

Inner autoequivalences of monoidal categories

Martti Karvonen (joint work with Pieter Hofstra)

uOttawa Logic seminar 23.9.2021

Punchline

Recall: an automorphism of a group G is inner if it is of the form $x \mapsto gxg^{-1}$ for some $g \in G$.

Theorem (Informal)

Inner autoequivalences of a monoidal category \mathcal{C} are of the form $A \otimes - \otimes A^{-1}$ where $A \otimes A^{-1} \cong I \cong A^{-1} \otimes A$.

Perhaps more importantly:

- ▶ there is a general theory of inner automorphisms in a category (known)
- ▶ and of inner autoequivalences in a 2-category (new)

Inner automorphisms

Given $g \in G$, we have more than the function $\alpha_{\text{id}}: G \rightarrow G$ given by conjugation with g :

- ▶ For any $f: G \rightarrow H$, we get a function $\alpha_f: H \rightarrow H$ given by conjugation with $f(g)$
- ▶ Moreover, for any $h: H \rightarrow H'$ the square

$$\begin{array}{ccc} H & \xrightarrow{\alpha_f} & H \\ h \downarrow & & \downarrow h \\ H' & \xrightarrow{\alpha_{hf}} & H' \end{array}$$

commutes.

In other words, g induces a natural automorphism of the projection $G/\mathcal{G}rp \rightarrow \mathcal{G}rp$. A theorem by Bergman shows that any such natural automorphism is induced in this way

Inner automorphisms

Definition

The (covariant) isotropy group of \mathcal{C} is the functor $\mathcal{Z}: \mathcal{C} \rightarrow \mathbf{Grp}$ defined on objects by sending A to $\text{Aut}(P_A: A/C \rightarrow \mathcal{C})$. For a morphism $g: A \rightarrow B$ the homomorphism $\mathcal{Z}(g)$ is defined by whiskering with $g^*: B/C \rightarrow A/C$.

Explicitly, an element $\alpha \in \mathcal{Z}(A)$ consists of an automorphism $\alpha_f: B \rightarrow B$ for every $f: A \rightarrow B$, such that

$$\begin{array}{ccc} B & \xrightarrow{\alpha_f} & B \\ h \downarrow & & \downarrow h \\ C & \xrightarrow{\alpha_{hf}} & C \end{array}$$

commutes for any h , and for $g: A \rightarrow B$, $\mathcal{Z}(g)(\alpha) \in \mathcal{Z}(B)$ is defined by $(\mathcal{Z}(g)(\alpha))_h = \alpha_{hg}$.

What is known

For algebraic theories (and essentially algebraic theories) the isotropy group coincides with the group of *definable* automorphisms: for precise details, see '*Polymorphic Automorphisms and the Picard Group*'
Hofstra, Parker & Scott, FSCD 2021.

Using this, they show that for the 1-category $\mathcal{StrMonCat}$ of strict monoidal categories and strict monoidal functors, the isotropy group of $\mathcal{C} \in \mathcal{StrMonCat}$ coincides with the group of strictly invertible objects of \mathcal{C} .

A guess

This leads to a natural guess: for general monoidal categories, one should get weakly invertible elements, i.e. objects A for which an object A^{-1} exists with $A \otimes A^{-1} \cong I \cong A^{-1} \otimes A$.

This requires two things:

- ▶ When A is weakly invertible, the functor $A \otimes - \otimes A^{-1}$ is a strong monoidal autoequivalence, so we need a 2-d version of the above
- ▶ Figuring out how to compute this, perhaps without relying on “definability” and other logical/syntactic tools

Bicategorical isotropy

Definition

For a bicategory \mathcal{C} , define a pseudofunctor \mathcal{Z} as follows:

- ▶ send an object A to the monoidal category whose objects are pseudonatural autoequivalences of $(A/\mathcal{C})_{ps} \rightarrow \mathcal{C}$ and (invertible?) modifications between them
- ▶ on 1-cells by the same whiskering as before, resulting in a strong monoidal functor
- ▶ 2-cells induce monoidal natural transformations

There's a catch in the definition:

- ▶ If we take only invertible modifications, then $\mathcal{Z}(A)$ is a (weak) 2-group. However, then we have to restrict \mathcal{C} to invertible 2-cells.
- ▶ Take all modifications, and replace $(A/\mathcal{C})_{ps}$ by $(A/\mathcal{C})_{lax}$: then \mathcal{Z} is a pseudofunctor for all of \mathcal{C} .

For this talk, the choice doesn't affect the results that much.

Density, recap

Recall:

Proposition

The following conditions for a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ are equivalent:

- (i) *the restricted Yoneda embedding $\mathcal{D} \xrightarrow{\mathcal{E}} [\mathcal{D}^{\text{op}}, \mathcal{S}et] \xrightarrow{[F, \text{id}]} [\mathcal{C}^{\text{op}}, \mathcal{S}et]$ is fully faithful*
- (ii) *for any \mathcal{E} , the restriction of $[\mathcal{D}, \mathcal{E}] \xrightarrow{[F, \text{id}]} [\mathcal{C}, \mathcal{E}]$ to cocontinuous functors $\mathcal{D} \rightarrow \mathcal{E}$ is a fully faithful.*

A functor with these properties is called *dense*.

Density as a tool

Assume \mathcal{C} has binary coproducts, so that each projection $P_A: A/\mathcal{C} \rightarrow \mathcal{C}$ has a left adjoint L_A sending X to $i_A: A \rightarrow A + X$. Let $F: \mathcal{D} \rightarrow \mathcal{C}$ be dense and define a functor $\mathcal{L}: \mathcal{C} \rightarrow \mathcal{Grp}$ by sending $A \in \mathcal{C}$ to $\text{Aut}(L_A F)$.

Theorem

There is a natural isomorphism $\mathcal{Z} \cong \mathcal{L}$. In particular, if \mathcal{D} can be chosen to be small, then \mathcal{Z} lands in small groups.

Proof.

Take mates and use the fact that left adjoints are cocontinuous. □

Density as a tool

- ▶ The free group on two generators is dense in \mathcal{Grp}
- ▶ Taking the full subcategory spanned by (i) the free monoidal category on two objects and (ii) the free monoidal category on a morphism, is dense in the category strict monoidal categories and strict monoidal functors
- ▶ The walking isomorphism is dense in the 1-category \mathcal{Grpd}

This explains why certain coproducts show up in previous computations of isotropy groups.

Bicategorical density

A straightforward extension shows:

Proposition

The following conditions for a pseudofunctor $F: \mathcal{C} \rightarrow \mathcal{D}$ are equivalent:

- (i) *the restricted Yoneda embedding $\mathcal{D} \xrightarrow{\mathcal{E}} [\mathcal{D}^{\text{op}}, \mathcal{C}\mathcal{A}\mathcal{T}]_{\text{ps}} \xrightarrow{[F, \text{id}]} [\mathcal{C}^{\text{op}}, \mathcal{C}\mathcal{A}\mathcal{T}]_{\text{ps}}$ is a local equivalence.*
- (ii) *for any \mathcal{E} , the restriction of $[\mathcal{D}, \mathcal{E}]_{\text{ps}} \xrightarrow{[F, \text{id}]} [\mathcal{C}, \mathcal{E}]_{\text{ps}}$ to cocontinuous pseudofunctors $\mathcal{D} \rightarrow \mathcal{E}$ is a local equivalence.*

We will call such pseudofunctors *dense*.

Density as a tool

Assume a bicategory \mathcal{C} has binary (bi)coproducts, so that each projection $P_A: A/\mathcal{C} \rightarrow \mathcal{C}$ has a left (bi)adjoint L_A sending X to $i_A: A \rightarrow A + X$. Let $F: \mathcal{D} \rightarrow \mathcal{C}$ be dense and define a pseudofunctor \mathcal{L} by sending $A \in \mathcal{C}$ to $\text{Aut}(L_A F)$.

Theorem

There is a pseudonatural equivalence $\mathcal{Z} \cong \mathcal{L}$.

Example: 2-category of groupoids

The trivial groupoid 1 is dense in the 2-category \mathcal{Grpd} of groupoids.

For a groupoid G , a pseudonatural autoequivalence of $1 \rightarrow \mathcal{Grpd} \rightarrow G/\mathcal{Grpd}$ is determined by an autoequivalence of $G + 1$ fixing G (up to iso).

Such an autoequivalence has to fix 1 , so all such autoequivalences are isomorphic. Thus $\mathcal{Z}(G)$ is equivalent to the trivial 2-group.

Monoidal cats

Let's work in the 2-category of *strict* monoidal categories, strong monoidal functors and monoidal natural *isomorphisms*

Let \mathcal{F} be the free monoidal category on two objects X, Y . The subcategory it spans is dense.

Then an element of $\mathcal{Z}(\mathcal{C})$ is more or less determined by an autoequivalence $\alpha: \mathcal{C} + \mathcal{F} \rightarrow \mathcal{C} + \mathcal{F}$ fixing \mathcal{C} .

- ▶ Pseudonaturality at the map $X \mapsto Y, Y \mapsto X$ implies that α is determined by a single word $w(-)$ in objects of \mathcal{C} with a free variable, where $\alpha(X) \cong w(X)$ and $\alpha(Y) \cong w(Y)$.
- ▶ Pseudonaturality at $X, Y \mapsto X \otimes Y$ implies that $w(X \otimes Y) \cong w(X) \otimes w(Y)$. On the RHS, each X is to the left of each Y , so that $w(-)$ has to use the free variable at most once - and at least once to be an equivalence.
- ▶ Thus $w(X) = A \otimes X \otimes B$ for some $A, B \in \mathcal{C}$. Strong monoidality implies $B \otimes A \cong I$, and pseudonaturality at $X, Y \mapsto I$ implies that $A \otimes B \cong I$.

Monoidal cats

Filling some details in, we see that \mathcal{Z} is pseudonaturally equivalent to the functor sending \mathcal{C} to the Picard 2-group of \mathcal{C} , i.e. the 2-group on weakly invertible objects and isomorphisms between them.

Working with all monoidal natural transformations, you get weakly invertible objects and all maps between them.

Work in progress: monoidal cats and dual objects

Instead of inner autoequivalences, one could study inner endomorphisms. In 2-d, there's an intermediate option: inner ambidextrous adjunctions.

Recap:

- ▶ A Frobenius monoidal functor is a functor that is lax monoidal and oplax monoidal in a compatible manner
- ▶ In a monoidal category, a left dual for an object A consists of an object A^* and maps

$$A \xrightarrow{\quad} A^* \quad \text{and} \quad A^* \xleftarrow{\quad} A$$

such that

$$\begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \end{array} = \begin{array}{c} A \\ | \\ A \end{array} \quad \text{and} = \quad \begin{array}{c} A^* \\ | \\ A^* \end{array} = \begin{array}{c} A^* \\ | \\ A^* \end{array}$$

We say that A^* is an ambidextrous dual of A if it is both a left and right dual

Work in progress: monoidal cats and dual objects

Let $\mathcal{M}oncat_{Frob}$ stand for the 2-category of monoidal categories, Frobenius monoidal functors and monoidal natural transformations.

Theorem (Tentative)

Every lax natural ambiadjunction $\mathcal{C}/\mathcal{M}oncat_{Frob} \rightarrow \mathcal{M}oncat_{Frob}$ is of the form $A \otimes - \otimes A^$ where A^* is an ambidextrous dual of $A \in \mathcal{C}$.*

Questions...

?