

Divided power algebras

Sacha Ikonicoff

PIMS/CNRS postdoctoral associate, University of Calgary

November 25th, 2021

1 Classical divided power algebras

2 Operads

3 Characterisation of divided power algebras

4 Minimal characterisations

Classical divided power algebras

Classifying space

For G a group, a **classifying space** is a topological space BG such that $\pi_1(BG) = G$ and $\pi_n(BG) = 0$ for all $n \neq 1$.

Fact 1 : There always is a BG , unique up to homotopy.

Fact 2 : There is a natural construction $G \mapsto BG$ using the Bar construction. In particular, BG can be seen as a simplicial set.

Classifying space

Let \mathbb{F} be a field. $H_*(BG, \mathbb{F})$ is the homology of G with coef. in \mathbb{F} .

The group structure of G induces a multiplication :

$$*: BG \times BG \cong B(G \times G) \rightarrow BG$$

This induces, through the Eilenberg–Zilber map, a multiplication :

$$*: H_i(BG, \mathbb{F}) \otimes H_j(BG, \mathbb{F}) \rightarrow H_{i+j}(BG, \mathbb{F}).$$
$$([x], [y]) \mapsto \sum_{(\mu, \nu) \in Sh(i, j)} [(s_\nu x) * (s_\mu y)]$$

where :

$$Sh(i, j) = \{ \text{ partitions } (\mu, \nu) \text{ with } (\mu_1 < \dots < \mu_i), (\nu_1 < \dots < \nu_j) \}$$

$$s_\mu = (s_{\mu_1-1} \dots s_{\mu_i-1}) \quad s_\nu = (s_{\nu_1-1} \dots s_{\nu_j-1}).$$

First example : $H_*(\mathbb{R}P^\infty, \mathbb{F}_2)$

Let $\mathbb{F} = \mathbb{F}_2$, $G = \mathbb{Z}/2\mathbb{Z}$.

Fact 1 : The infinite real projective space $\mathbb{R}P^\infty$ is a $B(\mathbb{Z}/2\mathbb{Z})$.

Fact 2 : $\bigoplus_n H_n(\mathbb{R}P^\infty, \mathbb{F}) \cong \mathbb{F}[x]$ as \mathbb{F} -vector spaces.

Notation :

$$x^{[m]} \leftrightarrow x^m$$

Fact 3 : The multiplication $*$ is induced by :

$$x^{[m]} * x^{[n]} = \binom{m+n}{m} x^{[m+n]}$$

Denote by $\Gamma(x) = (\bigoplus_n H_n(\mathbb{R}P^\infty, \mathbb{F}), *)$.

Remark : As an algebra, $\mathbb{F}[x]$ is generated by x . $\Gamma(x)$ is not :

$$\underline{x * x = 2 x^{[2]} = 0}.$$

However, $\Gamma(x)$ is generated by $\{x^{[2^k]}\}_{k \in \mathbb{N}}$.

More examples

Over any \mathbb{F} , I can define the algebra $(\Gamma(x), *)$ as above.

If $\text{char}(\mathbb{F}) = 0$, $\underline{\Gamma(x)}$ is isomorphic to $\underline{\mathbb{F}[x]}$ as an algebra :

$$f : \Gamma(x) \rightarrow \mathbb{F}[x], \quad x^{[n]} \mapsto \frac{x^n}{n!}.$$

If $\text{char}(\mathbb{F}) = p > 0$, $\Gamma(x)$ is generated by $\{x, x^{[p]}, x^{[p^2]}, \dots\}$.

Define $\gamma_n(x) = \underline{x^{[n]}}$.

Definition (Cartan 1954)

A **divided power algebra** is a commutative associative unital algebra A with a family of operations (set-maps) $\gamma_n : \bar{A} \rightarrow A$ satisfying :

$$(1) \quad \gamma_0(x) = 1, \quad \gamma_1(x) = x, \quad \deg \gamma_k(x) = k \cdot \deg(x).$$

$$(2) \quad \gamma_k(x) \gamma_h(x) = (k, h) \gamma_{k+h}(x), \text{ en notant } \frac{(k, h)}{(k+h)!} \text{ le coefficient binomial } \frac{(k+h)!}{k!h!}.$$

$$(3) \quad \gamma_k(x+y) = \sum_{i+j=k} \gamma_i(x) \gamma_j(y) \quad (\text{formule de Leibniz})$$

$$(4) \quad \gamma_k(xy) = k! \gamma_k(x) \gamma_k(y) = x^k \gamma_k(y) = \gamma_k(x)y^k$$

$$(5) \quad \gamma_k(\gamma_h(x)) = (h, h-1)(2h, h-1) \dots ((k-1)h, h-1) \gamma_{kh}(x).$$

[HC] Henri Cartan, Puissance Divisées, Séminaire Henri Cartan de l'ENS, 1954/1955, Algèbre d'Eilenberg MacLane et homotopie.

Definition (Cartan 1954)

A **divided power algebra** is a **commutative** associative unital algebra A with a family of operations (set-maps) $\gamma_n : \bar{A} \rightarrow A$ satisfying :

$$(H) \quad \gamma_0(x) = 1, \quad (U) \quad \gamma_1(x) = x, \quad (M) \deg \gamma_k(x) = k \cdot \deg(x).$$

$$(R/R) \quad \gamma_k(x) \gamma_h(x) = \binom{k+h}{k, h} \gamma_{k+h}(x), \quad \text{en notant } \binom{k+h}{k, h} \text{ le coefficient binomial } \frac{(k+h)!}{k!h!}.$$

$$(L) \quad \gamma_k(x+y) = \sum_{i+j=k} \gamma_i(x) \gamma_j(y) \quad (\text{formule de Leibniz})$$

$$(C) \quad \left\{ \begin{array}{l} \gamma_k(xy) = k! \gamma_k(x) \gamma_k(y) = x^k \gamma_k(y) = \gamma_k(x)y^k \\ \gamma_k(\gamma_h(x)) = (h, h-1)(2h, h-1) \dots ((k-1)h, h-1) \gamma_{kh}(x). \end{array} \right.$$

- 1) S : **Symmetry** (Commutativity of the multiplication)
- 2) H : **Homogeneity**,
- 3) M : **Monomiality** $\rightsquigarrow \gamma_k(\lambda x) = \lambda^k \gamma_k(x)$,
- 4) R/R : **Reduction with respect to the repetition of inputs**,
- 5) L : **Leibniz formula**,
- 6) U : **Unitality**,
- 7) C : **Composition**.

Founding results

Theorem (Roby 1965)

For V an \mathbb{F} -vector space, the free divided power algebra $\Gamma(V)$ generated by V is given by $\Gamma(V) = \bigoplus_n (V^{\otimes n})^{\mathfrak{S}_n}$.

$$\underline{v} * \underline{w} = \sum_{\sigma \in \mathfrak{S}_{n+m} / \mathfrak{S}_n \times \mathfrak{S}_m} \sigma \cdot (\underline{v} \otimes \underline{w}),$$

$\text{Sh}(n, m)$,

and $\gamma_n(\underline{v}) = \underline{v}^{\otimes n}$.

Remark : $\Gamma(x) = \Gamma(\mathbb{F})$.

Theorem (Cartan 1955)

If A is a simplicial commutative, associative algebra, then its homotopy $\pi(A)$ is a divided power algebra.

Remark : This implies that $\bigoplus_n H_n(BG, \mathbb{F})$ is a divided power algebra for G abelian.

Modern version

From now on, $\Gamma(V) = \bigoplus_{n>0} (V^{\otimes n})^{\mathfrak{S}_n}$.

Γ has a *monad* structure. $\Gamma(V)$ is spanned by “monomials”

$$\rightarrow \mathfrak{t} = \gamma_{r_1}(v_1) * \cdots * \gamma_{r_s}(v_s),$$

The *unit* $V \rightarrow \Gamma(V)$ is $v \mapsto \gamma_1(v)$, and the *composition* $\Gamma(\Gamma(V)) \rightarrow \Gamma(V)$ is given on monomials

$$\underbrace{\gamma_{q_1}(\mathfrak{t}_1) * \cdots * \gamma_{q_{s'}}(\mathfrak{t}_{s'})}_{\downarrow}$$

by the relations of divided power algebras (L), (M), (C)...

Cartan's result :

$$\begin{array}{ccc} s \text{ Com}_{\text{alg}} & \xrightarrow{\quad \quad \quad} & \Gamma_{\text{alg}} \\ & \searrow \pi & \downarrow \\ & & \text{Com}_{\text{alg}} \end{array}$$

Digression : Deriving divided power polynomials

Instinctively, $\left(\frac{x^n}{n!}\right)' = \frac{x^{n-1}}{(n-1)!}$, so $\gamma'_n = \gamma_{n-1}$.

Define $d_V : \Gamma(V) \rightarrow \Gamma(V \times V)$ by :

$$d_V(\underbrace{\gamma_{r_1}(v_1) * \cdots * \gamma_{r_s}(v_s)}_s) = \sum_{i=1}^s \gamma_{r_1}(v_1, 0) * \cdots * \gamma_{r_i-1}(v_i, 0) * \cdots * \gamma_{r_s}(v_s, 0) * (0, v_i)$$

“ $= \sum_{i=1}^n \gamma_{r_1}(v_1) * \cdots * \gamma_{r_i-1}(v_i) * \cdots * \gamma_{r_s}(v_s) * dv_i$ ”

Digression : Deriving divided power polynomials

The **Kleisli category** of Γ has objects vector space and morphisms

$$f : V \rightsquigarrow W$$

are linear maps

$$[f] : V \rightarrow \Gamma(W).$$

$f : V \rightsquigarrow W$ has “total derivative” a map $Df : V \rightsquigarrow W \times W$,

$$[Df] : V \xrightarrow{[f]} \Gamma(W) \xrightarrow{d_W} \Gamma(W \times W)$$

In the opposite of the Kleisli category, we obtain a **derivative of maps**, in the sense of Blute–Cockett–Seely.

[BCS] R. F. Blute, J. R. B. Cockett, and R. A. G. Seely, Differential categories (2006).

Restricted Lie algebras

Another flavour of divided power algebras ?

Definition : A **Lie algebra** is a vector space \mathfrak{g} with a bilinear operation $[-; -] : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying :

$$[a; b] = -[b; a], \quad [a; [b; c]] + [c; [a; b]] + [b; [c; a]] = 0.$$

In characteristic p , a **p -restricted Lie algebra** is a Lie algebra endowed with an operation $a \mapsto a^{[p]}$ such that :

$$(M) \quad (\lambda a)^{[p]} = \lambda^p a^{[p]},$$

$$(L) \quad (a + b)^{[p]} = a^{[p]} + b^{[p]} + \sum_{i=1}^{p-1} s_i(a, b),$$

$$(C) \quad [a^{[p]}; b] = \underbrace{[a; [a; \dots [a; b]] \dots]}_p,$$

where $s_i(a, b)$ are Lie polynomials in a and b .

Examples of Restricted Lie algebra

Over a field of characteristic p ,

Example 1 : If A is an associative algebra, define a Lie bracket on A by $[a; b] = ab - ba$. Then the operation $a \mapsto a^p$ makes A into a p -restricted algebra.

Example 2 : The algebra of derivations of a (non-necessarily associative) algebra is a restricted Lie algebra for the p -th power. . .

Example 3 : The Lie algebra associated to an algebraic group over a field of characteristic p is a p -restricted Lie algebra (A. Borel, 91).

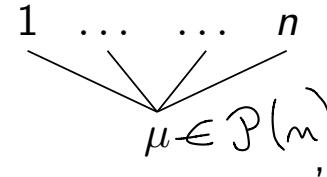
Example 4 : The homotopy of a simplicial Lie algebra is a p -restricted Lie algebra.

Operads

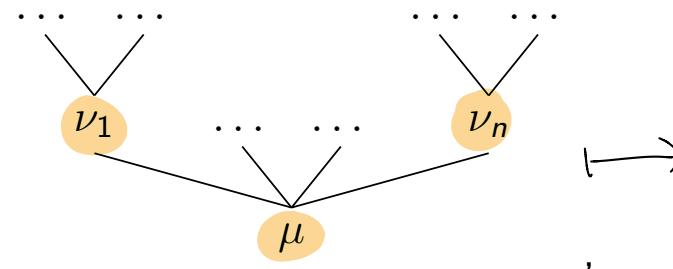
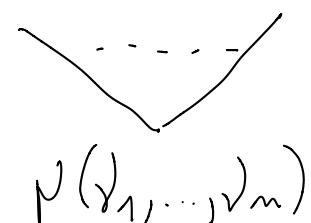
Definition

“An operad encodes operations”

An operad $\mathcal{P} = (\mathcal{P}(n))_n$ is a sequence of vector spaces $\mathcal{P}(n)$ of “arity n operations” :



together with actions $\mathfrak{S}_n \curvearrowright \mathcal{P}(n)$ “permuting inputs”,
Composition of operations :



A unit for composition $1_{\mathcal{P}} \in \mathcal{P}(1)$,

+ compatibility relations (unitality, associativity, equivariance).

Operads as monoids

A **symmetric sequence** is a sequence $(\mathcal{M}(n))_n$ of \mathfrak{S}_n -representations.

The **tensor product** of symmetric sequences is given by :

$$(\mathcal{M} \otimes \mathcal{N})(n) = \bigoplus_{i+j=n} \text{Ind}_{\mathfrak{S}_i \times \mathfrak{S}_j}^{\mathfrak{S}_{i+j}} \mathcal{M}(i) \otimes \mathcal{N}(j).$$

The **composition product** of symmetric sequences is given by :

$$(\mathcal{M} \circ \mathcal{N})(n) = \bigoplus_{k \geq 0} \mathcal{M}(k) \underset{\mathfrak{S}_k}{\otimes} (\mathcal{N}^{\otimes k})(n).$$

An **operad** is a monoid for \circ .

Algebras

An operad has “algebras”.

\mathcal{P} -algebra = vector space endowed with the operations of \mathcal{P} .

Examples : As, Com, Lie ... $\text{Com}(n) = \mathbb{F}$ trivial rep. for $n > 0$.

More precisely : For each operad \mathcal{P} , there is a monad $S(\mathcal{P}, -)$ in vector space :

$$S(\mathcal{P}, V) = \bigoplus_{n \geq 0} \mathcal{P}(n) \otimes_{\mathfrak{S}_n} V^{\otimes n} = \mathcal{P} \circ V.$$

$\sqrt{\rightarrow} \mathcal{P} \circ V$
 $\mathcal{P} \circ \mathcal{P} \circ V \rightarrow \mathcal{P} \circ \mathcal{P} \circ V = V(0)$

$S(\text{As}, -)$ = tensor algebra,

Examples : $S(\text{Com}, -)$ = symmetric algebra,

$S(\text{Lie}, -)$ = free Lie algebra...

Definition : a **\mathcal{P} -algebra** is an algebra over the monad $S(\mathcal{P}, -)$.

The Γ functors

Define **another composition product** on symmetric sequences :

$$(\mathcal{M} \tilde{\circ} \mathcal{N})(n) = \bigoplus_{k \geq 0} (\mathcal{M}(k) \otimes (\mathcal{N}^{\otimes k}(n)))^{\mathfrak{S}_k}.$$

Define a functor $\Gamma(\mathcal{P}, -)$ such that :

$$\Gamma(\mathcal{P}, V) = \bigoplus_{n \geq 0} (\mathcal{P}(n) \otimes V^{\otimes n})^{\mathfrak{S}_n} = \mathcal{P} \tilde{\circ} V$$

Remark : For $\mathcal{P} = \text{Com}$, $\Gamma(\text{Com}, -) = \Gamma$ the free divided power monad !

Fact : If $\mathcal{P}(0) = 0$, then $\Gamma(\mathcal{P}, -)$ has a **monad structure**.

Divided power algebras over an operad

Definition : a **divided power \mathcal{P} -algebra** is a $\Gamma(\mathcal{P}, -)$ -algebra.

Theorem (Fresse 2000)

For $\mathcal{P} = \text{Lie}$: *Divided power Lie-algebras are p -restricted Lie algebras.*

Theorem (Fresse 2000)

For any \mathcal{P} such that $\mathcal{P}(0) = 0$,

$$\begin{array}{ccc} s\mathcal{P}_{\text{alg}} & \xrightarrow{\quad \dots \quad} & \Gamma(\mathcal{P}, -)_{\text{alg}} \\ \pi \searrow & & \downarrow \\ & \mathcal{P}_{\text{alg}} & \end{array}$$

Is there a general characterisation involving monomial operations ?

[F] Benoît Fresse, On the homotopy of simplicial algebras over an operad (2000).

Characterisation of divided power algebras

Fact 1 : A divided power algebra is a vector space A with a map

$$f_A : \Gamma(\mathcal{P}, A) \rightarrow A$$

satisfying relations (associativity and unity).

Fact 2 : $\Gamma(\mathcal{P}, A)$ is spanned by elements :

$$t := \sum_{\sigma \in \mathfrak{S}_n / \mathfrak{S}_{r_1} \times \cdots \times \mathfrak{S}_{r_s}} \sigma \mu \otimes \sigma (a_1^{\otimes r_1} \otimes \cdots \otimes a_s^{\otimes r_s}) \in \text{Sk}(n_1, \dots, n_s).$$

For $r_1 + \cdots + r_s = n$, $\mu \in \mathcal{P}(n)^{\mathfrak{S}_{r_1} \times \cdots \times \mathfrak{S}_{r_s}}$, $a_i \in A$.

Construction : For all $\underline{r} = (r_1, \dots, r_s)$, $\mu \in \mathcal{P}(r_1 + \cdots + r_s)^{\mathfrak{S}_{\underline{r}}}$, we obtain an s -ary monomial operation $\beta_{\mu, \underline{r}}$ such that :

$$\beta_{\mu, \underline{r}}(a_1, \dots, a_s) = f_A(t).$$

These β 's will play the role of the γ 's of Cartan.

General characterisation of $\Gamma(\mathcal{P})$ -algebras

Theorem (I.,2019)

A $\Gamma(\mathcal{P})$ -algebra is a vector space A equipped with operations $\beta_{\mu,r} : A^{\times s} \rightarrow A$, linear in μ , satisfying relations of the type :
 (S) , (H) , (M) , (R/R) , (L) , (U) , (C) .

Upside 1 : This avoids complicated axiomatisation, and allows practical computation.

Upside 2 : This also ties the general case to the classical divided power algebra case and the restricted Lie algebra case.

Downside 1 : Ugly formulae.

Downside 2 : Too many operations.

Minimal characterisations

Toy example : Level algebras

Definition : A **level algebra** is a **vector space A** with a bilinear, commutative, non-necessarily associative operation $* : A \otimes A \rightarrow A$, such that :

$$(a * b) * (c * d) = (a * c) * (b * d).$$

Example : If A is a **commutative associative algebra**, $a * b := \lambda ab$ for all $\lambda \in \mathbb{F}$ makes $(A, *)$ into a level algebra.

Fact : There is an operad **Lev** whose algebras are level algebras.

Theorem (I. 2019)

Over an arbitrary field, the minimal characterisation of divided power Lev-algebras involves an infinite number of operations $\beta_{\mu,r}$.

Theorem (I. 2021)

If $\text{char}(\mathbb{F}) = 2$, a divided power level algebra is a level algebra endowed with a “divided square”.

\mathcal{P} -algebras with derivation

$$d(ab) = d(a)b + a d(b).$$

Fact : For all \mathcal{P} there is an operad $\text{Der}_{\mathcal{P}}$ whose algebras are \mathcal{P} -algebra with a \mathcal{P} -derivation (following the examples As, Com, Lie, ...)

Theorem (I. 2021)

A divided power $\text{Der}_{\mathcal{P}}$ -algebra is a divided power \mathcal{P} -algebra (A, β) equipped with a linear map $d : A \rightarrow A$ satisfying :

↪ $d(\beta_{\mu, \underline{r}}(a_1, \dots, a_s)) = \sum_{i=1}^s \beta_{x, \underline{r} \circ_i (r_i - 1, 1)}(a_1, \dots, a_i, d(a_i), a_{i+1}, \dots, a_s),$

where $\underline{r} \circ_i (r_i - 1, 1) = (r_1, \dots, r_{i-1}, r_i - 1, 1, r_{i+1}, \dots, r_s)$.

For $\mathcal{P} = \text{Com}$, we recover a notion of “*special derivation*” (Dokas, 2021), or “*power rule*” (Keigher–Pritchard, 1998) : $d(\gamma_n(x)) = d(x)\gamma_{n-1}(x)$
For $\mathcal{P} = \text{Lie}$, we recover the notion of *restricted derivation* (Jacobson 1941).

Work in Progress

Return to CDC

Fact : If \mathcal{P} is an operad, and A is a vector space with a linear $d : A \rightarrow A$, there is a universal way to extend d into a derivation on $S(\mathcal{P}, A)$.

Construction : Let $A = V \times V$ and $d(v_1, v_2) = (0, v_1)$. This induces a derivation d on $S(\mathcal{P}, V \times V)$. Restrict d to

$$\rightarrow \quad d : S(\mathcal{P}, V) \rightarrow S(\mathcal{P}, V \times V),$$

\downarrow

For $\mathcal{P} = \text{Com}$, we obtain the 'classical' differential combinator. We can do the same on $\Gamma(\mathcal{P}, V)$.

Question : To which condition on \mathcal{P} is d a differential combinator ?

$$\begin{array}{c} d : S(\mathcal{P}, V) \rightarrow S(\mathcal{P}, V \times V) \\ \downarrow \quad \nearrow \\ \Omega_{S(\mathcal{P}, V)} \end{array}$$

Connected to : [BLO] R. F. Blute, R. B. B. Lucyshyn-Wright, and K. O'Neill, Derivations in codifferential categories [2016]

Thank you for your attention.

(S) Symmetry :

$$\beta_{x,\underline{r}}((a_i)_i) = \beta_{\rho^* \cdot x, \underline{r}^\rho}((a_{\rho^{-1}(i)})_i) \quad \forall \rho \in \mathfrak{S}_p,$$

where ρ^* denotes the block permutation with blocks of size $(r_i)_{i \in [p]}$ associated to ρ .

(H) Homogeneity :

$$\beta_{x,(0,r_1,r_2,\dots,r_p)}(a_0, a_1, \dots, a_p) = \beta_{x,(r_1,r_2,\dots,r_p)}(a_1, \dots, a_p).$$

(M) Monomiality :

$$\beta_{x,\underline{r}}(\lambda a_1, a_2, \dots, a_p) = \lambda^{r_1} \beta_{x,\underline{r}}(a_1, \dots, a_p) \quad \forall \lambda \in \mathbb{F}.$$

(R/R) Reduction with respect to repetition of inputs :

$$\begin{aligned}\beta_{x,\underline{r}}\left(\underbrace{a_1, \dots, a_1}_{q_1}, \underbrace{a_2, \dots, a_2}_{q_2}, \dots, \underbrace{a_s, \dots, a_s}_{q_s}\right) \\ = \beta_{\left(\sum_{\sigma \in \mathfrak{S}_{\underline{q} \triangleright \underline{r}} / \mathfrak{S}_{\underline{r}}} \sigma \cdot x\right)}, \underline{q} \triangleright \underline{r} (a_1, a_2, \dots, a_s).\end{aligned}$$

where $\underline{q} \triangleright \underline{r} = (r_1 + \dots + r_{q_1}, \dots, r_{q_1 + \dots + q_{s-1} + 1} + \dots + r_p)$.

(L) Generalised Leibniz formula :

$$\beta_{x,\underline{r}}(a_0 + a_1, \dots, a_p) = \sum_{l+m=r_1} \beta_{x,\underline{r} \circ_1 (l,m)}(a_0, a_1, \dots, a_p),$$

where $\underline{r} \circ_1 (l, m) = (l, m, r_2, r_3, \dots, r_p)$.

(U) Unitality :

$$\beta_{1_{\mathcal{P}}, (1)}(a) = a \quad \forall a \in A.$$

(C) Composition :

$$\beta_{x, \underline{r}}(\beta_{x_1, \underline{q}_1}(b_1), \dots, \beta_{x_p, \underline{q}_p}(b_p)) = \beta_{\sum_{\tau} \tau \cdot \mu \left(x \otimes \left(\bigotimes_{i=1}^p x_i^{\otimes r_i} \right) \right), \underline{r} \diamond (\underline{q}_i)_{i \in [p]}}(\underline{b}),$$

where I am obviously hiding some definitions under the rug.