

Blockchain Safety in a Topos

Ottawa Logic Seminar

Michael Lambert

2 December 2021

Mount Allison University

Plan:

1. What is a blockchain? What is safety?
2. Forcing relative to a geometric morphism.
3. Presheaf forcing interpretation of safety.
4. Elementary forcing interpretation of safety.
5. Prospectus and Speculation

ArXiv reference: [Lam21]

Disclaimers/hedging:

1. Not a talk on programming.
2. No content here actually concerns details or implementation of consensus protocols.
3. Discussing an application of topos theory in describing well-established phenomena in comp sci, but not meant to be particularly useful to comp sci.

What is a blockchain safety?

- A **distributed system** is a network of interconnected nodes tasked with solving a computational problem.
- **Safety** in a distributed system is a guarantee that “nothing bad will happen” [Lam77].

- A blockchain is a public ledger managed by a distributed system. Features:
 1. composed of individual blocks: each has an ID hash, each identifies a unique immediate predecessor, and each contains network transaction data
 2. should ultimately be a linear order of blocks
 3. latency, down or faulty nodes, malicious actors \rightsquigarrow blocks minted simultaneously or with conflicting data.
- Network needs to reach **consensus** concerning which blocks to include and which to throw out. “Fork choice” or “forking.”
- Blockchain **protocol** governs how nodes communicate, how blocks are minted, how consensus is reached.
- peer-to-peer \approx no central authority, just the protocol
- Examples: Bitcoin, Ethereum, Cardano, Algorand etc.

- Blockchain consensus safety: the protocol will not validate blocks with conflicting data.
- “Validate” \approx accept certain blocks in fork choice.
- Goal: design a template for consensus protocols from which safety is *provable* as a feature. Ref: [Zam17]

Estimate Safety

- Abstract template for Ethereum blockchain [Zam17]
- Let Σ denote a category: objects are protocol states; arrows are executions/state transition: "do something"
- C is a set of "consensus values" \approx a hypothetical totality of all blockchain configurations
- $E: \Sigma \rightarrow PC$ an "estimator" assigning to each state an estimate as to the configuration of the blockchain \approx fork choice in a given state.
- E satisfies a technical condition.

- **Definition.** A proposition $p \in PC$ is **safe** in state $w \in \Sigma$ if $\mathcal{E}v \leq p$ for all executions $w \rightarrow v$.
- **Safety Theorem.** [Zam17] Any proposition and its negation cannot be safe in states with a common future state: it is not the case that p is safe in w_1 and $\neg p$ is safe in w_2 if there are executions $w_1 \rightarrow w_3 \leftarrow w_2$.
- Theorem is provable without appeal to DeMorgan or excluded middle, and makes sense for any contradictory propositions.
Topos logic?
- Forcing mojo: p is safe at w if it is forced at w to be in the fork choice of every subsequent protocol state. Kripkean!

Presheaf Forcing Semantics

- Let $F: \mathcal{C} \rightarrow \mathcal{D}$ denote any functor. Think $E: \Sigma \rightarrow PC$.
- Induces a geometric morphism $F: [\mathcal{C}, \mathbf{Set}] \rightarrow [\mathcal{D}, \mathbf{Set}]$.
- Notation: $H^* = F^*H$ and $K_* = F_*K$. In particular $\Omega_* = F_*\Omega$.
- Let $\phi: X \rightarrow \Omega_*$ be any morphism, $C \in \mathcal{C}$ and $a \in F^*X$. Let $\bar{\phi}$ be its transpose $\bar{\phi} = \epsilon\phi^*: X^* \rightarrow \Omega$.
- Define: $C \Vdash_* \phi(a)$ if, and only if, $C \Vdash \bar{\phi}(a)$ holds.
- That is, $C \Vdash_* \phi(a)$ if, and only if, $a \in S_{\bar{\phi}}C$.
- See §4 [AKK14] for original relation in special case $|\mathcal{C}| \rightarrow \mathcal{C}$.

Lemma

$C \Vdash_* \phi(a)$ holds if, and only if, $D \Vdash_* \phi(f_!a)$ for all $f: C \rightarrow D$.

Proof.

$$\begin{aligned} C \Vdash_* \phi(a) &\equiv C \Vdash \epsilon\phi^*(a) \\ &\equiv \epsilon\phi^*(a) = \top_C \\ &\equiv \{f: C \rightarrow D \mid f_!(a) \in S_{\epsilon\phi^*}D\} = \mathbf{t}_C \\ &\equiv f_!(a) \in S_{\epsilon\phi^*}D \text{ for all } f: C \rightarrow D \\ &\equiv \epsilon\phi^*(f_!(a)) = \top_D \text{ for all } f: C \rightarrow D \\ &\equiv D \Vdash \epsilon\phi^*(f_!(a)) \text{ for all } f: C \rightarrow D \\ &\equiv D \Vdash_* \phi(f_!(a)) \text{ for all } f: C \rightarrow D \end{aligned}$$

□

- A **geometric model** is a surjective geometric morphism $F: \mathcal{F} \rightarrow \mathcal{E}$ (i.e. F^* is faithful)
- F is a geometric model if, and only if, $\Omega_{\mathcal{E}} \rightarrow \Omega_*$ is monic
- semantics of \Vdash_* and \Box -operator are especially well-behaved for geometric models
- $F: \mathcal{C} \rightarrow \mathcal{D}$ induces a geometric model
 $F: [\mathcal{C}, \mathbf{Set}] \rightarrow [\mathcal{D}, \mathbf{Set}]$ if, and only if, every object of \mathcal{D} is a retract of one in the image of F
- $E: \Sigma \rightarrow PC$ induces a geometric model iff surj. on obj.

Presheaf Forcing Interpretation Setup:

- suppose that $E: \Sigma \rightarrow PC$ surjective on objects
- let $p \in PC$ be given
- identify p with the support of the corresponding representable functor in $[PC, \mathbf{Set}]$
- classifying map $\chi_p: 1 \rightarrow \Omega$ in $[PC, \mathbf{Set}]$
- consider the composite $i\chi_p$ where $i: \Omega \rightarrow \Omega_*$ unique frame homomorphism (i monic!)

Theorem

A proposition $p: U \rightarrow 1$ is safe in state w if, and only if, $w \Vdash_* i\chi_p$.

Proof.

$$\begin{aligned} w \Vdash_* i\chi_p &\equiv v \Vdash_* i\chi_p \text{ for all } w \rightarrow v \\ &\equiv v \Vdash \overline{i\chi_p} \text{ for all } w \rightarrow v \\ &\equiv v \leq S_{\overline{i\chi_p}} \text{ in } \text{Sub}_{\mathcal{F}}(1) \text{ for all } w \rightarrow v \\ &\equiv ev \leq p \text{ in } \text{Sub}(1)_{\mathcal{E}} \text{ for all } w \rightarrow v \\ &\equiv ev \Rightarrow p = \top \text{ in } \text{Sub}(1)_{\mathcal{E}} \text{ for all } w \rightarrow v. \end{aligned}$$

Penultimate step: the transpose of $S_{\overline{i\chi_p}}$ is isomorphic to p because p is classified by $i\chi_p$ since i is monic. \square

Denote by $\square\phi$ the composite

$$X \xrightarrow{\phi} \Omega_* \xrightarrow{\tau} \Omega \xrightarrow{i} \Omega_*$$

where τ is the classifying arrow of $T_*: 1 \rightarrow \Omega_*$ (cf. [AKK14]).

Corollary

$p: U \rightarrow q$ is safe in w if, and only if, $w \Vdash_* \square i\chi_p$.

Proof.

$w \Vdash_* \square i\chi_p$ iff $w \Vdash_* i\chi_p$ since i is monic. Now use the theorem. □

Elementary Interpretation

- work in a topos \mathcal{E} (not necessarily Grothendieck)
- recall forcing relation: A morphism $a: W \rightarrow X$ **forces** $\phi: X \rightarrow \Omega$ if

$$\begin{array}{ccccc} & & S_\phi & \longrightarrow & 1 \\ & \nearrow & \downarrow & & \downarrow \top \\ \text{Im}(a) & \longrightarrow & X & \xrightarrow{\phi} & \Omega \end{array}$$

equivalently $\phi(a) = \top_W$

- denote this by $W \Vdash \phi(a)$

Definition

An estimate consensus protocol in a topos \mathcal{E} consists of

1. *an object C of consensus values;*
2. *an internal category Σ of states Σ_0 and executions Σ_1 ;*
3. *an internal functor $e: \Sigma \rightarrow PC$ called the **estimator** satisfying: if $e(w) \Rightarrow p = \top$ for some state $w: X \rightarrow \Sigma_0$, then $\neg(e(w) \Rightarrow \neg p) = \top$ for any proposition $p: 1 \rightarrow PC$.*

Definition

*A proposition $p: 1 \rightarrow PC$ is **safe in the protocol state***

$w: W \rightarrow \Sigma_0$ if for any execution $f: w \rightarrow v$, it follows that $ew \Rightarrow p = \top$ holds.

For any state $w: W \rightarrow \Sigma_0$, form the object of executions from w as the pullback

$$\begin{array}{ccc} \Sigma(w, -) & \longrightarrow & \Sigma_1 \\ \downarrow & & \downarrow d_0 \\ W & \xrightarrow{w} & \Sigma_0. \end{array}$$

For any execution $f: w \rightarrow v$ on w , that is,

$$\begin{array}{ccc} X & \xrightarrow{f} & \Sigma_1 \\ \downarrow & & \downarrow d_0 \\ W & \xrightarrow{w} & \Sigma_0 \end{array}$$

there is a unique morphism $\hat{f}: X \rightarrow \Sigma(w, -)$ i.e. f is an element of the “fiber” of the representable functor at $v \in \Sigma_0$.

For any proposition $p: 1 \rightarrow PC$, form the implication $x \Rightarrow p$ for a variable $x : PC$ as the composite

$$PC \cong PC \times 1 \xrightarrow{x \times p} PC \times PC \xrightarrow{\Rightarrow} \Omega$$

where ' \Rightarrow ' classifies $(\leq) \rightarrow PC \times PC$. Identify w with the representable $\Sigma(w, -)$ in the forcing notation. That is, write ' $w \Vdash x \Rightarrow p$ ' as a shorthand for ' $\Sigma(w, -) \Vdash x \Rightarrow p$ '.

Theorem

$p: 1 \rightarrow PC$ is safe in w if, and only if, $w \Vdash (x \Rightarrow p)(ed_1)$.

Proof.

(\Rightarrow) Assume safety: $ed_1\pi_2: \Sigma(w, -) \rightarrow PC$ satisfies $ed_1\pi_2 \Rightarrow p = \top$. Then

$$\begin{array}{ccccc} & & S_{x \Rightarrow p} & \longrightarrow & 1 \\ & \nearrow & \downarrow & & \downarrow \top \\ \Sigma(w, -) & \xrightarrow{ed_1\pi_2} & PC & \xrightarrow{x \Rightarrow p} & \Omega \end{array}$$

(\Leftarrow) Assume $ed_1\pi_2 \Rightarrow p = \top$ holds. Any f factors through $\Sigma(w, -)$ via $\hat{f}: X \rightarrow \Sigma(w, -)$ satisfying $\pi_2 \hat{f} = f$. Thus, compute that $\top = ed_1\pi_2 \hat{f} \Rightarrow p = ed_1 f \Rightarrow p = ev \Rightarrow p$. □

In this topos-setup, can prove the main safety result:

Theorem (Estimate Safety)

Inconsistent propositions are not safe at related states. That is, if $p \wedge q = \perp$ and $w_1 \simeq w_2$ both hold, then it is not the case that both $w_1 \Vdash (x \Rightarrow p)$ and $w_2 \Vdash (x \Rightarrow q)$ hold.

This depends on some lemmas. See [Lam21] for full version.

Prospectus/Musings

- no mention of protocol Σ
- this is the point of the template: from any $E: \Sigma \rightarrow PC$, a safety result should be provable
- “safety” originates in distributed computing [Lam77]
- I/O automata as formal models
- safety shows up in other contexts

Example: Gödel Translation

- topology: upward closed subsets of a poset X
- include $\mathcal{O}(X) \rightarrow PX$
- $p \in PX$ is **safe** in state $x \in X$ if $x^\uparrow \subset p$
- “ $safely(p)$ ” = modal operator
- ref: [Kis18]
- general situation: Garner’s ionads?

Speculative Example: Spacetime Logic

- future of an event = cone of “accessible events”
- event p is **safe** for event x if p is in the future of every event in the future of x
- Minkowski spacetime logic = S4 modality [Gol80]
- spacetime logic formulable in terms of non-deterministic cellular automata (deep lore?)

Closing Thoughts:

- automata models in indexed categories [Jaz20]
- distributed computing \cap concurrency = nontrivial
- directed type theory \rightsquigarrow models of concurrency [Nor18]; needs comprehension scheme [Jac93] for interpretation
- big leap: fibration models as setting for forcing interpretation of safety formalized in nondeterministic automata
- application of double categories: probably need a bifibration to interpret connectives and an involution $(-)^{op}$ for directedness; i.e. need a special kind of equipment [Shu08]

THANK YOU!

References

- Steve Awodey, Kohei Kishida, and Hans-Christophe Kotzsch.
Topos semantics for higher-order modal logic.
Logique et Analyse, 57(228):591–636, 2014.
- Robert Goldblatt.
Diodorean modality in minkowski spacetime.
Studia Logica: An International Journal for Symbolic Logic, 39(2/3):219–236, 1980.
- Bart Jacobs.
Comprehension categories and the semantics of type dependency.
Theoretical Computer Science, 107(2):169–207, 1993.

 David Jaz Myers.

Double Categories of Open Dynamical Systems (Extended Abstract).

arXiv e-prints, page arXiv:2005.05956, May 2020.

 Kohei Kishida.

Categories and modalities.

In Elaine Landry, editor, *Categories for the Working Philosopher*, pages 163–222. Oxford University Press, 2018.

 Leslie Lamport.

Proving the correctness of multiprocess programs.

IEEE Transactions on Software Engineering, SE-3(2):125–143, 1977.

 Michael Lambert.

A Topos View of Blockchain Consensus Protocols.

arXiv e-prints, page arXiv:2111.07461, November 2021.

 Paige Randall North.

Towards a directed homotopy type theory.

arXiv e-prints, page arXiv:1807.10566, July 2018.

 Mike Shulman.

Framed bicategories and monoidal fibrations.

Theory and Applications of Categories, 20(18):650–738, 2008.

 Vlad Zamfir.

A template for correct-by-construction consensus protocols.

github, 2017.