pseudo-initial”

• If 𝒞 is a Cartesian category with NNO, then:

 There exists a functor 𝐹 ∶ 𝑃𝑅𝐴 → 𝒞 which preserves products and NNO

 If 𝐹, 𝐺 ∶ 𝑃𝑅𝐴 → 𝒞 are functors which preserve products and NNO, then 
there exists a unique natural transformation 𝜂: 𝐹 ⇒ 𝐺.

𝐏𝐑𝐀
∃!≈

𝒞



“Pseudo-initial”

• If 𝒞 is a Cartesian category with NNO, then:

 There exists a functor 𝐹 ∶ 𝑃𝑅𝐴 → 𝒞 which preserves products and NNO

 If 𝐹, 𝐺 ∶ 𝑃𝑅𝐴 → 𝒞 are functors which preserve products and NNO, then 
there exists a unique natural transformation 𝜂: 𝐹 ⇒ 𝐺.

• The category PRA is initial in the 2-category of:

 Objects: Cartesian categories with NNO

 Arrows: functors which preserve products and NNO

 Arrows between arrows: natural transformations

𝐏𝐑𝐀
∃!≈

𝒞



Summary

• We defined a “Natural Numbers Object” in a category

• We considered the category of Cartesian categories with NNO

• We saw how Goodstein’s system of arithmetic is constructed

• We used Goodstein’s arithmetic to build a category PRA

• We saw that PRA is initial in the 2-category of Cartesian 
categories with NNO



Summary

• We defined a “Natural Numbers Object” in a category

• We considered the category of Cartesian categories with NNO

• We saw how Goodstein’s system of arithmetic is constructed

• We used Goodstein’s arithmetic to build a category PRA

• We saw that PRA is initial in the 2-category of Cartesian 
categories with NNO

• The next challenge: finding the initial object for categories with 
NNO and finite limits!



Thank you!

Special thanks to my supervisors, Professors Simon Henry and Philip Scott


