A brief journey from Bicategories to Cartesian linear bicategories

Shayesteh Naeimabadi

Graduate student of Richard Blute and Pieter Hofstra

University of Ottawa

November 13, 2021

Content

Bicategories

Jean Bénabou - 1967

Cartesian Bicategories

Carboni and Walters - 1987 Carboni, Kelly, Walters, and Wood - 2008

Linear Bicategories

Cockett, Koslowski, and Seely - 2000

Cartesian Linear Bicategories

Overview

- Bicategories are a weak version of 2-categories, where the horizontal composition is associative up to coherent isomorphism, and similarly for identities.
- The definition of cartesian bicategory axiomiatizes important examples of bicategories such as Rel, the category of sets and relations.
- Linear bicategories are a generalization of bicategories which introduce a second composition, and the two compositions are linked by linear distributions as suggested by linear logic.
- Our goal is to extend the definition of cartesian bicategory to the linear setting.
- Rel is not just a bicategory, it is a linear bicategory. So it should be our first example of a cartesian linear bicategory.

Bicategories

A bicategory ${\cal B}$ consists of

- A collection of objects (0-cells): A, B, C, ...
- For each pair of objects (A, B), a (hom-) category $\mathcal{B}(A, B)$ with
 - Objects (1-cells): $A \xrightarrow{p} B$,
 - Arrows (2-cells): $A \bigcup_{\alpha}^{p} B$
- Vertical composition o: $A \xrightarrow{p} B \mapsto A \xrightarrow{p} A \xrightarrow{p} B$
- For each object A, an identity functor

$$I_A: 1 \to \mathcal{B}(A,A)$$

Bicategories

A horizontal composition (bi)functor;

$$(A,B,C): \mathcal{B}(A,B) \times \mathcal{B}(B,C) \to \mathcal{B}(A,C)$$

$$A \xrightarrow{f} B \xrightarrow{g} C \mapsto f; g: A \longrightarrow C$$

$$A \xrightarrow{f'} B \xrightarrow{g'} C \mapsto A \xrightarrow{f:g} C$$

$$f';g'$$

where it is associative up to coherent isomorphism, and similarly has two unitors.

Example Rel

- 0-cells are sets: *A*, *B*, *C*, ...
- Each (hom-) category $\mathcal{B}(A,B)$ is $\mathcal{P}(A\times B)$ which is a poset under inclusion with
 - 1-cells are relations $R: A \rightarrow B$
 - 2-cells $A \xrightarrow{R'} B$ are $\alpha : R \subseteq R'$
- Composition (bi)functor is an ordinary composition between relations.

$$\mathfrak{z}_{A,B,C}:\mathcal{B}(A,B)\times\mathcal{B}(B,C)\to\mathcal{B}(A,C)$$

$$A \xrightarrow{R} B \xrightarrow{S} C \mapsto R; S := \{(a,c) | \exists b \in B \ (a,b) \in R \ \text{and} \ (b,c) \in S\}$$

$$A \underbrace{\bigvee_{S'}^{R}}_{S'} B \underbrace{\bigvee_{S'}^{R'}}_{S'} C \mapsto A \underbrace{\bigvee_{\alpha;\beta}^{R;S}}_{R';S'} C (R; S \subseteq R'; S')$$

• Identity $I_A: 1 \to \mathcal{B}(A,A)$

Example (Q-Rel where Q is a quantale)

First we recall definition of a quantale:

Definition (Quantale)

A quantale is a complete lattice Q which carries a monoid structure with neutral element e with an associative binary operation $*: Q \times Q \to Q$, satisfying a distributive property

$$a * \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a * b_i), \qquad \bigvee_{i \in I} a_i * b = \bigvee_{i \in I} (a_i * b)$$

For example: The quantale generated by a monoid $\mathcal{M}=(M,e,.)$ is $\mathcal{PM}=(\mathcal{PM},\subseteq,\{e\},.)$, where \mathcal{PM} is the power set of M.

Example (Q-Rel where Q is a quantale)

- 0-cells are sets *A*, *B*, *C*, ...
- Since we can order Q-relations pointwise by using the quantale ordering

$$R \subseteq R' \iff \forall a, b \ R(a, b) \le R'(a, b)$$

each (hom-) category $\mathcal{B}(A,B)$ is a poset under inclusion with

- 1-cells are Q-relations $R:A \to B$ $(R:A \times B \to Q)$
- 2-cells are $\alpha : R \subseteq R'$
- Composition (bi)functor is

$$;_{A,B,C}: \mathcal{B}(A,B) \times \mathcal{B}(B,C) \to \mathcal{B}(A,C)$$

$$(R,S) \mapsto R; S(a,c) := \bigvee_{b \in B} R(a,b) * S(b,c)$$

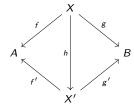
$$A \underbrace{\mathbb{Q}_{S}^{R',S'}}_{S'} B \underbrace{\mathbb{Q}_{S'}^{R',S'}}_{S'} C \mapsto A \underbrace{\mathbb{Q}_{\alpha;\beta}^{R;S}}_{R',S'} C (R; S \subseteq R'; S')$$

• Identity $I_A: 1 \to \mathcal{B}(A,A)$ where $I: A \to A$ is

$$I(a, a') = \begin{cases} e & \text{if } a = a' \\ \bot & \text{if } a \neq a' \end{cases}$$

Example Span(\mathcal{C}) where \mathcal{C} is any category with pullbacks

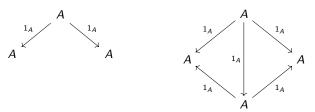
- ullet 0-cells are objects of ${\mathcal C}$
- Categories Span(A, B) with
 - 1-cells are $(f,g):A\to B$
- - 2-cells are $h: X \to X'$



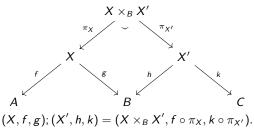
such that $f' \circ h = f$ and $g' \circ h = g$. Composition in Span(A, B) is inherited from C.

Example Span(C)

• Identity $I_A: 1 \rightarrow \operatorname{\mathsf{Span}}(A,A)$



Composition (bi)functor is defined by using pullback as follows



Horizontal composition of 2-cells is defined by the universal property of pullbacks.

Homomorphism between bicategories

Let $\mathcal B$ and $\mathcal B'$ are two bicategories. A homomorphism $T:\mathcal B\to\mathcal B'$ consists of

- ullet A function T mapping objects of ${\cal B}$ into objects of ${\cal B}'$
- ullet For each pair (A,B) of objects, a functor $T_{A,B}:\mathcal{B}(A,B) o \mathcal{B}'(TA,TB)$
- ullet For each triple (A,B,C) of objects, a natural transformation

$$\mathcal{B}(A,B) \times \mathcal{B}(B,C) \xrightarrow{;A,B,C} \mathcal{B}(A,C)$$

$$\tau_{A,B} \times \tau_{B,C} \downarrow \qquad \qquad \downarrow \tau_{A,C}$$

$$\mathcal{B}(TA,TB) \times \mathcal{B}'(TB,TC) \xrightarrow{;TA,TB,TC} \mathcal{B}'(TA,TC)$$

• For each object A, a natural transformation

$$u:I'_{TA} \Longrightarrow T_{A,A} \circ I_A$$

satisfying coherence axioms.

Cartesian bicategories

Remark

In this section, bicategory ${\cal B}$ is a locally posetal bicategory.

Cartesian bicategories

Remark

In this section, bicategory \mathcal{B} is a locally posetal bicategory.

Definition

A tensor product in \mathcal{B} is a homomorphism of bicategories

$$\otimes: \mathcal{B} \times \mathcal{B} \to \mathcal{B}$$

together with an object I, called the identity object, and natural isomorphisms

$$\rho: X \to X \otimes I$$
$$\gamma: X \otimes Y \to Y \otimes X$$

$$\gamma:X\otimes Y\to Y\otimes X$$

$$\alpha: (X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z)$$

satisfying a number of coherence conditions. That is, we get a symmetric monoidal structure on \mathcal{B} .

Cartesian bicategory

A cartesian structure on a bicategory ${\cal B}$ consists of

- ullet A tensor product in ${\cal B}$
- ullet On every object X in \mathcal{B} , a cocommutative comonoid structure. That is, arrows

$$\Delta_X: X \to X \otimes X, \qquad t_X: X \to I.$$

These data must satisfy the following axioms

(U) Each arrow $r: X \to Y$ is a lax comonoid homomorphism. That is,

(M) Comultiplication Δ_X and counit t_X have right adjoins Δ_X^* , t_X^* .

Cartesian bicategory

Definition

An arrow $r: X \to Y$ in a bicategory $\mathcal B$ is called a map if it has a right adjoint r^* . Denote $\mathbf{Map}(\mathcal B)$ the subbicategory of $\mathcal B$ determined by these maps.

Cartesian bicategory

Definition

An arrow $r: X \to Y$ in a bicategory \mathcal{B} is called a *map* if it has a right adjoint r^* . Denote $\mathbf{Map}(\mathcal{B})$ the subbicategory of \mathcal{B} determined by these maps.

Theorem (Carboni and Walters)

Let ${\mathcal B}$ be a locally posetal bicategory. If ${\mathcal B}$ has a Cartesian structure, then

- lacktriangle Map(\mathcal{B}) has finite products,
- **©** Each hom-category $\mathcal{B}(X,Y)$ has finite products which is denoted by \wedge .
- **o** For any 1-cells r and s we have the following formula in \mathcal{B} :

$$r \otimes s = (p^*; r; p) \wedge (q^*; s; q)$$
 (p and q are appropriate projections)

Conversely, if $Map(\mathcal{B})$ staisfies (i) and (ii) and the formula in (iii) defines a functorial tensor product on \mathcal{B} , then \mathcal{B} has a cartesian structure.

Linear bicategories (Cockett, Koslowski, Seely)

A linear bicategory ${\cal B}$ consists of

- A collection of objects (0-cells): A, B, C, ...
- For each pair of objects (A, B), a (hom-) category $\mathcal{B}(A, B)$
- Two composition (bi)functors

$$;_{A,B,C}, \bullet_{A,B,C}: \mathcal{B}(A,B) \times \mathcal{B}(B,C) \rightarrow \mathcal{B}(A,C)$$

and units $\top_A, \bot_A \in \mathcal{B}(A, A)$, each coherently associate and unital. That is, we have two bicategory structures $(;, \top)$ and (\bullet, \bot) .

ullet Natural transformations δ_L and δ_R , called *linear distributivities*

$$\mathcal{B}(A,B) \times \mathcal{B}(B,C) \times \mathcal{B}(C,D) \xrightarrow{ld \times \bullet} \mathcal{B}(A,B) \times \mathcal{B}(B,D)$$

$$: \times ld \downarrow \qquad \qquad \downarrow :$$

$$\mathcal{B}(A,C) \times \mathcal{B}(C,D) \xrightarrow{\bullet} \mathcal{B}(A,D)$$

and,

$$\mathcal{B}(A,B) \times \mathcal{B}(B,C) \times \mathcal{B}(C,D) \xrightarrow{\bullet \times Id} \mathcal{B}(A,B) \times \mathcal{B}(B,D)$$

$$\downarrow Id \times : \downarrow \qquad \qquad \downarrow :$$

$$\mathcal{B}(A,C) \times \mathcal{B}(C,D) \xrightarrow{\bullet} \mathcal{B}(A,D)$$

These must satisfy several coherence conditions.

Example (Rel)

- 0-cells are sets, *A*, *B*, *C*, ...
- (hom-) category $\mathcal{B}(A,B)$ is $\mathcal{P}(A\times B)$ which is a poset under inclusion with

• 2-cells
$$A \xrightarrow{R'} B$$
 are $\alpha : R \subseteq R'$

Two Composition (bi)functors

$$;_{A,B,C}:\mathcal{B}(A,B)\times\mathcal{B}(B,C)\to\mathcal{B}(A,C)$$

$$A \xrightarrow{R} B \xrightarrow{S} C \mapsto R; S := \{(a,c)| \exists b \in B \ (a,b) \in R \ \land \ (b,c) \in S\}$$

$$A \bigoplus_{R'}^{R} B \bigoplus_{S'}^{S} C \mapsto A \bigoplus_{R';S'}^{R;S} C (R; S \subseteq R'; S')$$

$$\bullet_{A,B,C}: \mathcal{B}(A,B) \times \mathcal{B}(B,C) \to \mathcal{B}(A,C)$$

$$A \xrightarrow{R} B \xrightarrow{S} C \mapsto R \bullet S := \{(a,c) | \forall b \in B \ (a,b) \in R \text{ or } (b,c) \in S\}$$

$$R \bullet S \subseteq R' \bullet S'$$

Linear functors

Let $\mathcal B$ and $\mathcal B'$ are two linear bicategories. A linear functor $F:\mathcal B\to\mathcal B'$ consists of

- A function F mapping objects of \mathcal{B} into objects of \mathcal{B}'
- For each pair (A,B) of objects, two functors $F_i,F_{ullet}:\mathcal{B}(A,B)\to\mathcal{B}'(FA,FB)$
- 2-cells $m_{\top}: \top_{F,(A)} \Longrightarrow F_{:(\top_A)}$ and $n_{\bot}: F_{\bullet_{\bot_A}(A)} \Longrightarrow \bot_{F_{\bullet}(A)}$
- Natural transformations, which with m_{\top} and n_{\perp} make $F_{:}$ monoidal (or "lax") with respect to; and F_{\bullet} comonoidal (or "colax") with respect to •

$$m_{:}:F_{:}(A);F_{:}(B)\Longrightarrow F_{:}(A;B)$$

and similarly for •.

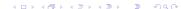
Natural transformations (called "linear strengths")

$$\nu_{:}^{R}: F_{:}(A \bullet B) \Longrightarrow F_{\bullet}(A) \bullet F_{:}(B)$$

$$\nu_{;}^{L}: F_{;}(A \bullet B) \Longrightarrow F_{;}(A) \bullet F_{\bullet}(B)$$

and similarly for •.

satisfying some coherence axioms.



Linear adjunction

The following can be seen as a lemma or definition of linear adjunction.

Lemma (Cockett, Koslowski, Seely)

Given 1-cells $A: X \to Y$, $B: Y \to X$ in a linear bicategory, the following are equivalent

- A is left linear adjoint to B
- For all 0-cells Z, the functor (−); A: Hom(Z, X) → Hom(Z, Y) is left adjoint to the functor (−) B
- **③** For all 0-cells Z, the functor B;(−): $Hom(X,Z) \rightarrow Hom(Y,Z)$ is left adjoint to the functor $A \bullet (-)$

Cartesian linear bicategories

Remark

In this section, linear bicategory \mathcal{B} is a locally posetal linear bicategory.

Cartesian linear bicategories

Remark

In this section, linear bicategory ${\cal B}$ is a locally posetal linear bicategory.

Definition

A tensor product and a cotensor product in ${\cal B}$ are linear functors of linear bicategories

$$\otimes, \oplus: \mathcal{B} \times \mathcal{B} \to \mathcal{B}$$

together with two symmetric monoidal structures, denoted $(\mathcal{B}, \otimes, ;, \top)$ and $(\mathcal{B}, \oplus, \bullet, \bot)$, respectively. And, for each triple (X, Y, Z) of objects, the category \mathcal{B} must also be equipped with two distributive natural transformations:

$$\delta_L: X \otimes (Y \oplus Z) \longrightarrow (X \otimes Y) \oplus Z$$
$$\delta_R: (X \oplus Y) \otimes Z \longrightarrow X \oplus (Y \otimes Z)$$

satisfying a number of coherence conditions.

Cartesian linear bicategory

A cartesian structure on a locally posetal linear bicategory \mathcal{B} consists of

- A tensor \otimes product and a cotensor product \oplus in \mathcal{B} .
- On every object X in \mathcal{B} , a cocommutative comonoid structure, and a commutative monoid structure. That is, arrows

$$\Delta_X: X \to X \otimes X, \qquad t_X: X \to \top,$$

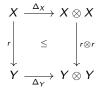
$$\nabla_X: X \oplus X \to X, \qquad \epsilon_X: \bot \to X.$$

$$abla_X:X\oplus X o X,\qquad \epsilon_X:\bot o X.$$

satisfy the following axioms

 (U_1) Each arrow $r: X \to Y$ is a colax comonoid homomorphism. That is

$$r;\Delta_Y \leq \Delta_X;(r \otimes r)$$
 and $r;t_Y \leq t_X$



Cartesian linear bicategory

 (U_2) Each arrow $r: X \to Y$ is a lax monoid homomorphism. That is

$$(r \oplus r) \bullet \nabla_Y \leq \nabla_X \bullet r$$
 and $\epsilon_X \bullet r \leq \epsilon_Y$

$$X \xleftarrow{\nabla_X} X \oplus X$$

$$\downarrow \qquad \qquad \downarrow \\ Y \xleftarrow{\nabla_Y} Y \oplus Y$$

(M) Comultiplication Δ_X and counit t_X have right linear adjoints.

Example (Rel)

- Compositions R; $S := \{(x, z) | \exists y \in Y \ (x, y) \in R \land (y, z) \in S\}$ and $R \bullet S := \{(x, z) | \forall y \in Y \ (x, y) \in R \lor (y, z) \in S\}$
- (Rel, \otimes , ;, \top) is a symmetric monoidal category
 - Define \otimes : Rel \times Rel \rightarrow Rel on objects $X \otimes Y := X \times Y$
 - Define \otimes on morphisms by $R \otimes S : X \otimes X' \to Y \otimes Y'$ where $(x,x')R \otimes S(y,y')$ iff $(x,y) \in R \land (x',y') \in S$
- (Rel, \oplus , •, \bot) is a symmetric monoidal category
 - Define \oplus on objects $X \oplus Y := X \times Y$
 - Define \oplus on morphisms by $R \oplus S : X \oplus X' \to Y \oplus Y'$ where $(x,x')R \oplus S(y,y')$ iff $(x,y) \in R \lor (x',y') \in S$

Example

• Two distributive natural transformations:

$$\delta_L: X \otimes (Y \oplus Z) \longrightarrow (X \otimes Y) \oplus Z$$
$$\delta_R: (X \oplus Y) \otimes Z \longrightarrow X \oplus (Y \otimes Z)$$

• For every object X we have a cocommutative comonoid and a commutative monoid structure. That is, arrows $\Delta_X: X \to X \otimes X$ and $t_X: X \to \top$ and their duals $\nabla_X: X \oplus X \to X$ and $\epsilon_X: \bot \to X$

Inequalities

$$r; \Delta_Y \leq \Delta_X; (r \otimes r)$$
 and $r; t_Y \leq t_X$ $(r \oplus r) \bullet \nabla_Y \leq \nabla_X \bullet r$ and $\epsilon_X \bullet r \leq \epsilon_Y$

ullet Comultiplication Δ_X and counit t_X have right linear adjoints by using the recent Lemma.

Future works

- Find and study more examples of cartesian linear bicategories
 - Bicategory of relations $Rel(\mathcal{E})$ in a regular category \mathcal{E} ?
 - Ordered objects and ideals?

- Will have a theorem similar to Carboni and Walters's describing cartesian structure on $Map(\mathcal{B})$?
- Can we define cartesian linear bicategories in general not just locally posetal?

Bibliography

E. Aleiferi. Cartesian Double Categories with an Emphasis on Characterizing Spans, https://arxiv.org/abs/1809.06940. 2018.

J.R.B Cockett, J. Koslowski and R.A.G Seely . Introduction to Linear bicategories. Math. Struct. Comp. Science, 10(2): 165-203 (2000).

A. Carboni and R.F.C Walters. . Cartesian Bicategories I. Journal of Pure and Applied Algebra, 49:11–32 (1987).

T. Fox. Coalgebras and cartesian categories. Comm. Algebra 4(7):665-667 (1976).

Jean Benabou. Introduction to bicategories. Springer, Berlin, 1967.

Thank you!