Colimits of Higher Categories and Grothendieck Construction

Pablo Bustillo Vazquez
With Dorette Pronk (Dalhousie University, Canada) and Martin Szyld
(Dalhousie University, Canada)

Ecole Normale Supérieure, France

Novemberfest 2021

Introduction and dimension 1

From SGA 4 [GSDV72], we have:

Pseudo-Colimits in Cat

Let $F : \mathcal{B} \to \mathbf{Cat}$ be a pseudo-functor from a category \mathcal{B} . Then

$$\underbrace{\operatorname{colim}_{\mathcal{B}} F} = \operatorname{el} F[\mathcal{C}^{-1}],$$

where ${\cal C}$ is the collection of co-Cartesian arrows.

Introduction and dimension 1

From SGA 4 [GSDV72], we have:

Pseudo-Colimits in Cat

Let $F: \mathcal{B} \to \mathbf{Cat}$ be a pseudo-functor from a category \mathcal{B} . Then

$$\underbrace{\operatorname{colim}_{\mathcal{B}} F} = \operatorname{el} F[\mathcal{C}^{-1}],$$

where \mathcal{C} is the collection of co-Cartesian arrows.

And it's also a well-known fact that:

Lax Colimits in Cat

Let $F: \mathcal{B} \to \mathbf{Cat}$ be a pseudo-functor from a category \mathcal{B} . Then

Some generalizations. . .

Since then, those results have been generalized to higher dimensions:

Some generalizations. . .

Since then, those results have been generalized to higher dimensions:

• In [Gra74], this is studied for strict 2-categorical diagrams and "Cartesian quasi colimits" (later called σ -colimits).

Some generalizations...

Since then, those results have been generalized to higher dimensions:

- In [Gra74], this is studied for strict 2-categorical diagrams and "Cartesian quasi colimits" (later called σ -colimits).
- In [CCG11], the Grothendieck construction of a *lax* functor $F: \mathcal{B} \to \mathbf{Bicat}$ from a category \mathcal{B} is shown to be a lax tricolimit.

Some generalizations...

Since then, those results have been generalized to higher dimensions:

- In [Gra74], this is studied for strict 2-categorical diagrams and "Cartesian quasi colimits" (later called σ -colimits).
- In [CCG11], the Grothendieck construction of a *lax* functor $F: \mathcal{B} \to \mathbf{Bicat}$ from a category \mathcal{B} is shown to be a lax tricolimit.
- In [GHN17], the Grothendieck construction given by *unstraightening* in the theory of $(\infty,1)$ -categories is shown to yield a lax colimit. This is generalized to a "marked" $(\sigma$ -colimits) case in [Ber20].

Some generalizations. . .

Since then, those results have been generalized to higher dimensions:

- In [Gra74], this is studied for strict 2-categorical diagrams and "Cartesian quasi colimits" (later called σ -colimits).
- In [CCG11], the Grothendieck construction of a *lax* functor $F: \mathcal{B} \to \mathbf{Bicat}$ from a category \mathcal{B} is shown to be a lax tricolimit.
- In [GHN17], the Grothendieck construction given by unstraightening in the theory of $(\infty,1)$ -categories is shown to yield a lax colimit. This is generalized to a "marked" $(\sigma$ -colimits) case in [Ber20].

Goal

Our goal here is to study similar results for *bicategories* to understand what happens when we have to deal with non-invertible higher cells.

Some generalizations...

Since then, those results have been generalized to higher dimensions:

- In [Gra74], this is studied for strict 2-categorical diagrams and "Cartesian quasi colimits" (later called σ -colimits).
- In [CCG11], the Grothendieck construction of a *lax* functor $F: \mathcal{B} \to \mathbf{Bicat}$ from a category \mathcal{B} is shown to be a lax tricolimit.
- In [GHN17], the Grothendieck construction given by unstraightening in the theory of $(\infty,1)$ -categories is shown to yield a lax colimit. This is generalized to a "marked" $(\sigma$ -colimits) case in [Ber20].

Goal

Our goal here is to study similar results for *bicategories* to understand what happens when we have to deal with non-invertible higher cells.

We use Buckley's definition of fibration of bicategories and the corresponding Grothendieck construction [Buc14].

In the covariant case, the Grothendieck construction of a weak functor $F: \mathcal{C} \to (\text{higher})\mathbf{Cat}$ would take the following form:

In the covariant case, the Grothendieck construction of a weak functor $F \colon \mathcal{C} \to (\mathsf{higher})\mathbf{Cat}$ would take the following form:

• **Objects:** Pairs (x, x_{-}) with x : C and $x_{-} : Fx$

In the covariant case, the Grothendieck construction of a weak functor $F: \mathcal{C} \to (\text{higher})\mathbf{Cat}$ would take the following form:

- **Objects:** Pairs (x, x_{-}) with x : C and $x_{-} : Fx$
- Arrows: Pairs (f, f_-) : $(x, x_-) \rightarrow (y, y_-)$ with $f: x \rightarrow y$ and

$$f_-: Ff(x_-) \rightarrow y_-$$

In the covariant case, the Grothendieck construction of a weak functor $F: \mathcal{C} \to (\text{higher})\mathbf{Cat}$ would take the following form:

- **Objects:** Pairs (x, x_{-}) with x : C and $x_{-} : Fx$
- Arrows: Pairs (f, f_-) : $(x, x_-) \rightarrow (y, y_-)$ with $f: x \rightarrow y$ and

$$f_-: Ff(x_-) \rightarrow y_-$$

• **2-cells:** Pairs (θ, θ_-) : $(f, f_-) \rightarrow (g, g_-)$ with $\theta \colon f \rightarrow g$ and

$$Ff(x_{-}) \xrightarrow{f_{-}} y_{-}$$

$$F\theta(x_{-}) \downarrow \qquad \qquad \downarrow g_{-}$$

$$Fg(x_{-})$$

• . . .

An extended lax version

For bicategories, we can *reverse-engineer* definitions of lax data as in [GPS95], which gives an *extended* construction:

An extended *lax* version

For bicategories, we can *reverse-engineer* definitions of lax data as in [GPS95], which gives an *extended* construction:

Lax Grothendieck Construction

For $F,G:\mathcal{B}\to \mathbf{Bicat}$ trihomomorphisms from a bicategory, we have a pseudo-functor:

$$\int : [\mathcal{B}, \mathbf{Bicat}]_{\mathsf{lax}}(F, G) \longrightarrow [\int F, \int G]_{\mathsf{lax}/\mathcal{B}}$$

(where $[\mathcal{B},\mathbf{Bicat}]_{lax}$ is a tricategory of trihomomorphisms, lax trinatural transformations, lax modifications and perturbations, and where $[\int F, \int G]_{lax/\mathcal{B}}$ is the bicategory of pseudo-functors, lax-natural transformations and modifications lying strictly over \mathcal{B})

More explicitly, we have

More explicitly, we have

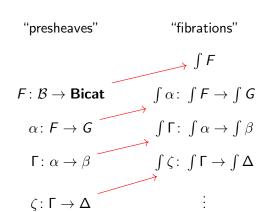
Bicategories

Weak functors

Lax transformations

Lax modifications

Perturbations

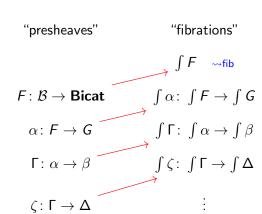


More explicitly, we have

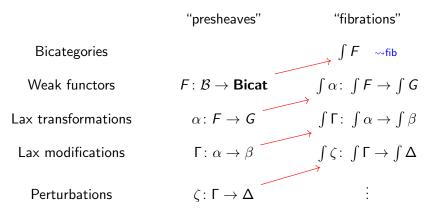
Bicategories
Weak functors
Lax transformations

Lax modifications

Perturbations



More explicitly, we have



We could introduce *lax* diagrams $F: \mathcal{B} \to \mathbf{Bicat}$. However *weak* on LHS corresponds to *fibrations* on RHS (and the following result would fail if G is too lax).

Almost-theorem: local lax equivalence

The functor $\int : [\mathcal{B}, \mathbf{Bicat}]_{\mathsf{lax}}(F, G) \longrightarrow [\int F, \int G]_{\mathsf{lax}/\mathcal{B}}$ described above is a biequivalence.

Almost-theorem: local *lax* equivalence

The functor $\int : [\mathcal{B}, \mathbf{Bicat}]_{\mathsf{lax}}(F, G) \longrightarrow [\int F, \int G]_{\mathsf{lax}/\mathcal{B}}$ described above is a biequivalence.

... "almost" as the details are very long and not entirely written yet.

Almost-theorem: local lax equivalence

The functor $\int : [\mathcal{B}, \mathbf{Bicat}]_{\mathsf{lax}}(F, G) \longrightarrow [\int F, \int G]_{\mathsf{lax}/\mathcal{B}}$ described above is a biequivalence.

... "almost" as the details are very long and not entirely written yet.

Theorem from Buckley [Buc14]: local weak equivalence

For $F,G:\mathcal{B}\to \textbf{Bicat}$ trihomomorphisms from a bicategory, the functor

$$\int : [\mathcal{B}, \mathbf{Bicat}]_{\mathsf{weak}}(F, G) \longrightarrow \mathsf{Fib}(\int F, \int G)$$

is a biequivalence, when all laxity is dropped.

Almost-theorem: local lax equivalence

The functor $\int : [\mathcal{B}, \mathbf{Bicat}]_{\mathsf{lax}}(F, G) \longrightarrow [\int F, \int G]_{\mathsf{lax}/\mathcal{B}}$ described above is a biequivalence.

... "almost" as the details are very long and not entirely written yet.

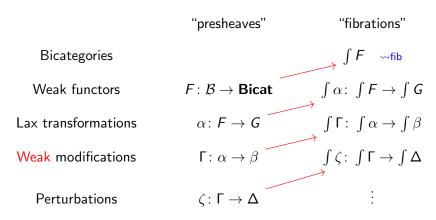
Theorem from Buckley [Buc14]: local weak equivalence

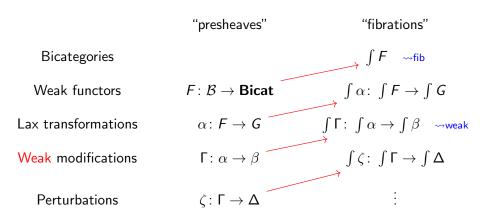
For $F,G:\mathcal{B}\to \textbf{Bicat}$ trihomomorphisms from a bicategory, the functor

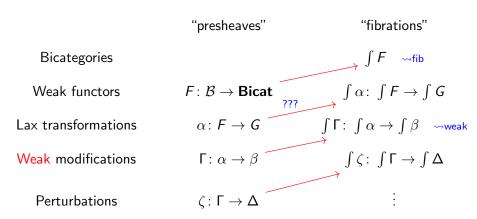
$$\int : [\mathcal{B}, \mathbf{Bicat}]_{\mathsf{weak}}(F, G) \longrightarrow \mathsf{Fib}(\int F, \int G)$$

is a biequivalence, when all laxity is dropped.

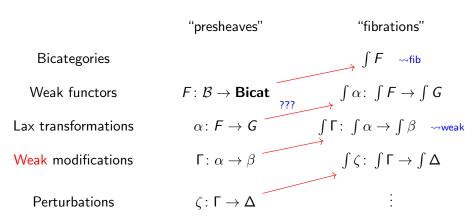
 \dots asking for "weak" transformations on LHS corresponds to asking for "Cartesian" functors on the RHS \dots







This gives a new picture:



From the third level up, lax/weak on LHS corresponds to lax/weak on RHS.

Correspondence at the level of transformations

Under the *restricted* biequivalence of the previous slide, we have, for $\alpha \colon F \to G$,

 α_f is an equivalence \iff $\int \alpha$ respects Cartesian arrows above f α_θ is an equivalence \iff $\int \alpha$ respects Cartesian 2-cells above θ

Correspondence at the level of transformations

Under the *restricted* biequivalence of the previous slide, we have, for $\alpha \colon F \to G$,

 α_f is an equivalence \iff $\int \alpha$ respects Cartesian arrows above f α_θ is an equivalence \iff $\int \alpha$ respects Cartesian 2-cells above θ

Definition: σ -Cartesian functors

For $F,G\colon \mathcal{B}\to \mathbf{Bicat}$ trihomomorphisms, and for Σ a family of 1- and 2-cells in \mathcal{B} , a pseudo-functor $C\colon \int F\to \int G$ is called σ -Cartesian if it respects Cartesian cells above Σ .

Correspondence at the level of transformations

Under the *restricted* biequivalence of the previous slide, we have, for $\alpha \colon F \to G$,

 α_f is an equivalence \iff $\int \alpha$ respects Cartesian arrows above f α_θ is an equivalence \iff $\int \alpha$ respects Cartesian 2-cells above θ

Definition: σ -Cartesian functors

For $F,G\colon \mathcal{B}\to \mathbf{Bicat}$ trihomomorphisms, and for Σ a family of 1- and 2-cells in \mathcal{B} , a pseudo-functor $C\colon \int F\to \int G$ is called σ -Cartesian if it respects Cartesian cells above Σ .

Theorem: local σ equivalence

For $F, G: \mathcal{B} \to \textbf{Bicat}$ trihomomorphisms, and for Σ a family of 1- and 2-cells in \mathcal{B} , we have a biequivalence

$$\int : [\mathcal{B}, \mathbf{Bicat}]_{\sigma}(F, G) \longrightarrow \sigma\text{-Fib}(\int F, \int G)$$

Our goal was to link the Grothendieck construction to colimits. We follow an idea of [Gra74] developed further in [DDS18] and define:

Our goal was to link the Grothendieck construction to colimits. We follow an idea of [Gra74] developed further in [DDS18] and define:

Definition: σ -tricolimits

For $F: \mathcal{B} \to \textbf{Bicat}$ trihomomorphisms, and for Σ a family of 1- and 2-cells in \mathcal{B} , a σ -tricolimit of F is a tri(co)representing object of

$$[\mathcal{B},\mathsf{Bicat}]_\sigma(\mathcal{F},\Delta(-))\colon\mathsf{Bicat}\to\mathsf{Bicat}$$

Our goal was to link the Grothendieck construction to colimits. We follow an idea of [Gra74] developed further in [DDS18] and define:

Definition: σ -tricolimits

For $F: \mathcal{B} \to \textbf{Bicat}$ trihomomorphisms, and for Σ a family of 1- and 2-cells in \mathcal{B} , a σ -tricolimit of F is a tri(co)representing object of

$$[\mathcal{B},\mathsf{Bicat}]_\sigma(F,\Delta(-))\colon\mathsf{Bicat}\to\mathsf{Bicat}$$

• This is easier to define than weighted tricolimits and *should* be equivalent (as illustrated in the last slide).

Our goal was to link the Grothendieck construction to colimits. We follow an idea of [Gra74] developed further in [DDS18] and define:

Definition: σ -tricolimits

For $F: \mathcal{B} \to \textbf{Bicat}$ trihomomorphisms, and for Σ a family of 1- and 2-cells in \mathcal{B} , a σ -tricolimit of F is a tri(co)representing object of

$$[\mathcal{B}, \mathbf{Bicat}]_{\sigma}(F, \Delta(-)) \colon \mathbf{Bicat} \to \mathbf{Bicat}$$

- This is easier to define than weighted tricolimits and *should* be equivalent (as illustrated in the last slide).
- In between *pseudo* and *lax*: can choose exactly which coherence cells of the cocones are equivalences and which are oriented.

Computing higher colimits of higher categories

We then have a very short proof of how to compute colimits:

Key observation

The Grothendieck construction of a constant diagram $\Delta(\mathcal{X})$ is the product $\mathcal{X} \times \mathcal{B}$.

Computing higher colimits of higher categories

We then have a very short proof of how to compute colimits:

Key observation

The Grothendieck construction of a constant diagram $\Delta(\mathcal{X})$ is the product $\mathcal{X} \times \mathcal{B}$.

$$egin{aligned} [\mathcal{B}, \mathbf{Bicat}]_{\sigma}(F, \Delta(-)) &\simeq \sigma ext{-Fib}(\int F, \int \Delta(-)) \ &\simeq \sigma ext{-Fib}(\int F, \mathcal{B} imes -) \ &\simeq [\int F, -]_{\mathcal{C}_{\Sigma}} \ &\simeq [\int F[\mathcal{C}_{\Sigma}^{-1}], -] \end{aligned}$$

where \mathcal{C}_{Σ} is the collection of Cartesian 1- and 2-cells above Σ and $[\int F, \mathcal{X}]_{\mathcal{C}_{\Sigma}}$ is the full sub-bicategory of pseudo-functors sending cells of \mathcal{C}_{Σ} to equivalences.

Generalizations from SGA 4

In particular, for $F: \mathcal{B} \to \mathbf{Bicat}$ a trihomomorphism, we can generalize the two results we started from:

ullet For $\Sigma=\emptyset$, we get

$$lax- \underbrace{\operatorname{colim}}_{} F = \int F$$

Generalizations from SGA 4

In particular, for $F: \mathcal{B} \to \mathbf{Bicat}$ a trihomomorphism, we can generalize the two results we started from:

• For $\Sigma = \emptyset$, we get

$$\mathsf{lax-} \underrightarrow{\mathsf{colim}} F = \int F$$

ullet For $\Sigma=\mathcal{B}$, we get

$$\overrightarrow{\operatorname{colim}} F = \int F[\mathcal{C}_{1,2}^{-1}]$$

where $C_{1,2}$ is the collection of all Cartesian 1- and 2-cells.

Generalizations from SGA 4

In particular, for $F: \mathcal{B} \to \mathbf{Bicat}$ a trihomomorphism, we can generalize the two results we started from:

• For $\Sigma = \emptyset$, we get

$$\mathsf{lax-} \underrightarrow{\mathsf{colim}} F = \int F$$

• For $\Sigma = \mathcal{B}$, we get

$$\overrightarrow{\text{colim}} F = \int F[\mathcal{C}_{1,2}^{-1}]$$

where $C_{1,2}$ is the collection of all Cartesian 1- and 2-cells.

These are the two extreme cases of σ -tricolimits. Arbitrary σ -tricolimits should be as expressive as weighted tricolimits.

Link between weighted and σ -colimits...in a bicategory

In bicategory theory, by playing with the universal property of a lax comma, we have:

Link between weighted and σ -colimits...in a bicategory

In bicategory theory, by playing with the universal property of a lax comma, we have:

$$\int W \xrightarrow{!} \{\bullet\}
\downarrow \qquad \qquad \downarrow \{\bullet\}
\mathcal{B} \xrightarrow{F} \mathcal{D} \xrightarrow{\mathcal{D}(-,d)} \mathbf{Cat}$$

$$\longleftrightarrow \qquad \int W \xrightarrow{\mathsf{cart}} \int \mathcal{D}(F(-),d)
\longleftrightarrow \qquad \mathcal{B} \xrightarrow{F} \mathcal{D} \xrightarrow{\psi_{\mathsf{ps}}} \mathbf{Cat}$$

Link between weighted and σ -colimits...in a bicategory

In bicategory theory, by playing with the universal property of a lax comma, we have:

$$\int W \xrightarrow{!} \{\bullet\}
\downarrow \qquad \qquad \downarrow \{\bullet\}
\mathcal{B} \xrightarrow{F} \mathcal{D} \xrightarrow{\mathcal{D}(-,d)} \mathbf{Cat}$$

$$\longleftrightarrow \qquad \int W \xrightarrow{\mathsf{cart}} \int \mathcal{D}(F(-),d)
\longleftrightarrow \qquad \int W \xrightarrow{\mathsf{cart}} \int \mathcal{D}(F(-),d)$$

$$\longleftrightarrow \qquad \mathcal{B} \xrightarrow{F} \mathcal{D} \xrightarrow{\mathcal{D}(-,d)} \mathbf{Cat}$$

We expect a similar proof for tricategories with a universal property of a tricategorical comma.

 Localizations of bicategories at both 1- and 2-cells haven't been studied

 Localizations of bicategories at both 1- and 2-cells haven't been studied → a "straightforward" definition with generators and relations (with zig-zag-like pasting diagrams for 2-cells) works as expected...

 Localizations of bicategories at both 1- and 2-cells haven't been studied
 → a "straightforward" definition with generators and relations (with zig-zag-like pasting diagrams for 2-cells) works as expected... and is impossible to work with explicitly as expected (in addition to size issues).

- Localizations of bicategories at both 1- and 2-cells haven't been studied → a "straightforward" definition with generators and relations (with zig-zag-like pasting diagrams for 2-cells) works as expected... and is impossible to work with explicitly as expected (in addition to size issues).
- Leads to studying a 1- and 2-cells calculus of fractions generalizing [Pro96]

- Localizations of bicategories at both 1- and 2-cells haven't been studied → a "straightforward" definition with generators and relations (with zig-zag-like pasting diagrams for 2-cells) works as expected... and is impossible to work with explicitly as expected (in addition to size issues).
- Leads to studying a 1- and 2-cells calculus of fractions generalizing [Pro96] \leadsto leads to defining a notion of 1- and 2-cells σ -filtered bicategory (commutativity with finite limits) generalizing [DDS18].

- Localizations of bicategories at both 1- and 2-cells haven't been studied → a "straightforward" definition with generators and relations (with zig-zag-like pasting diagrams for 2-cells) works as expected... and is impossible to work with explicitly as expected (in addition to size issues).
- Leads to studying a 1- and 2-cells calculus of fractions generalizing [Pro96] \leadsto leads to defining a notion of 1- and 2-cells σ -filtered bicategory (commutativity with finite limits) generalizing [DDS18].
- Subject of a series of papers with Dorette and Martin: two first ones on the weak case to be submitted, third one on the lax/σ case presented here.

- Localizations of bicategories at both 1- and 2-cells haven't been studied → a "straightforward" definition with generators and relations (with zig-zag-like pasting diagrams for 2-cells) works as expected... and is impossible to work with explicitly as expected (in addition to size issues).
- Leads to studying a 1- and 2-cells calculus of fractions generalizing [Pro96] \leadsto leads to defining a notion of 1- and 2-cells σ -filtered bicategory (commutativity with finite limits) generalizing [DDS18].
- Subject of a series of papers with Dorette and Martin: two first ones on the weak case to be submitted, third one on the lax/σ case presented here.
- In the first two papers, we show that the localization at only 1-cells is already enough to compute all filtered conical tricolimits in **Bicat**, observing a curious phenomenon: the 2-cells are localized "for free".

References

John D. Berman.

On Lax Limits in ∞-Categories, 2020.

Mitchell Buckley.

Fibred 2-Categories and Bicategories.

Journal of Pure and Applied Algebra, 218(6):1034-1074, June 2014,

P. Carrasco, A. M. Cegarra, and A. R. Garzón.

Classifying Spaces for Braided Monoidal Categories and Lax Diagrams of Bicategories.

Advances in Mathematics, 226(1):419-483, January 2011.

Maria Emilia Descotte, Eduardo J. Dubuc, and Martin Szyld.

A Construction of Certain Weak Colimits and an Exactness Property of the 2-Category of Categories.

Theory and Applications of Categories, 33(8):192-215, March 2018.

David Gepner, Rune Haugseng, and Thomas Nickelsen Nikolaus. Lax Colimits and Free Fibrations in ∞-Categories.

Documenta Mathematica, Journal der Deutschen Mathematiker-Vereinigung, 22:1255-1266, 2017.

Robert Gordon, A. John Power, and Ross Street.

Coherence for Tricategories.

Number no. 558 in American Mathematical Society: Memoirs of the American Mathematical Society. American Mathematical Society. 1995.

John W. Gray.

Formal Category Theory: Adjointness for 2-Categories.

Lecture Notes in Mathematics. Springer Berlin Heidelberg, Berlin New York, 1 edition, 1974.

Alexander Grothendieck, Bernard Saint-Donat, and Jean-Louis Verdier.

Théorie des Topos et Cohomologie Étale des Schémas, Tome 2, volume 270 of Lecture Notes in Mathematics.

Springer-Verlag Berlin Heidelberg, Berlin New York, 1972.

Dorette A. Pronk.

Étendues and Stacks as Bicategories of Fractions.

Compositio Mathematica, 102(3):243-303, 1996.