Traced Monads and Hopf Monads

JS Pacaud Lemay (he/him) Joint work with Masahito Hasegawa

Email: jsplemay@gmail.com

Website: https://sites.google.com/view/jspl-personal-webpage

A bit of background story about this research

- In a few years we'll say: "You'll always remember where you were when the world stopped because of the COVID-19 pandemic in March 2020".
- Well I was at Kyoto University working with Hassei ¹ on this very project!
- Not only that! The day the NBA/NHL postponed their season in March 2020 was the same day Hassei and I finally cracked the main result of this talk!
- Unfortunately I had to leave a few days later...

¹If you google pictures of Masahito Hasegawa, you will find more pictures of Phil Scott and Peter Selinger than Hassei!

Lifting Structure to Eilenberg-Moore Categories

Let (T, μ, η) be a monad a category X.

• Let \mathbb{X}^T be its Eilenberg-Moore category, the category whose objects are T-algebras $(A, T(A) \xrightarrow{a} A)$ and whose maps are T-algebra morphisms $f: (A, a) \to (B, b)$:

$$T(A) \xrightarrow{T(f)} T(B)$$

$$\downarrow b$$

$$\downarrow A \xrightarrow{f} B$$

With forgetful functor $U: \mathbb{X}^T \to \mathbb{X}$.

- A structure on $\mathbb X$ is lifted to $\mathbb X^T$ if $\mathbb X^T$ also has said structure and the forgetful functor U preserves said structure strictly.
- In most cases, lifting structure can be characterized on the monad T itself without
 mentioning its T-algebras. This is often done by requiring extra structure on the monad (like
 natural transformations, distributive laws, etc.)

TODAY'S STORY: Lifting Traced Monoidal Structure

Lifting Trace

- Traced monoidal categories are symmetric monoidal categories which have a trace operator, which generalizes the notion of traces of matrices and the notion of feedback/loops.

André Joyal, Ross Street, Dominic Verity (1996). Traced monoidal categories.

- A traced monad is a monad T on a traced monoidal category X which lifts the traced monoidal structure to X^T . Explicitly:
 - lacktriangledown The Eilenberg-Moore category \mathbb{X}^T is a traced monoidal category
 - ② The forgetful functor $U: \mathbb{X}^T \to \mathbb{X}$ preserves the traced monoidal structure strictly.
- An open question has been trying to provide a characterization of traced monads without explicitly mentioning the Eilenberg-Moore category.

Lifting Compact Closed Structure

- Traced monoidal categories are closely linked to compact closed categories.
 - Every compact closed category is a traced monoidal category;
 - Every traced monoidal category embeds into a compact closed category.
- Monads which lift compact closed structure are called Hopf monads.
- Hopf monads can be described on arbitrary monoidal categories without mentioning the Eilenberg-Moore category.
- A natural question to ask is what is the relationship between Hopf monads and traced monads. Can Hopf monads be used to help characterize traced monads?

Summary of Today

- We introduce the notion of **trace-coherence** for Hopf monads, which can be stated without mentioning the Eilenberg-Moore category.
- Main Result: A Hopf monad is traced if and only if it is trace-coherent.
- Not every traced monad is a Hopf monad.
- $\bullet \ \, \text{Not every Hopf monad is a traced monad } (\leftarrow \text{counterexample was not easy to find!}) \\$

Traced Monoidal Categories

For a symmetric monoidal category \mathbb{X} , we use \otimes for the tensor product and I for the unit.

Definition

A traced monoidal category is a symmetric monoidal category \mathbb{X} : equipped with a trace Tr, which is a family of operators (indexed by triples of objects $X, A, B \in \mathbb{X}$):

$$\operatorname{Tr}_{A,B}^{X}: \mathbb{X}(X \otimes A, X \otimes B) \to \mathbb{X}(A,B)$$

$$\xrightarrow{f: X \otimes A \to X \otimes B} \operatorname{Tr}_{A,B}^{X}(f): A \to B$$

satisfying axioms which generalize the trace operator for matrices (like the cyclic property).

André Joyal, Ross Street, Dominic Verity (1996). Traced monoidal categories.

For an endomorphism $A \xrightarrow{f} A$, its trace $I \xrightarrow{\text{Tr}(f) = \text{Tr}_{I,I}^A(f)} I$ is a loop:

Examples: Compact Closed Categories

Proposition

A compact closed category is a symmetric monoidal category such each object A has a dual A^* , with maps $A \otimes A^* \stackrel{\cup}{\rightarrow} I$ and $I \stackrel{\cap}{\rightarrow} A^* \otimes A$ that satisfy the snake equations. Every compact closed category is a traced monoidal category where:

$$\mathsf{Tr}^{X}_{A,B}(f) := \ A \cong I \otimes A \xrightarrow{\cap \otimes 1} X^* \otimes X \otimes A \xrightarrow{1 \otimes f} X^* \otimes X \otimes B \cong X \otimes X^* \otimes B \xrightarrow{\cup \otimes 1} I \otimes B \cong B$$

Example

- For any commutative ring R, MAT(R) is compact closed and the trace operator corresponds to partial trace of matrices. In particular for a $n \times n$ square matrix A, which is an endomorphism $n \xrightarrow{A} n$, its trace $1 \xrightarrow{\text{Tr}(A)} 1$ is precisely the sum of its diagonal coordinates.
- ullet REL with $\otimes = \times$ is compact closed and the resulting trace is defined as follows:

$$\frac{R \subseteq (X \times A) \times (X \times B)}{\mathsf{Tr}_{A,B}^{X}(R) = \{(a,b) | \exists x \in X. ((x,a),(x,b)) \in R\} \subseteq A \times B}$$

• Every traced monoical category $\mathbb X$ embeds into a compact closed category INT($\mathbb X$), and the embedding $J: \mathbb X \to \mathsf{INT}(\mathbb X)$ preserves the traced monoidal structure strictly.

Non-Compact Closed Examples

NOT EVERY TRACED MONOIDAL CATEGORY IS COMPACT CLOSED!

Example

• The poset (\mathbb{N}, \leq) is a traced monoidal category where $\otimes = +$ and the trace is:

$$\frac{k+n \le k+m}{n \le m}$$

• Every unique decomposition category is a traced monoidal category:

Esfandir Haghverdi (2000). Unique decomposition categories, Geometry of Interaction and combinatory logic.

The idea here is that $X \otimes A \xrightarrow{F} X \otimes B$ can be decomposed into four maps:

$$X \xrightarrow{f} X$$
 $X \xrightarrow{g} B$ $A \xrightarrow{h} X$

$$X \xrightarrow{g} B$$

$$A \xrightarrow{h} \lambda$$

$$A \xrightarrow{k} B$$

so its trace $A \xrightarrow{\operatorname{Tr}_{A,B}^X(F)} B$ is defined as an infinite sum:

$$\operatorname{Tr}_{A,B}^X(F) = k + \sum_{n \in \mathbb{N}} g \circ f^n \circ h$$

- REL with ⊗ = □ (disjoint union)
- PAR with ⊗ = □ (disjoint union)

Traced Monads

Traced monads are monads which lift traced monoidal structure:

- How do we lift the symmetric monoidal structure?
- ② How do we lift the trace?

Comonoidal Monads

Definition

A symmetric comonoidal monad on a symmetric monoidal category $\mathbb X$ is a monad $(\mathcal T,\mu,\eta)$ equipped with:

$$T(A \otimes B) \xrightarrow{m_{A,B}} T(A) \otimes T(B)$$
 $T(I) \xrightarrow{m_I} I$

which makes T a (lax) comonoidal functor (i.e. coherences with the associativity, symmetry, unit isomorphisms) and μ and η comonoidal natural transformations.

Proposition (Moerdijk)

A monad (T, μ, η) is a symmetric comonoidal monad if and only if \mathbb{X}^T is a symmetric monoidal category such that the forgetful functor preserves the symmetry monoidal structure strictly (i.e. a strict monoidal functor).

The Eilenberg-Moore category of a symmetric comonoidal monad is a symmetric monoidal category:

$$(A,a)\otimes(B,b)=(A\otimes B,T(A\otimes B)\xrightarrow{m_{A,B}}T(A)\otimes T(B)\xrightarrow{a\otimes b}A\otimes B)\qquad (I,T(I)\xrightarrow{m_I}I)$$

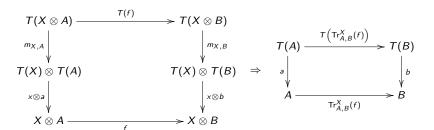
Traced Monads

Definition

A **traced monad** on a traced monoidal category $\mathbb X$ is a symmetric comonoidal monad $(\mathcal T, \mu, \eta, m, m_l)$ such that $\mathbb X^T$ is a traced monoidal category and the forgetful functor preserves the traced monoidal structure strictly.

In other words, the trace of T-algebra map is again a T-algebra map:

$$\frac{(X,x)\otimes (A,a)\xrightarrow{f} (X,x)\otimes (B,b)}{(A,a)\xrightarrow{\mathsf{Tr}_{A,B}^X(f)} (B,b)}$$



Problem: This is a bit disappointing because we mention the *T*-algebras...

Hopf Monads

Definition

A symmetric Hopf monad on a symmetric monoidal category $\mathbb X$ is a symmetric comonoidal monad (T, μ, η, m, m_l) such that the fusion operator:

$$h_{A,B} := T(T(A) \otimes B) \xrightarrow{m_{T(A),B}} TT(A) \otimes T(B) \xrightarrow{\mu_A \otimes 1_{T(B)}} T(A) \otimes T(B)$$

is a natural isomorphisms, so $T(A) \otimes T(B) \cong T(T(A) \otimes B)$.

A. Bruguieres, S. Lack, and A. Virelizier. (2011). Hopf monads on monoidal categories.

Proposition (Bruguieres, Lack, Virelizier)

If $\mathbb X$ is compact closed^a, then a monad (T,μ,η) is a Hopf monad if and only if $\mathbb X^T$ is a compact closed category such that the forgetful functor preserves the compact closed structure strictly.

^aIn fact, this is true for symmetric closed categories!

Examples of Hopf Monads

Example

In any symmetric monoidal category, for an object H, $T=H\otimes -$ if a symmetric Hopf monad if and only if H is a commutative Hopf algebra. The monad is obtain from the algebra structure:

$$H \otimes H \xrightarrow{\nabla} H$$
 $I \xrightarrow{u} H$

The comonoidal structure is obtained from the coalgebra structure:

$$H \xrightarrow{\Delta} H \otimes H$$
 $H \xrightarrow{e} I$

while the invertibility of the fusion operators comes from the antipode:

$$H \xrightarrow{S} H$$

These are called representable Hopf monads.

While for any Hopf monad, T(I) is a Hopf algebra, not every Hopf monad is representable!

Example

For (\mathbb{N}, \leq) , define: $T(n) = \begin{cases} n & \text{if } n \text{ is even} \\ n+1 & \text{if } n \text{ is odd} \end{cases}$

Then T is a symmetric Hopf monad since T(n) + T(m) = T(T(n) + m).

When is a Hopf Monad a Traced Monad?

Definition

A symmetric Hopf monad on a traced monoidal category is trace-coherent if for any map:

$$T(X) \otimes A \xrightarrow{f} T(X) \otimes B$$

the image of its trace:

$$A \xrightarrow{\mathsf{Tr}_{A,B}^{T(X)}(f)} B$$

under T:

$$T(A) \xrightarrow{T(\operatorname{Tr}_{A,B}^{T(X)}(f))} T(B)$$

is equal to taking the trace of the composite:

$$T(X) \otimes T(A) \xrightarrow{h_{X,A}^{-1}} T(T(X) \otimes A) \xrightarrow{T(f)} T(T(X) \otimes B) \xrightarrow{h_{X,B}} T(X) \otimes T(B)$$

That is:

$$T\left(\mathsf{Tr}_{A,B}^{T(X)}(f)\right) = \mathsf{Tr}_{T(A),T(B)}^{T(X)}\left(h_{X,B} \circ T(f) \circ h_{X,A}^{-1}\right)$$

Proposition (Hasegawa, Lemay)

A symmetric Hopf monad is a traced monad if and only if it is trace-coherent.

What kinds of Hopf monads are trace-coherent?

Proposition

For any traced monoidal category, every representable symmetric Hopf monad $T=H\otimes -$ is trace-coherent, and therefore a traced monad. The Eilenberg-Moore category in this case is the category of H-modules, which will be a traced monoidal category.

Proposition

Every symmetric Hopf monad on a compact closed category is trace-coherent, and therefore a traced monad.

Proposition

For any traced monoidal category, every **idempotent** symmetric Hopf monad (i.e. $TT \cong T$) is trace-coherent, and therefore a traced monad. Furthermore, if the unit I is an initial object, then a symmetric Hopf monad is trace-coherent if and only if it is idempotent. In particular, this covers examples where \otimes is a coproduct (like REL or PAR).

Not all traced monads are Hopf monads

If X is a traced monoidal category, note that X^{op} is also.

Example

Suppose that \mathbb{X} is a traced symmetric monoidal closed category with internal hom $A \multimap B$.

- Consider the compact closed category INT(\mathbb{X}^{op}). Briefly, the objects are pairs (X, A)
- Define the monad T on objects as follows: $T(X,A) = (A \multimap X,I)$.
- The Eilenberg-Moore category $\mathsf{INT}(\mathbb{X}^{op})^T \cong \mathbb{X}^{op}$, and so the forgetful functor can be interpreted as the embedding $J: \mathbb{X}^{op} \to \mathsf{INT}(\mathbb{X}^{op})$, so J(A) = (A, I).
- By construction, the embedding $J: \mathbb{X}^{op} \to \mathsf{INT}(\mathbb{X}^{op})$ preserves the traced monoidal structure strictly. Therefore, T is a traced monad.
- However, T is in general not a Hopf monad since:

$$T(T(X,A) \otimes (Y,B)) = (B \multimap ((A \multimap X) \otimes Y), I)$$

$$\neq ((A \multimap X) \otimes (B \multimap Y), I) = T(X,A) \otimes T(Y,B)$$

Not all Hopf monads are traced monads

The trace operator is a **structure** and not a property. In other words, a symmetric monoidal category $\mathbb X$ can have two different trace operators for the same tensor product \otimes .

Example

Let $\mathbb X$ be a symmetric monoidal category with two distinct trace operator Tr and $\operatorname{\overline{Tr}}$. Suppose that $\mathbb X$ also has distributive biproducts \oplus :

$$(X \oplus Y) \otimes (A \oplus B) \cong (X \otimes A) \oplus (X \otimes B) \oplus (Y \otimes A) \oplus (Y \otimes B)$$

Now $\mathbb{X} \times \mathbb{X}$ is again a traced monoidal category where: $Tr(-,-) = (Tr(-),\overline{Tr}(-))$

Now define the monad T on objects as follows $T(X,Y)=(X\oplus Y,X\oplus Y)$

That T is a Hopf monad follows from distributivity between \oplus and \otimes .

The Eilenberg-Moore category $(\mathbb{X} \times \mathbb{X})^T \cong \mathbb{X}$, and so the forgetful functor can be interpreted as the diagonal functor $\Delta : \mathbb{X} \to \mathbb{X} \times \mathbb{X}$. But with either of the traces of \mathbb{X} we see that:

$$\Delta(\mathsf{Tr}(-)) = (\mathsf{Tr}(-), \mathsf{Tr}(-)) \neq (\mathsf{Tr}(-), \overline{\mathsf{Tr}}(-)) = \mathsf{Tr}(-, -)$$

$$\Delta(\overline{\mathsf{Tr}}(-)) = (\overline{\mathsf{Tr}}(-), \overline{\mathsf{Tr}}(-)) \neq (\mathsf{Tr}(-), \overline{\mathsf{Tr}}(-)) = \mathsf{Tr}(-, -)$$

So the forgetful/diagonal functor does not preserve the trace! Therefore ${\cal T}$ is not a traced monad.

Some final thoughts...

- We were able to characterize when Hopf monads lift traced monoidal structure without mentioning the algebras.
- We are able to get a trace-coherent condition for slightly more general monads:

$$T(T(A) \otimes T(B)) \cong TT(A) \otimes T(B)$$

- ullet Regarding traced monads o Hopf monads: can the trace be sometimes used to build inverses for the fusion operators? (It doesn't seem like it... but maybe!)
- What about Hopf monads on unique decomposition categories?
- How does this story interact with the INT construction?
- Still working on getting a characterization of traced monads without mentioning the algebras!

Thank You!

HOPE YOU ENJOYED MY TALK! THANK YOU FOR LISTENING! MERCI!