

# The Nielsen-Schreier Theorem in Homotopy Type Theory

Andrew W Swan

Carnegie Mellon University

November 18, 2021

## Theorem (Nielsen-Schreier)

*Every subgroup of a free group is itself a free group.*

## Theorem (Nielsen-Schreier)

*Every subgroup of a free group is itself a free group.*

- ▶ Original direct proofs were long and unintuitive.

## Theorem (Nielsen-Schreier)

*Every subgroup of a free group is itself a free group.*

- ▶ Original direct proofs were long and unintuitive.
- ▶ Later proofs e.g. by Baer-Levi and Chevalley-Herbrand use ideas from algebraic topology to provide easier to understand proofs.

## Theorem (Nielsen-Schreier)

*Every subgroup of a free group is itself a free group.*

- ▶ Original direct proofs were long and unintuitive.
- ▶ Later proofs e.g. by Baer-Levi and Chevalley-Herbrand use ideas from algebraic topology to provide easier to understand proofs.
- ▶ In homotopy type theory we can use ideas from algebraic topology without needing to develop the theory of topological spaces and fundamental groups, resulting in a proof that is both intuitive and easy to formalise.

Homotopy type theory (HoTT) is a new approach to the formalisation of mathematics based on Martin-Löf type theory. In first order logic, we construct formulas by induction, and then have a collection of rules for inductively constructing proofs of formulas, e.g.

$$\frac{A \quad B}{A \wedge B} \wedge I$$

$$\frac{A \wedge B}{A} \wedge E$$

$$\frac{A}{A \vee B} \vee I$$

We can also talk about collections of objects by adding axioms (e.g. **ZF**).

In type theory, we replace first order logic with a system that has a notion of collection of object (or *type*) built in from the start.

Instead of formulas that state a mathematical statement is true, we have types that contain “proofs” or “witnesses” that a mathematical statement is true.

E.g. We replace conjunction with cartesian product, and disjunction with disjoint sum:

$$\frac{a : A \quad b : B}{(a, b) : A \times B} \quad \frac{x : A \times B}{\pi_0(x) : A} \quad \frac{a : A}{\text{inl}(a) : A + B}$$

In Martin-Löf type theory we also have *identity types*. Given elements  $a, a'$  of a type  $A$ , we have a type  $\text{Id}_A(a, a')$ , containing “witnesses that  $a$  and  $a'$  are equal.”

Key idea in homotopy type theory: Identity types can be very much non trivial and have a lot of interesting mathematical structures.

- ▶ We can visualise the elements of a type as points of a topological space, and then elements of the identity types are paths between the points.
- ▶ We can explicitly describe the identity type of the universe  $U$ . The elements of the universe are types themselves, and proofs  $A, B$  are equal are exactly equivalences between  $A$  and  $B$ . (*Univalence*)
- ▶ We can construct types with non trivial identity types with a kind of inductively defined type where we not only specify how to construct new elements, but also how to construct new paths between objects (*Higher inductive types*).

## Definition

A *group* is a pointed type  $(BG, \text{base})$  such that  $BG$  is 1-truncated and connected.

A *homomorphism*  $(BG, \text{base}_G) \rightarrow (BH, \text{base}_H)$  is a pointed map.

## Definition

A *group* is a pointed type  $(BG, \text{base})$  such that  $BG$  is 1-truncated and connected.

A *homomorphism*  $(BG, \text{base}_G) \rightarrow (BH, \text{base}_H)$  is a pointed map.

Note that the identity type  $\text{base} =_{BG} \text{base}$  is a set, and has an binary operation given by path concatenation.

## Theorem (Buchholtz-Van Doorn-Rijke)

*The category of groups is equal to the category of sets with associative binary operation with inverses and identity (groups in the more traditional sense).*

## Definition (Favonia-Harper)

Let  $(BG, \text{base})$  be a group. A *covering space* of  $(BG, \text{base})$  is a map  $X : BG \rightarrow \mathbf{hSet}$ .

We can use covering spaces to understand subgroups:

## Definition (Favonia-Harper)

Let  $(BG, \text{base})$  be a group. A *covering space* of  $(BG, \text{base})$  is a map  $X : BG \rightarrow \mathbf{hSet}$ .

We can use covering spaces to understand subgroups:

A *pointed covering space* is a covering space  $X : BG \rightarrow \mathbf{hSet}$  together with a point  $x_0 : X(\text{base})$ .

## Definition (Favonia-Harper)

Let  $(BG, \text{base})$  be a group. A *covering space* of  $(BG, \text{base})$  is a map  $X : BG \rightarrow \mathbf{hSet}$ .

We can use covering spaces to understand subgroups:

A *pointed covering space* is a covering space  $X : BG \rightarrow \mathbf{hSet}$  together with a point  $x_0 : X(\text{base})$ .

A covering space  $X : BG \rightarrow \mathbf{hSet}$  is *connected* if the total space  $\sum_{z:BG} X(z)$  is a connected type.

## Definition (Favonia-Harper)

Let  $(BG, \text{base})$  be a group. A *covering space* of  $(BG, \text{base})$  is a map  $X : BG \rightarrow \mathbf{hSet}$ .

We can use covering spaces to understand subgroups:

A *pointed covering space* is a covering space  $X : BG \rightarrow \mathbf{hSet}$  together with a point  $x_0 : X(\text{base})$ .

A covering space  $X : BG \rightarrow \mathbf{hSet}$  is *connected* if the total space  $\sum_{z:BG} X(z)$  is a connected type.

A *subgroup* of  $(BG, \text{base})$  is a pointed connected covering space.

## Definition (Favonia-Harper)

Let  $(BG, \text{base})$  be a group. A *covering space* of  $(BG, \text{base})$  is a map  $X : BG \rightarrow \mathbf{hSet}$ .

We can use covering spaces to understand subgroups:

A *pointed covering space* is a covering space  $X : BG \rightarrow \mathbf{hSet}$  together with a point  $x_0 : X(\text{base})$ .

A covering space  $X : BG \rightarrow \mathbf{hSet}$  is *connected* if the total space  $\sum_{z:BG} X(z)$  is a connected type.

A *subgroup* of  $(BG, \text{base})$  is a pointed connected covering space.

The *underlying group* of a subgroup is the total space  $\sum_{z:BG} X(z)$  together with the point  $(\text{base}, x_0)$ .

## Definition (Favonia-Harper)

Let  $(BG, \text{base})$  be a group. A *covering space* of  $(BG, \text{base})$  is a map  $X : BG \rightarrow \mathbf{hSet}$ .

We can use covering spaces to understand subgroups:

A *pointed covering space* is a covering space  $X : BG \rightarrow \mathbf{hSet}$  together with a point  $x_0 : X(\text{base})$ .

A covering space  $X : BG \rightarrow \mathbf{hSet}$  is *connected* if the total space  $\sum_{z:BG} X(z)$  is a connected type.

A *subgroup* of  $(BG, \text{base})$  is a pointed connected covering space.

The *underlying group* of a subgroup is the total space  $\sum_{z:BG} X(z)$  together with the point  $(\text{base}, x_0)$ .

We refer to the set  $X(\text{base})$  as the *index* of the subgroup.

## Definition (Kraus-Altenkirch)

For any set  $A$  the free group on  $A$  is the higher inductive type  $BF_A$  defined as follows:

1.  $BF_A$  contains a point base
2. For every  $a : A$ , there is a path  $\text{loop}(a) : \text{base} =_{BF_A} \text{base}$
3. 1-truncation

## Definition (Kraus-Altenkirch)

For any set  $A$  the free group on  $A$  is the higher inductive type  $BF_A$  defined as follows:

1.  $BF_A$  contains a point  $\text{base} =_{BF_A} \text{base}$
2. For every  $a : A$ , there is a path  $\text{loop}(a) : \text{base} =_{BF_A} \text{base}$
3. 1-truncation

They showed this satisfies the usual universal property for free groups:

$$\begin{array}{ccc} A & \xrightarrow{i} & \text{base} =_{BF_A} \text{base} \\ & \searrow \forall f & \downarrow \text{ap}_h(\text{base}) \\ & & \text{base} =_{BG} \text{base} \end{array} \quad \begin{array}{c} (BF_A, \text{base}) \\ \downarrow \exists! h \\ (BG, \text{base}) \end{array}$$

We can now see the HoTT formulation of the Nielsen-Schreier theorem:

### Theorem

*Let  $A$  be a set and let  $X : BF_A \rightarrow \mathbf{hSet}$  be a subgroup of the free group  $(BF_A, \text{base})$  (with point  $x_0$ ).*

*Then the underlying group of the subgroup,  $\sum_{z:BF_A} X(z)$  is merely equivalent to the free group  $BF_B$  for some set  $B$ .*

We will see a constructive proof when the index  $X(\text{base})$  of the subgroup is finite, which has also been formalised in Agda. The full version requires the axiom of choice.

## Definition

A *graph* is a pair of sets  $E, V$ , together with a pair of maps  $\pi_0, \pi_1 : E \rightarrow V$ . We refer to the elements of  $V$  as *vertices*, the elements of  $E$  as *edges* and for each edge  $e : E$  we call  $\pi_0(e)$  and  $\pi_1(e)$  the *endpoints* of  $e$ .

## Definition

A *graph* is a pair of sets  $E, V$ , together with a pair of maps  $\pi_0, \pi_1 : E \rightarrow V$ . We refer to the elements of  $V$  as *vertices*, the elements of  $E$  as *edges* and for each edge  $e : E$  we call  $\pi_0(e)$  and  $\pi_1(e)$  the *endpoints* of  $e$ .

The *coequalizer* of a graph  $E \rightrightarrows V$  is the higher inductive type  $V/E$  generated as follows.

1. For each vertex  $v : V$ ,  $V/E$  contains a point  $[v] : V/E$ .
2. For each edge  $e : E$ ,  $V/E$  contains a path  $\text{edge}(e) : [\pi_0(e)] = [\pi_1(e)]$ .

## Definition

A *graph* is a pair of sets  $E, V$ , together with a pair of maps  $\pi_0, \pi_1 : E \rightarrow V$ . We refer to the elements of  $V$  as *vertices*, the elements of  $E$  as *edges* and for each edge  $e : E$  we call  $\pi_0(e)$  and  $\pi_1(e)$  the *endpoints* of  $e$ .

The *coequalizer* of a graph  $E \rightrightarrows V$  is the higher inductive type  $V/E$  generated as follows.

1. For each vertex  $v : V$ ,  $V/E$  contains a point  $[v] : V/E$ .
2. For each edge  $e : E$ ,  $V/E$  contains a path  $\text{edge}(e) : [\pi_0(e)] = [\pi_1(e)]$ .

We will refer to the 1-truncation of the coequalizer,  $\|V/E\|_1$  as the *geometric realization* of the graph.

## Definition

A *graph* is a pair of sets  $E, V$ , together with a pair of maps  $\pi_0, \pi_1 : E \rightarrow V$ . We refer to the elements of  $V$  as *vertices*, the elements of  $E$  as *edges* and for each edge  $e : E$  we call  $\pi_0(e)$  and  $\pi_1(e)$  the *endpoints* of  $e$ .

The *coequalizer* of a graph  $E \rightrightarrows V$  is the higher inductive type  $V/E$  generated as follows.

1. For each vertex  $v : V$ ,  $V/E$  contains a point  $[v] : V/E$ .
2. For each edge  $e : E$ ,  $V/E$  contains a path  $\text{edge}(e) : [\pi_0(e)] = [\pi_1(e)]$ .

We will refer to the 1-truncation of the coequalizer,  $\|V/E\|_1$  as the *geometric realization* of the graph.

In particular for any  $A$ ,  $BF_A$  is the geometric realization of a graph with one vertex and an edge for each element of  $A$ .

The proof of the Nielsen-Schreier theorem proceeds in two steps:

1. For any subgroup of a free group, the underlying group is the geometric realization of a graph.
2. Under certain assumptions the geometric realization of a graph is a free group.

As a special case of flattening for coequalizers, we have the following lemma:

### Lemma

Let  $E \rightrightarrows V$  be a graph and  $X : V/E \rightarrow \mathbf{Type}$  a family of types on its coequalizer. We define a graph  $E_X \rightrightarrows V_X$  as follows:

$$V_X := \sum_{v:V} X([v])$$

$$E_X := \sum_{e:E} X([\pi_0(e)])$$

$$\pi_0(e, x) := (\pi_0(e), x)$$

$$\pi_1(e, x) := \text{edge}(e)_*(x)$$

Then  $\sum_{z:V/E} X(z) \simeq V_X/E_X$ .

Applying to the graph  $A \rightrightarrows 1$  and “1-truncating” we get the first part of the Nielsen-Schreier theorem:

### Theorem

*Let  $A$  be a set,  $(BF_A, \text{base})$  the free group on  $A$  and  $X : BF_A \rightarrow \mathbf{hSet}$  a covering space on  $(BF_A, \text{base})$ . Then we have the following equivalence:*

$$\sum_{z:BF_A} X(z) \simeq \|X(\text{base})/(A \times X(\text{base}))\|_1$$

We now need to show that the geometric realization of a graph is a free group. For this we need a bit more graph theory. We note that we can naturally formulate some important concepts in graph theory using the geometric realization.

Let  $E \rightrightarrows V$  be a graph.

### Definition

Given  $v, v' : V$ , a *path* from  $v$  to  $v'$  is an element of  $[v] = [v']$  in the geometric realization.

Let  $E \rightrightarrows V$  be a graph.

### Definition

Given  $v, v' : V$ , a *path* from  $v$  to  $v'$  is an element of  $[v] = [v']$  in the geometric realization.

$E \rightrightarrows V$  is *connected* if its geometric realization is a connected type. I.e. it is merely inhabited and there merely exists a path from any vertex to any other vertex.

Let  $E \rightrightarrows V$  be a graph.

### Definition

Given  $v, v' : V$ , a *path* from  $v$  to  $v'$  is an element of  $[v] = [v']$  in the geometric realization.

$E \rightrightarrows V$  is *connected* if its geometric realization is a connected type. I.e. it is merely inhabited and there merely exists a path from any vertex to any other vertex.

$E \rightrightarrows V$  is a *tree* if its geometric realization is contractible.

Equivalently the geometric realization is connected and 0-truncated. I.e. the graph is connected and any *cycle* (path from a vertex to itself) is trivial.

Let  $E \rightrightarrows V$  be a graph.

### Definition

Given  $v, v' : V$ , a *path* from  $v$  to  $v'$  is an element of  $[v] = [v']$  in the geometric realization.

$E \rightrightarrows V$  is *connected* if its geometric realization is a connected type. I.e. it is merely inhabited and there merely exists a path from any vertex to any other vertex.

$E \rightrightarrows V$  is a *tree* if its geometric realization is contractible.

Equivalently the geometric realization is connected and 0-truncated. I.e. the graph is connected and any *cycle* (path from a vertex to itself) is trivial.

A *spanning tree* is an embedding  $E' \hookrightarrow E$  with decidable image such that the graph  $E' \rightrightarrows V$  is a tree.

## Lemma

*If a graph has a spanning tree then its geometric realization is equivalent to a free group.*

Intuitively we contract the spanning tree down to a point, leaving the remaining edges as loops from the point to itself. Formally, since  $E'$  is decidable, it has a complement  $\neg E'$ , and we can compute as follows.

$$\begin{aligned} V/E &\simeq V/(E' + \neg E') \\ &\simeq (V/E')/\neg E' \\ &\simeq 1/\neg E' \end{aligned}$$

Finally we need to construct the spanning tree. This uses the following key lemma.

### Lemma

*Let  $E \rightrightarrows V$  be a connected graph, where  $V$  decomposes as a coproduct of inhabited types  $V \simeq V_0 + V_1$ . Then there merely exists an edge  $e : E$  such that  $\pi_0(e)$  and  $\pi_1(e)$  lie in different components of  $V$ .*

To illustrate the proof we assume the law of excluded middle (the constructive proof is no longer but slightly less intuitive).

## Proof.

The partition  $V \simeq V_0 + V_1$  determines a “colouring”  $c : V \rightarrow 2$ . Assume for a contradiction that there is no edge  $e$  with  $\pi_0(e)$  and  $\pi_1(e)$  lying in different components of  $V$ .

## Proof.

The partition  $V \simeq V_0 + V_1$  determines a “colouring”  $c : V \rightarrow 2$ . Assume for a contradiction that there is no edge  $e$  with  $\pi_0(e)$  and  $\pi_1(e)$  lying in different components of  $V$ . Then for all  $e$  we have  $c(\pi_0(e)) = c(\pi_1(e))$ . Hence  $c$  extends to a function  $c'$  on  $V/E$ :

$$\begin{array}{ccc} V & \xrightarrow{c} & 2 \\ [-] \downarrow & \nearrow c' & \\ V/E & & \end{array}$$

## Proof.

The partition  $V \simeq V_0 + V_1$  determines a “colouring”  $c : V \rightarrow 2$ . Assume for a contradiction that there is no edge  $e$  with  $\pi_0(e)$  and  $\pi_1(e)$  lying in different components of  $V$ . Then for all  $e$  we have  $c(\pi_0(e)) = c(\pi_1(e))$ . Hence  $c$  extends to a function  $c'$  on  $V/E$ :

$$\begin{array}{ccc} V & \xrightarrow{c} & 2 \\ [-] \downarrow & & \nearrow c' \\ V/E & & \end{array}$$

We assumed that both components of  $V$  are inhabited. Let  $v_0, v_1 : V$  be such that  $c(v_0) = 0$  and  $c(v_1) = 1$ . By connectedness, there merely exists a path  $[v_0] = [v_1]$ . But then we have  $c(v_0) = c'([v_0]) = c'([v_1]) = c(v_1)$ , giving a contradiction. □

## Lemma

Let  $E \Rightarrow V$  be a connected graph and suppose that either of the following conditions.

1.  $V$  is finite and  $E$  has decidable equality.
2. The axiom of choice holds.

Then  $E \Rightarrow V$  has a spanning tree.

In both cases we build up the spanning tree in stages by “iterating” the key lemma.

Finally combining the lemma with the first part of the theorem we get the full theorem:

### Theorem

*Suppose that  $A$  is a set and  $X : BF_A \rightarrow \mathbf{hSet}$  a subgroup, and that either of the following conditions holds.*

1. *A has decidable equality and the index  $X(\text{base})$  is finite*
2. *the axiom of choice*

*Then the underlying group  $\sum_{z:BF_A} X(z)$  is equivalent to a free group.*

1. Basic ideas in group theory and graph theory can be naturally formulated in homotopy type theory, making essential use of higher inductive types and univalence.
2. The finite index version of the Nielsen-Schreier theorem has a completely constructive proof in HoTT and the full version can be proved using AC.
3. AC is strictly necessary: there is a boolean  $\infty$ -topos where it is false, the “ $\infty$ -Schanuel topos”.

For more details see the paper:

Swan, *On the Nielsen-Schreier theorem in homotopy type theory*,  
arXiv:2010.01187

and the Agda formalisation:

<https://github.com/awswan/nielsenschreier-hott>.

Thank you for your attention!