
The Nielsen-Schreier Theorem in Homotopy Type
Theory

Andrew W Swan

Carnegie Mellon University

November 18, 2021



Theorem (Nielsen-Schreier)

Every subgroup of a free group is itself a free group.

I Original direct proofs were long and unintuitive.

I Later proofs e.g. by Baer-Levi and Chevalley-Herbrand use
ideas from algebraic topology to provide easier to understand
proofs.

I In homotopy type theory we can use ideas from algebraic
topology without needing to develop the theory of topological
spaces and fundamental groups, resulting in a proof that is
both intuitive and easy to formalise.



Theorem (Nielsen-Schreier)

Every subgroup of a free group is itself a free group.

I Original direct proofs were long and unintuitive.

I Later proofs e.g. by Baer-Levi and Chevalley-Herbrand use
ideas from algebraic topology to provide easier to understand
proofs.

I In homotopy type theory we can use ideas from algebraic
topology without needing to develop the theory of topological
spaces and fundamental groups, resulting in a proof that is
both intuitive and easy to formalise.



Theorem (Nielsen-Schreier)

Every subgroup of a free group is itself a free group.

I Original direct proofs were long and unintuitive.

I Later proofs e.g. by Baer-Levi and Chevalley-Herbrand use
ideas from algebraic topology to provide easier to understand
proofs.

I In homotopy type theory we can use ideas from algebraic
topology without needing to develop the theory of topological
spaces and fundamental groups, resulting in a proof that is
both intuitive and easy to formalise.



Theorem (Nielsen-Schreier)

Every subgroup of a free group is itself a free group.

I Original direct proofs were long and unintuitive.

I Later proofs e.g. by Baer-Levi and Chevalley-Herbrand use
ideas from algebraic topology to provide easier to understand
proofs.

I In homotopy type theory we can use ideas from algebraic
topology without needing to develop the theory of topological
spaces and fundamental groups, resulting in a proof that is
both intuitive and easy to formalise.



Homotopy type theory (HoTT) is a new approach to the
formalisation of mathematics based on Martin-Löf type theory.
In first order logic, we construct formulas by induction, and then
have a collection of rules for inductively constructing proofs of
formulas, e.g.

A B

A ∧ B
∧ I

A ∧ B

A
∧ E

A

A ∨ B
∨ I

We can also talk about collections of objects by adding axioms
(e.g. ZF).



In type theory, we replace first order logic with a system that has a
notion of collection of object (or type) built in from the start.
Instead of formulas that state a mathematical statement is true,
we have types that contain “proofs” or “witnesses” that a
mathematical statement is true.
E.g. We replace conjunction with cartesian product, and
disjunction with disjoint sum:

a : A b : B

(a, b) : A× B

x : A× B

π0(x) : A

a : A

inl(a) : A + B



In Martin-Löf type theory we also have identity types. Given
elements a, a′ of a type A, we have a type IdA(a, a′), containing
“witnesses that a and a′ are equal.”
Key idea in homotopy type theory: Identity types can be very much
non trivial and have a lot of interesting mathematical structures.

I We can visualise the elements of a type as points of a
topological space, and then elements of the identity types are
paths between the points.

I We can explicitly describe the identity type of the universe U.
The elements of the universe are types themselves, and proofs
A,B are equal are exactly equivalences between A and B.
(Univalence)

I We can construct types with non trivial identity types with a
kind of inductively defined type where we not only specify how
to construct new elements, but also how to construct new
paths between objects (Higher inductive types).



Definition
A group is a pointed type (BG , base) such that BG is 1-truncated
and connected.
A homomorphism (BG , baseG )→ (BH, baseH) is a pointed map.

Note that the identity type base =BG base is a set, and has an
binary operation given by path concatenation.

Theorem (Buchholtz-Van Doorn-Rijke)

The category of groups is equal to the category of sets with
associative binary operation with inverses and identity (groups in
the more traditional sense).



Definition
A group is a pointed type (BG , base) such that BG is 1-truncated
and connected.
A homomorphism (BG , baseG )→ (BH, baseH) is a pointed map.

Note that the identity type base =BG base is a set, and has an
binary operation given by path concatenation.

Theorem (Buchholtz-Van Doorn-Rijke)

The category of groups is equal to the category of sets with
associative binary operation with inverses and identity (groups in
the more traditional sense).



Definition (Favonia-Harper)

Let (BG , base) be a group. A covering space of (BG , base) is a
map X : BG → hSet.

We can use covering spaces to understand subgroups:

A pointed covering space is a covering space X : BG → hSet
together with a point x0 : X (base).

A covering space X : BG → hSet is connected if the total space∑
z:BG X (z) is a connected type.

A subgroup of (BG , base) is a pointed connected covering space.

The underlying group of a subgroup is the total space
∑

z:BG X (z)
together with the point (base, x0).

We refer to the set X (base) as the index of the subgroup.



Definition (Favonia-Harper)

Let (BG , base) be a group. A covering space of (BG , base) is a
map X : BG → hSet.

We can use covering spaces to understand subgroups:

A pointed covering space is a covering space X : BG → hSet
together with a point x0 : X (base).

A covering space X : BG → hSet is connected if the total space∑
z:BG X (z) is a connected type.

A subgroup of (BG , base) is a pointed connected covering space.

The underlying group of a subgroup is the total space
∑

z:BG X (z)
together with the point (base, x0).

We refer to the set X (base) as the index of the subgroup.



Definition (Favonia-Harper)

Let (BG , base) be a group. A covering space of (BG , base) is a
map X : BG → hSet.

We can use covering spaces to understand subgroups:

A pointed covering space is a covering space X : BG → hSet
together with a point x0 : X (base).

A covering space X : BG → hSet is connected if the total space∑
z:BG X (z) is a connected type.

A subgroup of (BG , base) is a pointed connected covering space.

The underlying group of a subgroup is the total space
∑

z:BG X (z)
together with the point (base, x0).

We refer to the set X (base) as the index of the subgroup.



Definition (Favonia-Harper)

Let (BG , base) be a group. A covering space of (BG , base) is a
map X : BG → hSet.

We can use covering spaces to understand subgroups:

A pointed covering space is a covering space X : BG → hSet
together with a point x0 : X (base).

A covering space X : BG → hSet is connected if the total space∑
z:BG X (z) is a connected type.

A subgroup of (BG , base) is a pointed connected covering space.

The underlying group of a subgroup is the total space
∑

z:BG X (z)
together with the point (base, x0).

We refer to the set X (base) as the index of the subgroup.



Definition (Favonia-Harper)

Let (BG , base) be a group. A covering space of (BG , base) is a
map X : BG → hSet.

We can use covering spaces to understand subgroups:

A pointed covering space is a covering space X : BG → hSet
together with a point x0 : X (base).

A covering space X : BG → hSet is connected if the total space∑
z:BG X (z) is a connected type.

A subgroup of (BG , base) is a pointed connected covering space.

The underlying group of a subgroup is the total space
∑

z:BG X (z)
together with the point (base, x0).

We refer to the set X (base) as the index of the subgroup.



Definition (Favonia-Harper)

Let (BG , base) be a group. A covering space of (BG , base) is a
map X : BG → hSet.

We can use covering spaces to understand subgroups:

A pointed covering space is a covering space X : BG → hSet
together with a point x0 : X (base).

A covering space X : BG → hSet is connected if the total space∑
z:BG X (z) is a connected type.

A subgroup of (BG , base) is a pointed connected covering space.

The underlying group of a subgroup is the total space
∑

z:BG X (z)
together with the point (base, x0).

We refer to the set X (base) as the index of the subgroup.



Definition (Kraus-Altenkirch)

For any set A the free group on A is the higher inductive type BFA
defined as follows:

1. BFA contains a point base

2. For every a : A, there is a path loop(a) : base =BFA
base

3. 1-truncation

They showed this satisfies the usual universal property for free
groups:

A base =BFA
base (BFA, base)

base =BG base (BG , base)

i

∀f aph(base) ∃!h



Definition (Kraus-Altenkirch)

For any set A the free group on A is the higher inductive type BFA
defined as follows:

1. BFA contains a point base

2. For every a : A, there is a path loop(a) : base =BFA
base

3. 1-truncation

They showed this satisfies the usual universal property for free
groups:

A base =BFA
base (BFA, base)

base =BG base (BG , base)

i

∀f aph(base) ∃!h



We can now see the HoTT formulation of the Nielsen-Schreier
theorem:

Theorem
Let A be a set and let X : BFA → hSet be a subgroup of the free
group (BFA, base) (with point x0).

Then the underlying group of the subgroup,
∑

z:BFA
X (z) is merely

equivalent to the free group BFB for some set B.

We will see a constructive proof when the index X (base) of the
subgroup is finite, which has also been formalised in Agda. The full
version requires the axiom of choice.



Definition
A graph is a pair of sets E ,V , together with a pair of maps
π0, π1 : E → V . We refer to the elements of V as vertices, the
elements of E as edges and for each edge e : E we call π0(e) and
π1(e) the endpoints of e.

The coequalizer of a graph E ⇒ V is the higher inductive type
V /E generated as follows.

1. For each vertex v : V , V /E contains a point [v ] : V /E .

2. For each edge e : E , V /E contains a path
edge(e) : [π0(e)] = [π1(e)].

We will refer to the 1-truncation of the coequalizer, ‖V /E‖1 as
the geometric realization of the graph.

In particular for any A, BFA is the geometric realization of a graph
with one vertex and an edge for each element of A.



Definition
A graph is a pair of sets E ,V , together with a pair of maps
π0, π1 : E → V . We refer to the elements of V as vertices, the
elements of E as edges and for each edge e : E we call π0(e) and
π1(e) the endpoints of e.

The coequalizer of a graph E ⇒ V is the higher inductive type
V /E generated as follows.

1. For each vertex v : V , V /E contains a point [v ] : V /E .

2. For each edge e : E , V /E contains a path
edge(e) : [π0(e)] = [π1(e)].

We will refer to the 1-truncation of the coequalizer, ‖V /E‖1 as
the geometric realization of the graph.

In particular for any A, BFA is the geometric realization of a graph
with one vertex and an edge for each element of A.



Definition
A graph is a pair of sets E ,V , together with a pair of maps
π0, π1 : E → V . We refer to the elements of V as vertices, the
elements of E as edges and for each edge e : E we call π0(e) and
π1(e) the endpoints of e.

The coequalizer of a graph E ⇒ V is the higher inductive type
V /E generated as follows.

1. For each vertex v : V , V /E contains a point [v ] : V /E .

2. For each edge e : E , V /E contains a path
edge(e) : [π0(e)] = [π1(e)].

We will refer to the 1-truncation of the coequalizer, ‖V /E‖1 as
the geometric realization of the graph.

In particular for any A, BFA is the geometric realization of a graph
with one vertex and an edge for each element of A.



Definition
A graph is a pair of sets E ,V , together with a pair of maps
π0, π1 : E → V . We refer to the elements of V as vertices, the
elements of E as edges and for each edge e : E we call π0(e) and
π1(e) the endpoints of e.

The coequalizer of a graph E ⇒ V is the higher inductive type
V /E generated as follows.

1. For each vertex v : V , V /E contains a point [v ] : V /E .

2. For each edge e : E , V /E contains a path
edge(e) : [π0(e)] = [π1(e)].

We will refer to the 1-truncation of the coequalizer, ‖V /E‖1 as
the geometric realization of the graph.

In particular for any A, BFA is the geometric realization of a graph
with one vertex and an edge for each element of A.



The proof of the Nielsen-Schreier theorem proceeds in two steps:

1. For any subgroup of a free group, the underlying group is the
geometric realization of a graph.

2. Under certain assumptions the geometric realization of a
graph is a free group.



As a special case of flattening for coequalizers, we have the
following lemma:

Lemma
Let E ⇒ V be a graph and X : V /E → Type a family of types on
its coequalizer. We define a graph EX ⇒ VX as follows:

VX :=
∑
v :V

X ([v ])

EX :=
∑
e:E

X ([π0(e)])

π0(e, x) := (π0(e), x)

π1(e, x) := edge(e)∗(x)

Then
∑

z:V /E X (z) ' VX/EX .



Applying to the graph A⇒ 1 and “1-truncating” we get the first
part of the Nielsen-Schreier theorem:

Theorem
Let A be a set, (BFA, base) the free group on A and
X : BFA → hSet a covering space on (BFA, base). Then we have
the following equivalence:∑

z:BFA

X (z) ' ‖X (base)/(A× X (base))‖1



We now need to show that the geometric realization of a graph is
a free group. For this we need a bit more graph theory. We note
that we can naturally formulate some important concepts in graph
theory using the geometric realization.



Let E ⇒ V be a graph.

Definition
Given v , v ′ : V , a path from v to v ′ is an element of [v ] = [v ′] in
the geometric realization.

E ⇒ V is connected if its geometric realization is a connected
type. I.e. it is merely inhabited and there merely exists a path from
any vertex to any other vertex.

E ⇒ V is a tree if its geometric realization is contractible.
Equivalently the geometric realization is connected and
0-truncated. I.e. the graph is connected and any cycle (path from
a vertex to itself) is trivial.

A spanning tree is an embedding E ′ ↪→ E with decidable image
such that the graph E ′ ⇒ V is a tree.



Let E ⇒ V be a graph.

Definition
Given v , v ′ : V , a path from v to v ′ is an element of [v ] = [v ′] in
the geometric realization.

E ⇒ V is connected if its geometric realization is a connected
type. I.e. it is merely inhabited and there merely exists a path from
any vertex to any other vertex.

E ⇒ V is a tree if its geometric realization is contractible.
Equivalently the geometric realization is connected and
0-truncated. I.e. the graph is connected and any cycle (path from
a vertex to itself) is trivial.

A spanning tree is an embedding E ′ ↪→ E with decidable image
such that the graph E ′ ⇒ V is a tree.



Let E ⇒ V be a graph.

Definition
Given v , v ′ : V , a path from v to v ′ is an element of [v ] = [v ′] in
the geometric realization.

E ⇒ V is connected if its geometric realization is a connected
type. I.e. it is merely inhabited and there merely exists a path from
any vertex to any other vertex.

E ⇒ V is a tree if its geometric realization is contractible.
Equivalently the geometric realization is connected and
0-truncated. I.e. the graph is connected and any cycle (path from
a vertex to itself) is trivial.

A spanning tree is an embedding E ′ ↪→ E with decidable image
such that the graph E ′ ⇒ V is a tree.



Let E ⇒ V be a graph.

Definition
Given v , v ′ : V , a path from v to v ′ is an element of [v ] = [v ′] in
the geometric realization.

E ⇒ V is connected if its geometric realization is a connected
type. I.e. it is merely inhabited and there merely exists a path from
any vertex to any other vertex.

E ⇒ V is a tree if its geometric realization is contractible.
Equivalently the geometric realization is connected and
0-truncated. I.e. the graph is connected and any cycle (path from
a vertex to itself) is trivial.

A spanning tree is an embedding E ′ ↪→ E with decidable image
such that the graph E ′ ⇒ V is a tree.



Lemma
If a graph has a spanning tree then its geometric realization is
equivalent to a free group.

Intuitively we contract the spanning tree down to a point, leaving
the remaining edges as loops from the point to itself. Formally,
since E ′ is decidable, it has a complement ¬E ′, and we can
compute as follows.

V /E ' V /(E ′ + ¬E ′)
' (V /E ′)/¬E ′

' 1/¬E ′



Finally we need to construct the spanning tree. This uses the
following key lemma.

Lemma
Let E ⇒ V be a connected graph, where V decomposes as a
coproduct of inhabited types V ' V0 + V1. Then there merely
exists an edge e : E such that π0(e) and π1(e) lie in different
components of V .

To illustrate the proof we assume the law of excluded middle (the
constructive proof is no longer but slightly less intuitive).



Proof.
The partition V ' V0 + V1 determines a “colouring” c : V → 2.
Assume for a contradiction that there is no edge e with π0(e) and
π1(e) lying in different components of V .

Then for all e we have
c(π0(e)) = c(π1(e)). Hence c extends to a function c ′ on V /E :

V 2

V /E

c

[−]
c ′

We assumed that both components of V are inhabited. Let
v0, v1 : V be such that c(v0) = 0 and c(v1) = 1. By
connectedness, there merely exists a path [v0] = [v1]. But then we
have c(v0) = c ′([v0]) = c ′([v1]) = c(v1), giving a
contradiction.



Proof.
The partition V ' V0 + V1 determines a “colouring” c : V → 2.
Assume for a contradiction that there is no edge e with π0(e) and
π1(e) lying in different components of V . Then for all e we have
c(π0(e)) = c(π1(e)). Hence c extends to a function c ′ on V /E :

V 2

V /E

c

[−]
c ′

We assumed that both components of V are inhabited. Let
v0, v1 : V be such that c(v0) = 0 and c(v1) = 1. By
connectedness, there merely exists a path [v0] = [v1]. But then we
have c(v0) = c ′([v0]) = c ′([v1]) = c(v1), giving a
contradiction.



Proof.
The partition V ' V0 + V1 determines a “colouring” c : V → 2.
Assume for a contradiction that there is no edge e with π0(e) and
π1(e) lying in different components of V . Then for all e we have
c(π0(e)) = c(π1(e)). Hence c extends to a function c ′ on V /E :

V 2

V /E

c

[−]
c ′

We assumed that both components of V are inhabited. Let
v0, v1 : V be such that c(v0) = 0 and c(v1) = 1. By
connectedness, there merely exists a path [v0] = [v1]. But then we
have c(v0) = c ′([v0]) = c ′([v1]) = c(v1), giving a
contradiction.



Lemma
Let E ⇒ V be a connected graph and suppose that either of the
following conditions.

1. V is finite and E has decidable equality.

2. The axiom of choice holds.

Then E ⇒ V has a spanning tree.

In both cases we build up the spanning tree in stages by
“iterating” the key lemma.



Finally combining the lemma with the first part of the theorem we
get the full theorem:

Theorem
Suppose that A is a set and X : BFA → hSet a subgroup, and that
either of the following conditions holds.

1. A has decidable equality and the index X (base) is finite

2. the axiom of choice

Then the underlying group
∑

z:BFA
X (z) is equivalent to a free

group.



1. Basic ideas in group theory and graph theory can be naturally
formulated in homotopy type theory, making essential use of
higher inductive types and univalence.

2. The finite index version of the Nielsen-Schreier theorem has a
completely constructive proof in HoTT and the full version
can be proved using AC.

3. AC is strictly necessary: there is a boolean ∞-topos where it
is false, the “∞-Schanuel topos”.

For more details see the paper:
Swan, On the Nielsen-Schreier theorem in homotopy type theory,
arXiv:2010.01187

and the Agda formalisation:
https://github.com/awswan/nielsenschreier-hott.

Thank you for your attention!

https://github.com/awswan/nielsenschreier-hott

