The Equivariant Fundamental Double Groupoid

Marzieh Bayeh

University of Ottawa

(joint work with Dorette Pronk and Martin Szyld)

Novemberfest

University of Ottawa November 2021

Double Categories

A double category is an internal category in Cat,

$$\mathbf{C}_1 \xrightarrow{s} \mathbf{C}_0$$
.

- It has
 - objects (objects of C_0),
 - vertical arrows (arrows of C_0), denoted $d_0(v) \xrightarrow{v} d_1(v)$,
 - horizontal arrows (objects of C_1), denoted $s(f) \xrightarrow{f} t(f)$,
 - ullet double cells (arrows of ${f C}_1$), denoted

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow u & & \downarrow v \\
\downarrow u & & \downarrow v \\
A' & \xrightarrow{f'} & B'
\end{array}$$

where
$$d_0(\alpha) = f$$
, $d_1(\alpha) = f'$, $s(\alpha) = u$, and $t(\alpha) = v$.

Examples

• For any 2-category \mathcal{C} , $\mathbb{Q}(\mathcal{C})$ is the double category of quintets in \mathcal{C} , with double cells

for each $\alpha \colon vf \Rightarrow gu$ in \mathcal{C} .

Examples

• For any 2-category \mathcal{C} , $\mathbb{Q}(\mathcal{C})$ is the double category of quintets in \mathcal{C} , with double cells

for each $\alpha \colon vf \Rightarrow gu$ in \mathcal{C} .

② For any 2-category \mathcal{C} , $\mathbb{H}(\mathcal{C})$ is the double category with double cells

$$1_A \stackrel{f}{\stackrel{}{\stackrel{}}{\stackrel{}}} \downarrow 1_E$$

for each $\alpha \colon f \Rightarrow g$ in \mathcal{C} .

Examples

• For any 2-category \mathcal{C} , $\mathbb{Q}(\mathcal{C})$ is the double category of quintets in C, with double cells

for each $\alpha \colon vf \Rightarrow gu$ in \mathcal{C} .

2 For any 2-category C, $\mathbb{H}(C)$ is the double category with double $\begin{array}{c}
f \\
\uparrow \\
\alpha \\
\downarrow 1_{B}
\end{array}$ for each $\alpha \colon f \Rightarrow g$ in \mathcal{C} . cells

$$\begin{array}{c} f \\ \downarrow \\ 1_A \\ \downarrow \\ g \end{array} \downarrow 1_E$$

1 The double category $V(\mathcal{C})$ is defined analogously.

The category **DblCat**

The category **DblCat** of double categories has:

- objects: double categories $\mathbb{C}, \mathbb{D}, \ldots$;
- arrows: double functors F, G, \ldots ;
- 2-cells: these come in two flavours:

The category **DblCat**

The category **DblCat** of double categories has:

- objects: double categories C, D, . . .;
- arrows: double functors F, G, \ldots ;
- 2-cells: these come in two flavours:
 - vertical transformations $\gamma\colon F \Longrightarrow G\colon \mathbb{C} \rightrightarrows \mathbb{D}$ given by

$$FA \xrightarrow{Fh} FB$$

$$\uparrow_{A} \qquad \uparrow_{A} \qquad \uparrow_{A} \qquad \uparrow_{B} \text{ for each } h \colon A \to B \text{ in } \mathbb{C}$$

$$GA \xrightarrow{Gh} GB$$

functorial in the horizontal direction and natural in the vertical direction.

The category **DblCat**

The category **DblCat** of double categories has:

- objects: double categories C, D, . . .;
- arrows: double functors F, G, \ldots ;
- 2-cells: these come in two flavours:
 - vertical transformations $\gamma \colon F \Longrightarrow G \colon \mathbb{C} \rightrightarrows \mathbb{D}$ given by

$$\begin{array}{c|c} FA \xrightarrow{Fh} FB \\ \gamma_A & & \uparrow \\ & \gamma_A & & \uparrow \\ & GA \xrightarrow{Gh} GB \end{array} \text{ for each } h \colon A \to B \text{ in } \mathbb{C}$$

functorial in the horizontal direction and natural in the vertical direction.

- horizontal transformations $\nu \colon F \Longrightarrow G$ are defined dually;
- modifications given by a family of double cells.

• **DblCat** is not a double category.

The Equivariant Fundamental Double Groupoid

- DblCat is not a double category.
- DblCat is enriched in the category DblCat of double categories: each DblCat(ℂ, □) is a double category.

- DblCat is not a double category.
- DblCat is enriched in the category DblCat of double categories: each DblCat(C, D) is a double category.
- DblCat_v (resp. DblCat_h) is the 2-category with vertical (resp. horizontal) transformations.

- DblCat is not a double category.
- DblCat is enriched in the category DblCat of double categories: each DblCat(C, D) is a double category.
- DblCat_v (resp. DblCat_h) is the 2-category with vertical (resp. horizontal) transformations.
- So lax limits have typically been taken in the 2-category
 DblCat_v or DblCat_h with laxity in one direction.

Diagrams in **DblCat**

To define a diagram of double categories indexed by a double category \mathbb{D} :

- Send objects of D to double categories;
- Send both horizontal and vertical arrows to double functors;
- Send double cells to *vertical* transformations.

So an indexing double functor is a double functor

$$\mathbb{D} o \mathbb{Q}(\mathsf{DblCat}_v)$$

We will also refer to indexing double functors as **vertical double functors**

 $\mathbb{D} \longrightarrow \mathsf{DblCat}.$

The Double Grothendieck Construction: Objects and Arrows

Let $\mathbb{D} \xrightarrow{F}$ **DblCat** be a vertical double functor. The **double** category of elements, \mathbb{G} r $F = \int_{\mathbb{D}} F$, is defined by:

The Double Grothendieck Construction: Objects and Arrows

Let $\mathbb{D} \xrightarrow{F}$ **DblCat** be a vertical double functor. The **double** category of elements, $\mathbb{G}rF = \int_{\mathbb{D}} F$, is defined by:

• Objects: (C,x) with C in $\mathbb D$ and x in FC.

The Double Grothendieck Construction: Objects and Arrows

Let $\mathbb{D} \xrightarrow{F} \mathbf{DblCat}$ be a vertical double functor. The **double** category of elements, \mathbb{G} r $F = \int_{\mathbb{D}} F$, is defined by:

- Objects: (C,x) with C in $\mathbb D$ and x in FC,
- Vertical arrows:

$$(C,x) \xrightarrow{(u,\rho)} (C',x'),$$

where $C \xrightarrow{u} C'$ in \mathbb{D} and $Fux \xrightarrow{\rho} x'$ in FC'.

The Double Grothendieck Construction: Objects and Arrows

Let $\mathbb{D} \xrightarrow{F} \mathbf{DblCat}$ be a vertical double functor. The **double** category of elements, \mathbb{G} r $F = \int_{\mathbb{D}} F$, is defined by:

- Objects: (C,x) with C in $\mathbb D$ and x in FC,
- Vertical arrows:

$$(C,x) \xrightarrow{(u,\rho)} (C',x'),$$

where $C \xrightarrow{u} C'$ in \mathbb{D} and $Fux \xrightarrow{\rho} x'$ in FC'.

Horizontal arrows:

$$(C,x) \xrightarrow{(f,\varphi)} (D,y),$$

where $C \xrightarrow{f} D$ in \mathbb{D} , and $Ffx \xrightarrow{\varphi} y$ in FD.

The Double Grothendieck Construction: Double Cells

$$(C,x) \xrightarrow{\quad (f,\varphi) \quad} (D,y)$$

$$\bullet \text{ Double cells: } (u,\rho) \stackrel{\downarrow}{\downarrow} (\alpha,\Phi) \qquad \stackrel{\downarrow}{\downarrow} (v,\lambda) \text{ , where } \alpha \colon (u \stackrel{f}{f'} v) \text{ is a double cell in } (C',x') \xrightarrow[f',\varphi']{} (D',y')$$

 \mathbb{D} and Φ is a double cell in FD':

$$FvFfx \xrightarrow{Fv\varphi} Fvy$$

$$(F\alpha)_x \downarrow \qquad \qquad \downarrow$$

$$Ff'Fux \quad \Phi \qquad \qquad \downarrow$$

$$Ff'\rho \downarrow \qquad \qquad \downarrow$$

$$Ff'x' \xrightarrow{\varphi'} y'$$

The Main Theorem

• There is a doubly lax cocone $F \stackrel{\lambda}{\Longrightarrow} \Delta \mathbb{G}$ r F with the required universal property:

$$\lambda^* \colon \mathbf{DblCat}\left(\int_{\mathbb{D}} F, \mathbb{E}\right) \to \mathbb{LC}\left(\int_{\mathbb{D}} F, \mathbb{E}\right)$$

is an iso of double categories for all $\mathbb{E} \in \mathbf{DblCat}$.

The Main Theorem

• There is a doubly lax cocone $F \stackrel{\lambda}{\Longrightarrow} \Delta \mathbb{G}$ r F with the required universal property:

$$\lambda^* \colon \mathbf{DblCat}\left(\int_{\mathbb{D}} F, \mathbb{E}\right) \to \mathbb{LC}\left(\int_{\mathbb{D}} F, \mathbb{E}\right)$$

is an iso of double categories for all $\mathbb{E} \in \mathbf{DblCat}$.

 \bullet Furthermore, $\int_{\mathbb{D}}$ extends to a functor of DblCat-categories

$$\mathsf{Hom}_v(\mathbb{D}, \mathbf{DblCat})_{d\ell} o \mathbf{DblCat}/\mathbb{D}$$

which is locally an isomorphism of double categories

$$\mathbb{H}\mathrm{om}_{d\ell}(F,G)\cong (\mathbf{DblCat}/\mathbb{D})\left(\int_{\mathbb{D}}F\to \mathbb{D},\int_{\mathbb{D}}G\to \mathbb{D}\right).$$

Work in progress

A versions of tom Dieck Fundamental Double Groupoid

Orbit Category

For any group G the orbit category \mathcal{O}_G is defined as follows:

- Objects: G/H where H is a closed subgroup of G;
- Arrows: G-equivariant maps

$$a: G/H \to G/K$$

where $H \subseteq aKa^{-1}$.

Note that arrows can be viewed as points in $(G/K)^H$; they can also be viewed as elements of G: conjugation by a after a canonical projection.

Orbit Category

Let X be a G-space.

$$\mathcal{F}:\mathcal{O}_G o \mathbf{Cat}$$

- Objects: $\mathcal{F}(G/H)=\pi(X^H)$ the fundamental groupoid of X^H ;
- Arrows:

$$\mathcal{F}a:\pi(X^K)\to\pi(X^H)$$
$$[\gamma]\longmapsto[a\gamma]$$

Orbit Category

Let X be a G-space.

$$\mathcal{F}:\mathcal{O}_G o \mathbf{Cat}$$

- Objects: $\mathcal{F}(G/H) = \pi(X^H)$ the fundamental groupoid of X^H ;
- Arrows:

$$\mathcal{F}a:\pi(X^K)\to\pi(X^H)$$

 $[\gamma]\longmapsto[a\gamma]$

The tom Dieck orbit category $\mathcal{O}_G(X)$ is obtained as a quotient of a categorical Grothendieck construction $\int_{\mathcal{O}_G} \mathcal{F}$, we have:

- Objects: (G/H, x) where $x \in X^H$;
- Arrows:

$$(G/H, x) \xrightarrow{(a, [\gamma])} (G/K, y)$$

where $[\gamma]$ is a homotopy class of path in X^H from x to ay.

If G is a Lie group, then \mathcal{O}_G admits a 2-category structure:

- Objects: G/H where H is a closed subgroup of G;
- Arrows: G-equivariant maps

$$a: G/H \to G/K$$

where $H \subseteq aKa^{-1}$.

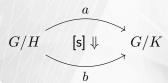
If G is a Lie group, then \mathcal{O}_G admits a 2-category structure:

- Objects: G/H where H is a closed subgroup of G;
- Arrows: G-equivariant maps

$$a: G/H \to G/K$$

where $H \subseteq aKa^{-1}$.

• 2-cells:



[s] is a homotopy class of paths in $\left(G/K\right)^H$ from a to b.

Let X be a G-space.

$$\mathcal{F}:\mathcal{O}_G o$$
 2-Cat

where 2-Cat is the category of 2-categories

- Objects: $\mathcal{F}(G/H) = \pi(X^H)$;
- ullet Arrows: $\mathcal{F}a:\pi(X^K) o \pi(X^H)$

Let X be a G-space.

$$\mathcal{F}:\mathcal{O}_G o$$
 2-Cat

where 2-Cat is the category of 2-categories

- Objects: $\mathcal{F}(G/H) = \pi(X^H)$;
- $\bullet \ \, \mathsf{Arrows} \colon \, \mathcal{F}a: \pi(X^K) \to \pi(X^H) \\$
- 2-cells:

$$\mathcal{F}[s]: \mathcal{F}a \Rightarrow \mathcal{F}b$$

is a natural transformation and for $x_1 \xrightarrow{[\gamma]} x_2$ in X^K we have

$$\begin{array}{c}
ax_1 & \xrightarrow{[a\gamma]} & ax_2 \\
[sx_1] \downarrow & & \downarrow [sx_2] \\
bx_1 & \xrightarrow{[b\gamma]} & bx_2
\end{array}$$

The tom Dieck fundamental groupoid is obtained as a quotient of a categorical Grothendieck construction $\int_{\mathcal{O}_G} \mathcal{F}$.

- Objects: (G/H, x) where $x \in X^H$;
- Arrows:

$$(G/H, x) \xrightarrow{(a, [\gamma])} (G/K, y)$$

where $[\gamma]$ is a homotopy class of path in X^H from x to ay.

• 2-cells:

$$[\sigma]:(a,[\gamma])\Rightarrow(b,[\eta])$$

is a homotopy class of paths from a to b in $(G/K)^H$ s.t the following diagram commutes in X^H .

$$\begin{bmatrix} x & \xrightarrow{[\gamma]} & ay \\ [id_x] & & \downarrow [\sigma y] \\ x & \xrightarrow{[\eta]} & by \end{bmatrix}$$

If G is a Lie group, then the orbit category admits a double category structure, denoted by \mathbb{O}_G^2 :

- Objects: G/H where H is a closed subgroup of G;
- Horizontal arrows: G-equivariant maps

$$a: G/K_1 \to G/K_2$$

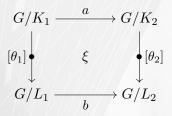
where $K_1 \subseteq aK_2a^{-1}$.

Vertical arrows:

$$G/K_1 \xrightarrow{[\theta]} G/L_1$$

homotopy class of paths in G from e to $\theta(1)$ where $\theta(1)K_1\theta(1)^{-1}=L_1$.

Double cells:

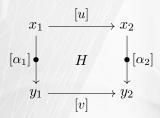


 ξ is a path from a to b such that

$$G/K_1 \xrightarrow{\theta_1(t)^{-1}\xi(t)\theta_2(t)} G/K_2$$

Double category of fundamental groupoids, $\mathbb{Q}\pi(X)$

- Objects: $x \in X$;
- ullet Horizontal and vertical arrows: homotopy class of paths in X;
- Double cells:



$$\mathcal{F}: \mathbb{O}^1_G \to DblCat$$

- Objects: $\mathcal{F}(G/K) = \mathbb{Q}\pi(X^K)$;
- Horizontal arrows:

$$\mathcal{F}a: \mathbb{Q}\pi(X^{K_2}) \to \mathbb{Q}\pi(X^{K_1})$$

where $a: G/K_1 \to G/K_2$

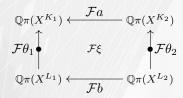
Vertical arrows:

$$\mathcal{F}\theta = \theta(1)^{-1} : \mathbb{Q}\pi(X^{L_1}) \longrightarrow \mathbb{Q}\pi(X^{K_1}),$$

where $\theta: G/K_1 \longrightarrow G/L_1$.

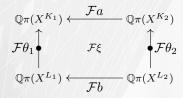
Note: The vertical double functors are invertible.

Double cells:



is a vertical transformation,

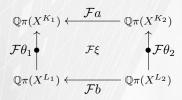
Double cells:



is a vertical transformation,

• For every $x \in X^{L_2}$, $\mathcal{F}\xi_x$ is a path in X^{K_1} from $a\theta_2(1)^{-1}x$ to $\theta_1(1)^{-1}bx$.

Double cells:



is a vertical transformation,

- ullet For every $x\in X^{L_2}$, $\mathcal{F}\xi_x$ is a path in X^{K_1} from $a heta_2(1)^{-1}x$ to $heta_1(1)^{-1}bx$.
- For every horizontal arrow $u: x_1 \to x_2$ in X^{L_2} , $\mathcal{F}\xi_u$ is a path homotopy in X^{K_1} between $a\theta_2(1)^{-1}u*\mathcal{F}\xi_{x_2}$ and $\mathcal{F}\xi_{x_1}*\theta_1(1)^{-1}bu$.

The tom Dieck fundamental double groupoid is obtained as a quotient of a categorical Grothendieck construction

$$\mathbb{P}_G^2(X) = \int_{\mathcal{O}_G} \mathcal{F}.$$

- Objects: (G/H, x) where $x \in X^H$;
- Horizontal arrows:

$$(a,u): (G/K_1,x_1) \to (G/K_2,x_2),$$

where $a:G/K_1\to G/K_2$ is a G-equivariant map in \mathbb{O}^2_G and u is a path in X^{K_1} from x_1 to ax_2 .

The tom Dieck fundamental double groupoid is obtained as a quotient of a categorical Grothendieck construction

$$\mathbb{P}_G^2(X) = \int_{\mathcal{O}_G} \mathcal{F}.$$

- Objects: (G/H, x) where $x \in X^H$;
- Horizontal arrows:

$$(a,u): (G/K_1,x_1) \to (G/K_2,x_2),$$

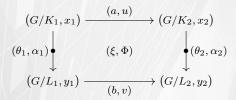
where $a:G/K_1\to G/K_2$ is a G-equivariant map in \mathbb{O}_G^2 and u is a path in X^{K_1} from x_1 to ax_2 .

Vertical arrows:

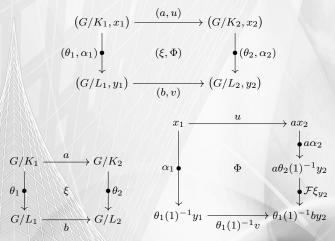
$$(\theta_1, \alpha_1): (G/K_1, x_1) \longrightarrow (G/L_1, y_1),$$

where $\theta_1: G/K_1 \longrightarrow G/L_1$ is a vertical arrow in \mathbb{O}_G^2 and α_1 is a path in X^{K_1} from x_1 to $\theta_1(1)^{-1}y_1$.

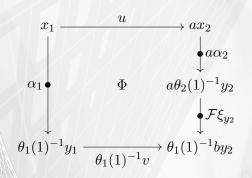
Double cells:

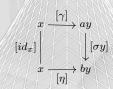


Double cells:



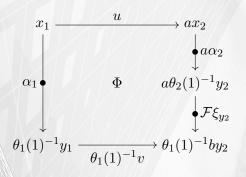
Observation





. . .

Observation



$$\begin{bmatrix} x & [\gamma] \\ ay & x_1 & & u \\ & & & ax_2 & \xrightarrow{a\alpha_2} & a\theta_2(1)^{-1}y_2 \\ \downarrow [id_x] & & \downarrow [\sigma y] & [id_x] \\ x & & \downarrow by & & x_1 & \xrightarrow{\alpha_1} & \theta_1(1)^{-1}y_1 & \xrightarrow{\theta_1(1)^{-1}v} & \theta_1(1)^{-1}by_2 \end{bmatrix}$$

4 □ ▶

Higher Topological Complexity

Higher Topological Complexity

Higher Topological Complexity

example

Consider the action of $G=\mathbb{S}^1\times\mathbb{Z}_2\subset\mathbb{C}\times\mathbb{Z}_2$ on a cylinder $C=\mathbb{S}^1\times[-1,1]$ defined by

$$G \times C \to C$$
$$(\alpha, \beta) \cdot (t, x) = (\alpha t, \beta x)$$

example

Consider the action of $G=\mathbb{S}^1\times\mathbb{Z}_2\subset\mathbb{C}\times\mathbb{Z}_2$ on a cylinder $C=\mathbb{S}^1\times[-1,1]$ defined by

$$G \times C \to C$$
$$(\alpha, \beta) \cdot (t, x) = (\alpha t, \beta x)$$

• For any point $x \in C$ on the central circle of C, we have $G_x = K = \{0\} \times \mathbb{Z}_2$.

$$X^K = \mathbb{S}^1 \times \{0\}.$$

example

Consider the action of $G=\mathbb{S}^1\times\mathbb{Z}_2\subset\mathbb{C}\times\mathbb{Z}_2$ on a cylinder $C=\mathbb{S}^1\times[-1,1]$ defined by

$$G \times C \to C$$
$$(\alpha, \beta) \cdot (t, x) = (\alpha t, \beta x)$$

• For any point $x \in C$ on the central circle of C, we have $G_x = K = \{0\} \times \mathbb{Z}_2$.

$$X^K = \mathbb{S}^1 \times \{0\}.$$

• For any other point $y \in C$, we have $G_y = E$ is trivial.

$$X^E = X$$
.

Observation

