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Overview

The ultrafilter monad U
The category U-Spa and some of its subcategories
Confessions
Some other Set-monads
The category T -Spa(C) and some of its subcategories
The role of complete regularity in this context
A glimpse at “elevated” ultrafilters
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The ultrafilter monad U on Set: what is it?

It is

induced by adjunction BooAlgop

hom(−,2)

22⊥ Set
hom(−,2)

qq

induced by adjunction (SetEnd(3))op

hom(−,3)

22⊥ Set
hom(−,3)
pp

(Lawvere 2000; Leinster 2013)

induced by the adjunction KHaus
forget

22⊥ Set
β

qq

the codensity monad of FinSet ↪→ Set (Kennison-Gildenhuys 1971; Leinster 2013)
the terminal object in [Set,Set]∐ (Börger 1987; Leinster 2013)
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But what is it “really”?

x ∈ UX ⇐⇒ x is a maximal down-directed and up-closed subset of PX \ {∅}

Let f : X −→ Y , A ⊆ X , B ⊆ Y , x ∈ X , x ∈ UX , X ∈ UUX

U f : UX −→ UY B ∈ U f (x) ⇐⇒ f−1B ∈ x

˙(−) : X −→ UX A ∈ ẋ ⇐⇒ x ∈ A

Σ : UUX −→ UX A ∈ ΣX ⇐⇒ {z ∈ UX | A ∈ z} ∈ X
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Ultrafilter convergence relation on X

C ⊆ UX × X ; write x y for (x, y) ∈ C; axioms:

(R) ẋ  x
(T) X ̂y︸ ︷︷ ︸ and y z =⇒ ΣX z

∃ w ∈ UC (Uπ1(w) = X, Uπ2(w) = y) w ∈ UC
Uπ1

xx

Uπ2

&&
X ∈ UUX y ∈ UX

We extended C to ÛC = Ĉ ⊆ UUX × UX , writing X ̂y for (X, y) ∈ Ĉ.
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Just a picture: (R) and (T) for sequences

ẋ = (x , x , ...)  x

x1 = (x1,1, ...)  y1

xn = (xn,1, ...)  yn

X = (x1, .....)  y  z ⇒ ΣX = (x1,1, .., xn,n, ...)  z
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The category U-Spa

U-Spa: objects are “U-spaces” (X ,C) = (X , ) satisfying (R) and (T)

= lax EM-algebras of ( Û = lax extension of U from Set to Rel );

morphisms are -preserving maps

X
˙(−) //

1X

⊆

!!

UX

C ⊆
��

UUXÛCoo

Σ
��

UX U f //

CX ⊆
��

UY

CY
��

X UX
C

oo X
f

// Y
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The forgetful functor U-Spa−→ Set

U-Spa−→ Set is topological = all (discrete) “structured” cones admit cartesian liftings
= fibration & cofibration & fibres are (large) complete

(X , )
fi // (Yi , i)

X
fi // Yi

x z ⇐⇒ ∀i : U fi(x) i fi(z)

Some consequences:

U-Spa is (co)complete and (co)wellpowered, has (reg-epi, mono)-factorizations
and (epi, reg-mono)-factorizations, etc., but fails to be cartesian closed.

Its underlying-set functor has both adjoints.
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Some conditions defining full subcategories of U-Spa

Let X = (X ,C) = (X , ) be a U-space. Let’s say that X is ...

(A) if C is (the graph of) a map c: ∀ x ∈ UX ∀ y ∈ X ( x y ⇐⇒ c(x) = y )
(K) if C is definable on all of UX : ∀ x ∈ UX ∃ y ∈ X ( x y )
(H) if values of C are unique: ∀ x ∈ UX ∀ y , z ∈ X (x y , x z =⇒ y = z)

Some easy, but important properties:

Consider objects Xi (i ∈ I) and morphisms f : X → Y and fi : X → Yi (i ∈ I) in U-Spa.
Then:

If f is epic and X is (K), so is Y .
If every Xi is (K), so is

∏
i∈I Xi .

If (fi)i∈I is jointly monic and every Yi is (H), so is X .
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Easy properties + GAFT-methods give reflections

U-KSpa

((
SetU ∼= U-ASpa

reg-epi-reflective
55

reflective ))

U-Spa

U-HSpa
reg-epi-reflective

66

In particular:

U-ASpa↪→ U-Spa is reflective, with adjunction units

βX = (X
˙(−) // UX

q // BX )

and q the quotient map given by the least congruence relation making βX a morphism.
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More conditions defining full subcategories of U-Spa

Let X = (X ,C) = (X , ) be a U-space. X is ...

(C) if βX : X → BX is cartesian w.r.t. U-Spa−→ Set;
(F) if βX : X → BX is monic.

Easy, but important properties: Consider fi : X → Yi (i ∈ I) in U-Spa. Then:
If (fi)i∈I is jointly cartesian and every Yi is (C), so is X ;
If (fi)i∈I is jointly monic and every Yi is (F), so is X .

U-CSpa
epi&mono-reflective

((
SetU ∼= U-ASpa

epi-reflective // U-CFSpa

epi-reflective
55

epi-reflective ))

U-Spa

U-FSpa
reg-epi-reflective

66
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Confessions

SetU ∼= U-ASpa ∼= KHaus (Manes 1967)
U-Spa ∼= Top (Barr 1970), U-KSpa ∼= KTop, U-HSpa ∼= Haus
U-CSpa ∼= CReg (Perry 1976), U-FSpa ∼= FHaus, U-CFSpa ∼= Tych, ...
(... see Möbus 1981 for further topological properties)

Moreover:
In all of the above, we never used any particular feature of U ,
other than the fact that U is a monad on Set . In other words:
EVERYTHING said on the previous slides remains valid for ANY monad T on Set!
(Just replace U by T and avoid the word “ultrafilter”.) Or:
If “topology” refers exclusively to the geometry of neighbourhoods or open and
closed sets, then we have not done any topology so far, just (quite elementary)
category theory – even though we derived from it the Tychonoff Theorem,
established the Stone-Čech-compactification, and several other reflections, etc.
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Some examples

T T -ASpa T -Spa T -CSpa

Id Set Ord Equ (Burroni 1971)
L Mon MulOrd
M×(-) SetM ∼= Catdcf/M Lax[M,Rel] ∼= Catff/M
P Sup PluOrd Ordsup ((Perry 1976))
U KHaus Top CReg (Perry 1976)
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A closer look at the power-set monad

The defining axioms (R) and (T) of a P-space (X , ) may be stated as

(R) {x} x and (T) (Ai  yi (i ∈ I) and {yi | i ∈ I} z) =⇒
⋃
i∈I

Ai  z,

for all x , z, yi ∈ X ,Ai ⊆ X (i ∈ I).The challenge now is to find a handy description of the
universal quotient P-homomorphism q

X
{−} // PX

q // Q

which makes the composite map -preserving in a universal manner.
For (X , ) satisfying (C) one defines a preorder by (x ≤ y ⇐⇒ q({x}) ≤ q({y})),
with respect to which one may describe the given “convergence relation” by

A y ⇐⇒ sup A exists in X and sup A ' y
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A glimpse at P vs. U
Consider the lax monad morphism ∈: P̂ → Û given by the membership relation A ∈ x:

PX

∈X ⊆
��

P̂R // PY

∈Y
��

X

{−} =
��

˙(−)

""

PPX
P̂∈X //

⋃
��

PUX
∈UX // UUX

Σ⊆
��

UX
ÛR
// UY PX ∈X

// UX PX ∈X
// UX

It induces the “lax algebraic” functor

Top = U-Spa −→ P-Spa = PluOrd

sending (X ,→) to (X , ) with PX ∈
//
 

++UX →
// X ; that is:

A y ⇐⇒ ∃ x ∈ UX (A ∈ x and x→ y) ⇐⇒ y ∈ A .
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Is Set relevant?

Hardly!

Consider any category C equipped with a monad (T , η, µ) such that (generously!)
C is complete and well-powered;
all morphisms in C factor (regular epi, mono);
T : C → C preserves regular epimorphisms.

Modulo some adjustment of the vocabulary, we can now state:

Theorem
When we trade (Set,U) for (C,T ), everything said before the Confession survives.

Walter Tholen (York University) T-Spaces:Complete Regularity Logic Seminar Ottawa 16 / 33



Is Set relevant?

Hardly!

Consider any category C equipped with a monad (T , η, µ) such that (generously!)
C is complete and well-powered;
all morphisms in C factor (regular epi, mono);
T : C → C preserves regular epimorphisms.

Modulo some adjustment of the vocabulary, we can now state:

Theorem
When we trade (Set,U) for (C,T ), everything said before the Confession survives.

Walter Tholen (York University) T-Spaces:Complete Regularity Logic Seminar Ottawa 16 / 33



The category T -Spa(C): objects

Objects: (X ,A,d , c) with (d , c) : A→ TX × X monic and

(R) ∃i : X → A (di = ηX , ci = 1X ) and (T) ∃m : A→ TA×TX A (dm = µX (Td)d ′, cm = cc′)

X
ηX

vv
i
��

1X

((TX Adoo c // X

TA

µX ·Td

OO

Tc
((

TA×TX Ad ′oo

m

OO

c′ // A

c

OO

d
vv

TX

Note: The morphisms i and m are uniquely determined.
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The category T -Spa(C): morphisms

Morphisms: f : (X ,A,dX , cX ) −→ (Y ,B,dY , cY ) are morphisms f : X → Y in C such that

∃ f : A→ B in C (dY · f = (Tf )dX , cY f = fcX ) (which makes f determined by f ).

TX

Tf
��

A
dXoo cX //

f
��

X

f
��

TY B
dY

oo
cY

// Y

Theorem
The forgetful functor T -Spa(C) −→ C, (X ,A,d , c) 7→ X , is topological. It therefore admits
both, a left adjoint and a right adjoint. Like C, T -Spa(C) is complete and well-powered and
has a (regular epi, mono)-factorization system, which is preserved by the forgetful functor.
Furthermore, if C is cocomplete, so is T -Spa(C).
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The full subcategories, Tychonoff and Stone-Čech

(A) dX : A→ TX isomorphism T -ASpa(C) ' CT

(K) dX : A→ TX split epimorphism∗ T -KSpa(C)
(H) dX : A→ TX monomorphism T -HSpa(C)
(C) βX : X → BX cartesian (w.r.t. T -Spa(C) −→ C) T -CSpa(C)
(F) βX : X → BX monomorphism T -FSpa(C)

∗ Why not “regular epimorphism”, rather than “split epimorphism”?

Consider A of (X ,A,d , c) as a morphism A : TX → X in Rel(C). Then:

A is a map (à la Lawvere) ⇐⇒ (K’) ∆TX ≤ A◦ ◦ A and (H’) A ◦ A◦ ≤ ∆X

Now check: (K’)⇐⇒ (K) and (H’) ⇐⇒ (H) !
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Tychonoff and Stone-Čech

Theorem
(1) Let Xi (i ∈ I), f : X → Y, and fi : X → Yi (i ∈ I) be in T -Spa(C). Then:

If X is (K), so is Y , provided that (a) f is split epic OR (b) f regularly epic and Y is (H)
(Tychonoff’s Theorem) If every Xi is (K), so is

∏
i∈I Xi .

If (fi)i∈I is jointly monic and every Yi is (H), so is X.

(2) There is an adjunction T -ASpa(C) //
β ⊥ 1

J
// T-Spa(C)

B
uu

.
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Considering T -CSpa in CAT/C

T -ASpa(C)

U
%%

J
⊥ 11 T -CSpa(C)

V
yy

Bqq

C

J embeds the category T -ASpa reflectively into a fibred, even topological, cateory over C.

How may this embedding be characterized?

A first answer was already given by Burroni in 1971, but some questions remained.

Walter Tholen (York University) T-Spaces:Complete Regularity Logic Seminar Ottawa 21 / 33



Considering T -CSpa in CAT/C

T -ASpa(C)

U
%%

J
⊥ 11 T -CSpa(C)

V
yy

Bqq

C

J embeds the category T -ASpa reflectively into a fibred, even topological, cateory over C.

How may this embedding be characterized?

A first answer was already given by Burroni in 1971, but some questions remained.

Walter Tholen (York University) T-Spaces:Complete Regularity Logic Seminar Ottawa 21 / 33



A universal property in CAT/C–roughly

Key observation: β : Id→ JB is a pointwise V -cartesian lifting of Vβ : V → VJB = UB.

Now we claim that the quadruple (J,V ,B, β) is universal with this property:

Let K : T -ASpa(C)→ E and P : E → C be functors, with PK = U = VJ being the forgetful
functor, and assume that P is such that there is a pointwise P-cartesian lifting
ϑ : K → K B of Vβ : V → UB = PK B.

T -ASpa(C)

U //

J //

K

''T -CSpa(C)

ι

KS

K
++

H

33

V
��

κ

KS

⇑ κ E

PnnC
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A “universal property” in CAT/C–precisely

Theorem
The functor K : T -CSpa(C)→ E satisfies the following properties (a),(b),(c); moreover,
property (b) determines K uniquely, while property (c) still determines K up to a unique
natural isomorphism whose P-image is an identity morphism:
(a) PK = V;
(b) there is a natural isomorphism ι : K J → K with Pι = 1U and ιB · Kβ = ϑ;
(c) K maps the pointwise V-cartesian transf. β to a pointwise P-cartesian lifting of Vβ.

Given any functor H : T-CSpa(C)→ E with PH = V and a natural transformation
κ : HJ → K with Pκ = 1U , there is a unique natural transformation κ : H → K with
Pκ = 1V and ι · κJ = κ.

This means: K and ι form a right Kan extension of K along J, not in CAT, but
in the 2-category CAT/C (where 2-cells, once mapped to the level of C, are identities).

Walter Tholen (York University) T-Spaces:Complete Regularity Logic Seminar Ottawa 23 / 33



A “universal property” in CAT/C–precisely

Theorem
The functor K : T -CSpa(C)→ E satisfies the following properties (a),(b),(c); moreover,
property (b) determines K uniquely, while property (c) still determines K up to a unique
natural isomorphism whose P-image is an identity morphism:
(a) PK = V;
(b) there is a natural isomorphism ι : K J → K with Pι = 1U and ιB · Kβ = ϑ;
(c) K maps the pointwise V-cartesian transf. β to a pointwise P-cartesian lifting of Vβ.

Given any functor H : T-CSpa(C)→ E with PH = V and a natural transformation
κ : HJ → K with Pκ = 1U , there is a unique natural transformation κ : H → K with
Pκ = 1V and ι · κJ = κ.

This means: K and ι form a right Kan extension of K along J, not in CAT, but
in the 2-category CAT/C (where 2-cells, once mapped to the level of C, are identities).

Walter Tholen (York University) T-Spaces:Complete Regularity Logic Seminar Ottawa 23 / 33



Short version of the Theorem

Corollary (Burroni 1971):

Let P : E → C be a fibration. Then every functor K : T -ASpa(C)→ E with PK = U admits
a pseudo-extension K : T -CSpa(C)→ E over C (so that K J ∼= K and PK = V ) which, up
to isomorphism, is uniquely determined by the property of mapping β to a pointwise
P-cartesian natural transformation.

Note:

Burroni’s paper actually claims that K transforms all V -cartesian morphisms into
P-cartesian morphisms—not just the V -cartesian morphisms βX (X ∈ T -CSpa(C)). We
have not been able to confirm this claim and conjecture that it does not hold in general.
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Another topological extension of T -ASpa(C) (T, JPAA 1979) ...

The category Gen(CT ) of T algebras with a system of generators:

(TX , µX )

p]

����

X

p
��

f // Y

q
��

(R, r) R f∗ // S

The “codomain functor” C : Gen(CT ) −→ CT is left adjoint to the full embedding
I : CT −→ Gen(CT ), (R, r) 7−→ (1R, r), with the adjunction units γ(p,r) : (p, r) −→ IC(p, r) :

X

p
��

p // R

1R
��

R
1R // R

CT

U ��

I
⊥ 11 Gen(CT )

W
{{

C
rr

C
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... with the same (?) “universal property”

As a category over C, Gen(CT ) behaves exactly like T -CSpa(C); that is:

the previous theorem remains true verbatim—just trade (J,B, β,V ) for (I,C, γ,W ):

T -ASpa(C) ' CT

U //

I //

K

''Gen(CT )

ι

KS

K
++

H

33

W
��

κ

KS

⇑ κ E

PnnC
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What’s going on?

Let’s look at our guiding example C = Set,T = U :

The generalities established give us the diagram (commutative in both directions)

U-ASpa ' SetU ∼= KHaustt
J

tt

**
I

**
U-CAlg ∼= CReg // I

⊥
// Gen(KHaus)

J

mm

I maps the completely regular space X to the map β̃X : X → B̃X , where B̃X is the
(closed) image of the map β]X : UX → BX , x 7→ limUβX (x).

J sends an object p : X → R to the set X , provided with the weak topology with
respect to p and the compact Hausdorff space R.
I is a full embedding, NOT an equivalence of categories, with left adjoint J.
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A conjecture

T -ASpa(C)
��

J

��

K // E

P

����
T -CSpa(C)

V
//

K

;;

C

You guess!
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“Elevated” ultrafilters

Which monads may lend themselves best for studying T -Spa(C) and its subcategories?

Already Manes (SLNM 80, 1969) studied “(T , T̃ )-bialgebras” over Set,
under some conditions on the interaction of the two participating monads,
considering in particular the case T = M × (-) for a monoid M and T̃ = U .
Leinster (TAC 2013) showed the importance of looking at U as a codensity monad
(originally due to Kennison and Gildenhuys), and gave other significant examples in
this context, like the double-dualization monad for vector spaces.
Adámek and Sousa (Adv. Math. 2020) introduced the notion of “D-ultrafilter” (with D
referring to a “dualizing object” and cogenerator in its category, a very powerful notion
that captures in particular the examples already mentioned and deepens their study.

Let us look at one of their examples, without alluding to its codensity status!
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Adámek and Sousa (Adv. Math. 2020) introduced the notion of “D-ultrafilter” (with D
referring to a “dualizing object” and cogenerator in its category, a very powerful notion
that captures in particular the examples already mentioned and deepens their study.

Let us look at one of their examples, without alluding to its codensity status!

Walter Tholen (York University) T-Spaces:Complete Regularity Logic Seminar Ottawa 29 / 33



“Elevated” ultrafilters

Which monads may lend themselves best for studying T -Spa(C) and its subcategories?

Already Manes (SLNM 80, 1969) studied “(T , T̃ )-bialgebras” over Set,
under some conditions on the interaction of the two participating monads,
considering in particular the case T = M × (-) for a monoid M and T̃ = U .
Leinster (TAC 2013) showed the importance of looking at U as a codensity monad
(originally due to Kennison and Gildenhuys), and gave other significant examples in
this context, like the double-dualization monad for vector spaces.
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The simplified algebraic theory of M-sets

Let M = (M,e,m) be a monoid.

X is an M-set ⇐⇒ X comes with a unital and associative action M × X → X
⇐⇒ X comes with a homomorphism M → Set(X ,X ) of monoids
⇐⇒ X is a functor M → Set

Lawvere and Eilenberg-Moore in total harmony: SetM = [M,Set]

Actually, Set may be replaced by any category C; define CM := [M, C].

For example: TopM is the category of M-sets that come equipped with a topology which
makes all translation maps s : X → X (s ∈ M) continuous;
morphisms are continuous equivariant maps.
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The ultrafilter monad of SetM

Now, let M be commutative
(so that the translation maps of any M-set become morphisms of SetM ),

and let X be an M-set. Then:
Make PX an M-set by sA = s−1(A) = {x ∈ X | sx ∈ A} (A ⊆ X );
this lifts the contravariant powerset functor from Set to SetM .
U , as a subfunctor of PP, lifts from Set to SetM as well; so,
UX is an M-set via sx = {A ⊆ X | sA ∈ x}, for all x ∈ UX .
The monad unit and multiplication of U become componentwise equivariant; so,
we have the lifting UM of the monad U from Set to SetM .
The Eilenberg-Moore category of UM is KHausM and, not surprisingly, one has

UM -Spa(SetM) ∼= TopM .
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UX is an M-set via sx = {A ⊆ X | sA ∈ x}, for all x ∈ UX .
The monad unit and multiplication of U become componentwise equivariant; so,
we have the lifting UM of the monad U from Set to SetM .
The Eilenberg-Moore category of UM is KHausM and, not surprisingly, one has

UM -Spa(SetM) ∼= TopM .
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Fortunately, also Stone-Čech lifts to SetM !

For an M-set X , make BX an M-set, such that βX : X → BX becomes eqivariant, by:

sz = (Bs)(z) (z ∈ BX ) X

βX
��

s // X

βX
��

BX Bs // BX

Proof that this works and gives the desired adjunction: CAT is a 2-category!

[M,KHaus]
[M,Inc]

11⊥ [M,Top].
[M,B]

qq

Now it is easy to see that
UM -CSpa(SetM) ∼= CRegM .
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More examples?

Wait and see!

THANK YOU!
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