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Plan:

1. What is a blockchain? What is safety?

2. Forcing relative to a geometric morphism.

3. Presheaf forcing interpretation of safety.

4. Elementary forcing interpretation of safety.

5. Prospectus and Speculation

ArXiv reference: [Lam21]
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Disclaimers/hedging:

1. Not a talk on programming.

2. No content here actually concerns details or implementation

of consensus protocols.

3. Discussing an application of topos theory in describing

well-established phenomena in comp sci, but not meant to be

particularly useful to comp sci.
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What is a blockchain safety?

• A distributed system is a network of interconnected nodes

tasked with solving a computational problem.

• Safety in a distributed system is a guarantee that “nothing

bad will happen” [Lam77].
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• A blockchain is a public ledger managed by a distributed
system. Features:

1. composed of individual blocks: each has an ID hash, each

identifies a unique immediate predecessor, and each contains

network transaction data

2. should ultimately be a linear order of blocks

3. latency, down or faulty nodes, malicious actors ⇝ blocks

minted simultaneously or with conflicting data.

• Network needs to reach consensus concerning which blocks to

include and which to throw out. “Fork choice” or “forking.”

• Blockchain protocol governs how nodes communicate, how

blocks are minted, how consensus is reached.

• peer-to-peer ≈ no central authority, just the protocol

• Examples: Bitcoin, Ethereum, Cardano, Algorand etc.
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• Blockchain consensus safety: the protocol will not validate

blocks with conflicting data.

• “Validate” ≈ accept certain blocks in fork choice.

• Goal: design a template for consensus protocols from which

safety is provable as a feature. Ref: [Zam17]
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Estimate Safety

• Abstract template for Ethereum blockchain [Zam17]

• Let Σ denote a category: objects are protocol states; arrows

are executions/state transition: ”do something”

• C is a set of “consensus values” ≈ a hypothetical totality of

all blockchain configurations

• E : Σ→ PC an “estimator” assigning to each state an

estimate as to the configuration of the blockchain ≈ fork

choice in a given state.

• E satisfies a technical condition.
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• Definition. A proposition p ∈ PC is safe in state w ∈ Σ if

Ev ≤ p for all executions w → v .

• Safety Theorem. [Zam17] Any proposition and its negation

cannot be safe in states with a common future state: it is not

the case that p is safe in w1 and ¬p is safe in w2 if there are

executions w1 → w3 ← w2.

• Theorem is provable without appeal to DeMorgan or excluded

middle, and makes sense for any contradictory propositions.

Topos logic?

• Forcing mojo: p is safe at w if it is forced at w to be in the

fork choice of every subsequent protocol state. Kripkean!
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Presheaf Forcing Semantics

• Let F : C → D denote any functor. Think E : Σ→ PC .

• Induces a geometric morphism F : [C ,Set]→ [D ,Set].

• Notation: H∗ = F ∗H and K∗ = F∗K . In particular Ω∗ = F∗Ω.

• Let ϕ : X → Ω∗ be any morphism, C ∈ C and a ∈ F ∗X . Let

ϕ̄ be its transpose ϕ̄ = ϵϕ∗ : X ∗ → Ω.

• Define: C ⊩∗ ϕ(a) if, and only if, C ⊩ ϕ̄(a) holds.

• That is, C ⊩∗ ϕ(a) if, and only if, a ∈ Sϕ̄C .

• See §4 [AKK14] for original relation in special case |C | → C .
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Lemma
C ⊩∗ ϕ(a) holds if, and only if, D ⊩∗ ϕ(f!a) for all f : C → D.

Proof.

C ⊩∗ ϕ(a) ≡ C ⊩ ϵϕ∗(a)

≡ ϵϕ∗(a) = ⊤C

≡ {f : C → D | f!(a) ∈ Sϵϕ∗D} = tC

≡ f!(a) ∈ Sϵϕ∗D for all f : C → D

≡ ϵϕ∗(f!(a)) = ⊤D for all f : C → D

≡ D ⊩ ϵϕ∗(f!(a)) for all f : C → D

≡ D ⊩∗ ϕ(f!(a)) for all f : C → D
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• A geometric model is a surjective geometric morphism

F : F → E (i.e. F ∗ is faithful)

• F is a geometric model if, and only if, ΩE → Ω∗ is monic

• semantics of ⊩∗ and □-operator are especially well-behaved

for geometric models

• F : C → D induces a geometric model

F : [C ,Set]→ [D ,Set] if, and only if, every object of D is a

retract of one in the image of F

• E : Σ→ PC induces a geometric model iff surj. on obj.
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Presheaf Forcing Interpretation Setup:

• suppose that E : Σ→ PC surjective on objects

• let p ∈ PC be given

• identify p with the support of the corresponding representable

functor in [PC ,Set]

• classifying map χp : 1→ Ω in [PC ,Set]

• consider the composite iχp where i : Ω→ Ω∗ unique frame

homomorphism (i monic!)
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Theorem
A proposition p : U → 1 is safe in state w if, and only if, w ⊩∗ iχp.

Proof.

w ⊩∗ iχp ≡ v ⊩∗ iχp for all w → v

≡ v ⊩ iχp for all w → v

≡ v ≤ S iχp
in SubF (1) for all w → v

≡ ev ≤ p in Sub(1)E for all w → v

≡ ev ⇒ p = ⊤ in Sub(1)E for all w → v .

Penultimate step: the transpose of S iχp
is isomorphic to p because

p is classified by iχp since i is monic.
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Denote by □ϕ the composite

X
ϕ // Ω∗

τ // Ω
i // Ω∗

where τ is the classifying arrow of ⊤∗ : 1→ Ω∗ (cf. [AKK14]).

Corollary
p : U → q is safe in w if, and only if, w ⊩∗ □iχp.

Proof.
w ⊩∗ □iχp iff w ⊩∗ iχp since i is monic. Now use the

theorem.
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Elementary Interpretation

• work in a topos E (not necessarily Grothendieck)

• recall forcing relation: A morphism a : W → X forces

ϕ : X → Ω if

Sϕ

��

// 1

⊤
��

Im(a)

<<

// X
ϕ
// Ω

equivalently ϕ(a) = ⊤W

• denote this by W ⊩ ϕ(a)
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Definition
An estimate consensus protocol in a topos E consists of

1. an object C of consensus values;

2. an internal category Σ of states Σ0 and executions Σ1;

3. an internal functor e : Σ→ PC called the estimator

satisfying: if e(w)⇒ p = ⊤ for some state w : X → Σ0, then

¬(e(w)⇒ ¬p) = ⊤ for any proposition p : 1→ PC.

Definition
A proposition p : 1→ PC is safe in the protocol state

w : W → Σ0 if for any execution f : w → v, it follows that

ew ⇒ p = ⊤ holds.
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For any state w : W → Σ0, form the object of executions from w

as the pullback

Σ(w ,−)

����

// Σ1

d0
��

W w
// Σ0.

For any execution f : w → v on w , that is,

X

����

f // Σ1

d0
��

W w
// Σ0

there is a unique morphism f̂ : X → Σ(w ,−) i.e. f is an element

of the “fiber” of the reprentable functor at v ∈ Σ0.
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For any proposition p : 1→ PC , form the implication x ⇒ p for a

variable x : PC as the composite

PC ∼= PC × 1
x×p // PC × PC

⇒ // Ω

where ‘⇒’ classifies (≤)→ PC × PC . Identify w with the

representable Σ(w ,−) in the forcing notation. That is, write

‘w ⊩ x ⇒ p’ as a shorthand for ‘Σ(w ,−) ⊩ x ⇒ p’.
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Theorem
p : 1→ PC is safe in w if, and only if, w ⊩ (x ⇒ p)(ed1).

Proof.
(⇒) Assume safety: ed1π2 : Σ(w ,−)→ PC satisfies

ed1π2 ⇒ p = ⊤. Then

Sx⇒p

��

// 1

⊤
��

Σ(w ,−)

::

ed1π2

// PC x⇒p
// Ω

(⇐) Assume ed1π2 ⇒ p = ⊤ holds. Any f factors through

Σ(w ,−) via f̂ : X → Σ(w ,−) satisfying π2f̂ = f . Thus, compute

that ⊤ = ed1π2f̂ ⇒ p = ed1f ⇒ p = ev ⇒ p.
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In this topos-setup, can prove the main safety result:

Theorem (Estimate Safety)
Inconsistent propositions are not safe at related states. That is, if

p ∧ q = ⊥ and w1 ≃ w2 both hold, then it is not the case that

both w1 ⊩ (x ⇒ p) and w2 ⊩ (x ⇒ q) hold.

This depends on some lemmas. See [Lam21] for full version.

20



Prospectus/Musings

• no mention of protocol Σ

• this is the point of the template: from any E : Σ→ PC , a

safety result should be provable

• “safety” originates in distributed computing [Lam77]

• I/O automata as formal models

• safety shows up in other contexts
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Example: Gödel Translation

• topology: upward closed subsets of a poset X

• include O(X )→ PX

• p ∈ PX is safe in state x ∈ X if x↑ ⊂ p

• “safely(p)” = modal operator

• ref: [Kis18]

• general situation: Garner’s ionads?
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Speculative Example: Spacetime Logic

• future of an event = cone of “accessible events”

• event p is safe for event x if p is in the future of every event

in the future of x

• Minkowski spacetime logic = S4 modality [Gol80]

• spacetime logic formulable in terms of non-deterministic

cellular automata (deep lore?)
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Closing Thoughts:

• automata models in indexed categories [Jaz20]

• distributed computing ∩ concurrency = nontrivial

• directed type theory ⇝ models of concurrency [Nor18]; needs

comprehension scheme [Jac93] for interpretation

• big leap: fibration models as setting for forcing interpretation

of safety formalized in nondeterministic automata

• application of double categories: probably need a bifibration

to interpret connectives and an involution (−)op for

directedness; i.e. need a special kind of equipment [Shu08]
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THANK YOU!
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