

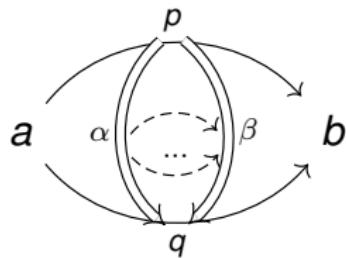
Limits and colimits in synthetic ∞ -categories

César Bardomiano Martínez

February 10, 2022

∞ -categories

- ▶ Idea of an ∞ -category: It is what follows in 1-category, 2-category, ..., n -category ...
- ▶ More precisely: $(\infty, 1)$ -category.



- ▶ Problem: Many definitions, and none of them is easy.
- ▶ Possible solution: Synthetic theory (Riehl-Shulman, Riehl-Verity).
- ▶ Our contribution: Theory of limits and colimits.

Outline

Preliminaries

Simplicial type theory

Synthetic ∞ -category theory

Limits and colimits

Limit of spaces

Homotopy type theory

Via the **Curry-Howard-Voevodsky**¹ correspondence:

Set theory	Logic	Homotopy theory	HoTT
sets	propositions	spaces	Types A, B, \dots
elements	proofs	points	$a : A$
$\emptyset, \{\emptyset\}$	\top, \perp	$\emptyset, *$	$0, 1, \mathcal{U}$
product	conjunction	product	$A \times B$
disjoint union	disjunction	coproduct	$A + B$
functions	implication	function space	$A \rightarrow B$
family of sets	predicate	fibration	$B : A \rightarrow \mathcal{U}$
product	\forall	space of sections	$\prod_{a:A} B(a)$
disjoint union	\exists	total space	$\sum_{a:A} B(a)$

¹Emily Riehl

Identity type

- ▶ Formation: For A Type and $a, b : A$ we form $a =_A b$ Type.
- ▶ Introduction: For all $a : A$ there is $\text{refl}_a : a =_A a$.
- ▶ Elimination*: For every family type $C : A \rightarrow A \rightarrow \mathcal{U}$ if

$$u : \prod_{a:A} C(a, a)$$

then

$$f : \prod_{a,b:A} \prod_{p:a=b} C(a, b).$$

- ▶ Computation*: $f(a, a, \text{refl}_a) \equiv u(a)$.

Identity type

- ▶ Elimination: For every family type

$$C : \prod_{a,b:A} (a = b) \rightarrow \mathcal{U}$$

and

$$u : \prod_{a:A} C(a, a, \text{refl}_a)$$

there is

$$f : \prod_{a,b:A} \prod_{p:a=b} C(a, b, p)$$

Path
int.

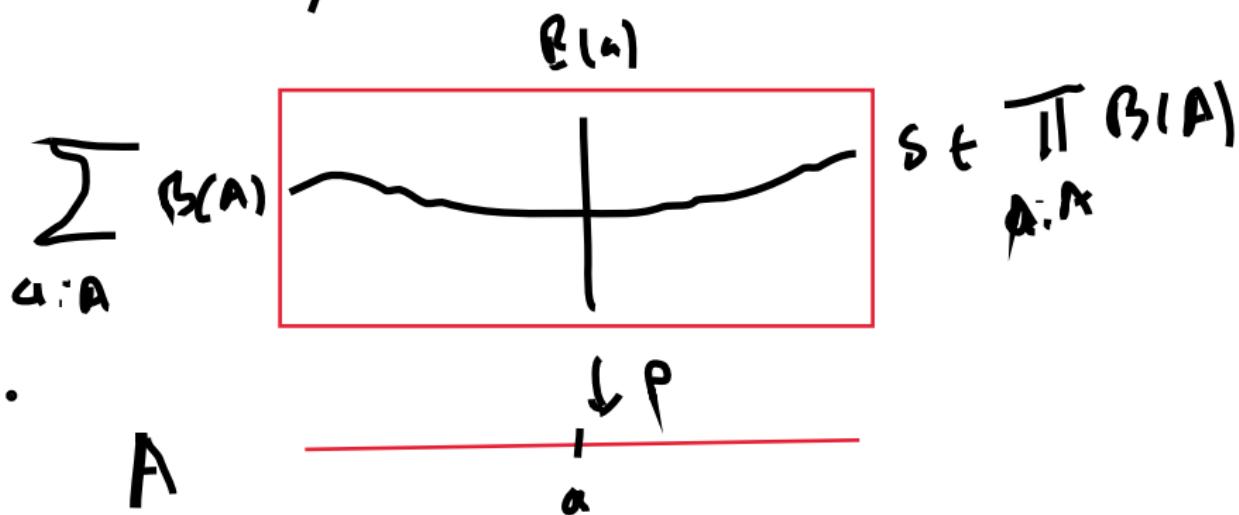
- ▶ Computation: $f(a, a, \text{refl}_a) \equiv u(a)$

A model for HoTT

Theorem (Voevodsky-Kapulkin-Lumsdaine)

The category $\mathbf{Set}^{\Delta^{op}}$ supports an interpretation of HoTT where types correspond to Kan complexes.

The nicest possible situation we can draw:



Simplicial HoTT

Can be obtained by adding a strict interval to HoTT:

A type $\mathbb{2}$ with distinct endpoints $0, 1$ with an order relation, plus some axioms making it into an interval.

Theorem (Riehl-Shulman)

The category $\mathbf{sSet}^{\Delta^{\text{op}}}$ supports an interpretation of sHoTT where Segal types correspond to Segal spaces and Rezk types to Rezk spaces.

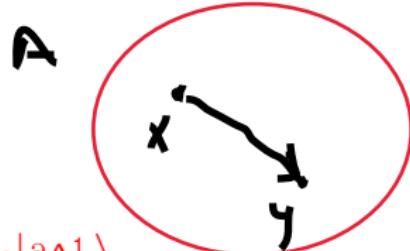
Rezk spaces are certain bisimplicial sets which are our $(\infty, 1)$ -categories in this model.

We can construct some “simplicial sets”.

Simplicial HoTT

Furthermore:

$$\text{hom}_A(x, y) := \langle \Delta^1 \rightarrow A|_{[x,y]}^{\partial\Delta^1} \rangle.$$



If $f : \text{hom}(x, y)$ then $f(0) \equiv x$ and $f(1) \equiv y$.

- For $x : A$ define $\text{id}_x := \lambda(t : \Delta^1). x$.
- The type of compositions for $f : \text{hom}_A(x, y)$ and $g : \text{hom}_A(y, z)$:

$$\text{hom}_A^2 \left(\begin{array}{ccc} & y & \\ f \swarrow & \text{Id} & \searrow g \\ x & \xrightarrow{h} & z \end{array} \right) := \langle \Delta^2 \rightarrow A|_{[x,y,z,f,g,h]}^{\partial\Delta^2} \rangle.$$

Some types

- ▶ A type A is **contractible** if

$$\sum_{a:A} \prod_{x:A} a = x.$$

- ▶ A type A is a **proposition** if

$$\prod_{x,y:A} x = y.$$

Segal types

Segal types are types with “unique composition”. By definition, if the type

$$\sum_{\underline{h: \text{hom}_A(x,z)}} \text{hom}_A^2 \left(\begin{array}{ccc} & y & \\ f \swarrow & & \searrow g \\ x & \xrightarrow{h} & z \end{array} \right)$$

is contractible.

- ▶ This is enough to get the categorical structure.
- ▶ In Segal types we have associative and unital composition, denoted $g \circ f$.
- ▶ Functions $f : A \rightarrow B$ between Segal types are “functors”.

Rezk types

- ▶ An arrow $f : \text{hom}_A(x, y)$ is an **isomorphism** if

$$\left(\sum_{g : \text{hom}_A(y, x)} g \circ f = \text{id}_x \right) \times \left(\sum_{h : \text{hom}_A(y, x)} f \circ h = \text{id}_y \right).$$

- ▶ The type above is a proposition so:

$$\underline{(x \cong y)} := \sum_{f : \text{hom}_A(x, y)} \text{isiso}(f).$$

- ▶ By path induction

$$\text{idtoiso} : \prod_{x, y : A} \underline{(x = y)} \rightarrow \underline{(x \cong y)}.$$

in the case $\underline{x = x}$ define $\text{idtoiso}(\underline{\text{refl}_x}) := \underline{\text{id}_x}$.

A Segal type is **Rezk** if $\underline{\text{idtoiso}}$ is an equivalence.

Natural transformations and adjunctions

A **natural transformation** is an element $\alpha : \text{hom}_{A \rightarrow B}(f, g)$.

- ▶ Component-wise determined

$$\text{hom}_{A \rightarrow B}(f, g) \simeq \prod_{a:A} \text{hom}_B(f(a), g(a)).$$

- ▶ The type theory makes them natural.

A **quasi-transposing adjunction** between types A, B consist of **functors** $f : A \rightarrow B$ and $u : B \rightarrow A$ and a family of equivalences

$$\phi : \prod_{a:A, b:B} \text{hom}_B(fa, b) \simeq \text{hom}_A(a, ub).$$

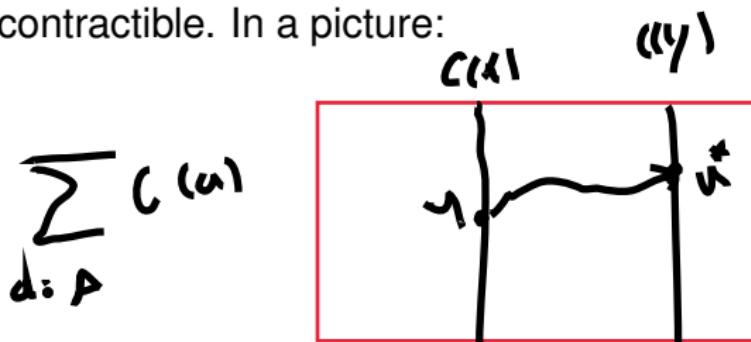
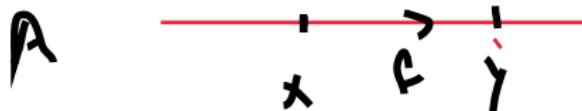
Covariant families

Covariant families are the analogous to Grothendieck fibration.

A family $C : A \rightarrow \mathcal{U}$ is **covariant** if for each $x, y : A$, $f : \text{hom}_A(x, y)$ and $u : C(x)$ the type

$$\sum_{v : C(y)} \underline{\text{hom}_{C(f)}(u, v)}$$

is contractible. In a picture:



Closure properties

Theorem (Riehl-Shulman)

If $B : A \rightarrow \mathcal{U}$ is a covariant family type over A a Segal type such that for all $a : A$ the type $B(a)$ is a Segal type then $\prod_{a:A} B(a)$ and $\sum_{a:A} B(a)$ are Segal type. In particular $A \rightarrow B$ is Segal if B is a Segal type.

Theorem (B.)

If A is a Rezk type and $C : A \rightarrow \mathcal{U}$ is a covariant family over A then $\sum_{x:A} C(x)$ is also a Rezk type.

Initial/terminal and (co)cones

An element $b : B$ is **initial** if for all $x : B$, $\text{hom}_B(b, x)$ is contractible.

$$\text{isinitial}(b) := \prod_{x:B} \text{iscontr}(\text{hom}_B(b, x))$$

Also, an element $b : B$ is **terminal** if for all $x : B$, $\text{hom}_B(x, b)$ is contractible.

$$\text{isterminal}(b) := \prod_{x:B} \text{iscontr}(\text{hom}_B(x, b)).$$

Define the type of **(co)cones** of $f : A \rightarrow B$

$$\text{cocone}(f) := \sum_{b:B} \text{hom}_{A \rightarrow B}(f, \Delta b),$$

$$\text{cone}(f) := \sum_{b:B} \text{hom}_{A \rightarrow B}(\Delta b, f).$$

Synthetic (co)limits

Definition

A **colimit** for $f : A \rightarrow B$ is an initial element of the type:

$$\text{cocone}(f) := \sum_{x:B} \text{hom}_{A \rightarrow B}(f, \Delta x).$$

A **limit** for $f : A \rightarrow B$ is an terminal element of the type:

$$\text{cone}(f) := \sum_{x:B} \text{hom}_{A \rightarrow B}(\Delta x, f).$$

Theorem (B.)

Under interpretation, the definition above coincides with the one given in bisimplicial sets.

Classical results

Theorem (B.)

1. *Colimits are unique up to isomorphism if they exist.*
2. *There exist a colimit (a, α) for f if and only if*

$$\prod_{x:B} (\text{hom}_B(a, x) \simeq \text{hom}_{A \rightarrow B}(f, \Delta x)).$$

Proof.

1. Prove initial elements are unique up to isomorphism.
2. Use Yoneda lemma.

In the presence of an adjunction then we also have the usual preservation of limits and colimits.

Theorem (B)

Let A, B be Segal types and functions $g : J \rightarrow B$, $f : A \rightarrow B$, $u : B \rightarrow A$, such that g has a limit (b, β) and u is right quasi-transposing adjunction of f then $(u(b), u\beta)$ is a limit for $ug : J \rightarrow A$.

Proof.

It is the same as in categories modulo some type theory complications.

Special case: Rezk types

Let B is a Segal type a $f : A \rightarrow B$ a function, we define the type:

$$\text{colimit}(f) := \sum_{w:\text{cocone}(f)} \text{isinitial}(w),$$

and also

$$\text{limit}(f) := \sum_{w:\text{cone}(f)} \text{isterminal}(w).$$

Lemma

The types $\text{colimit}(f)$ and $\text{limit}(f)$ are propositions.

Proof.

- ▶ Use that (co)limits are unique up to isomorphism. Any two (co)limits $(a, \alpha), (b, \beta)$ are isomorphic $(a, \alpha) \cong (b, \beta)$
- ▶ The types above are Rezk types hence $(a, \alpha) \cong (b, \beta)$ is equivalent to $(a, \alpha) = (b, \beta)$.

Corollary (B.)

In Rezk types, (Co)limits are unique up to equality.

Limit of spaces: Motivation

Let $\{G_i\}_{i \in I}$ be a family of ∞ -groupoids indexed by a set I . Denote by G to the obvious diagram $I \rightarrow \infty\text{-}\mathbf{Gpd}$ then we have that

$$\lim_I G_i = \prod_{i \in I} G_i.$$

Problem: There is not something like an ∞ -category of ∞ -groupoids

Solution: *univalent covariant families* due to Cavallo-Riehl-Sattler.

Covariant univalent families

Fix a covariant family $E : B \rightarrow \mathcal{U}$ over a Segal type B and $a, b : B$ we obtain a function

$$f : \sqcup (a \mapsto a')$$

$$\text{arrtofun} : \text{hom}_B(a, b) \rightarrow (E(a) \rightarrow E(b)).$$

E is **covariant univalent** if for all $a, b : B$ the map `arrtofun` is an equivalence.

For a type A define

$$\text{issmall}_B(A) := \sum_{b:B} \underline{\underline{E(b) \simeq A}}$$

A is **B -small** if $\text{issmall}_B(A)$.

The type B is regarded as a “ ∞ -category” of “ ∞ -categories”, it is definable in sHoTT and consistent (C-R-S).

Limit as dependant product

Let B a Rezk type, a function $f : D \rightarrow B$ and assume that $E : B \rightarrow \mathcal{U}$ is a univalent covariant family

Proposition (B.)

If $(\underline{b}_0, \underline{\sigma}_0)$ is the center of contraction of $\text{issmall}_B(\prod_{d:D} E(f(d)))$
then \underline{b}_0 is the limit for f .

$$\overline{E(\underline{b}_0)}$$

Proposition (B.)

If $f : D \rightarrow B$ has limit (b_0, α) and there is $b_1 : B$ and $u : E(b_1)$.
Then $\prod_{d:D} E(f(d))$ is B -small.

—