

Introduction to Double Categories, Part 1

Susan Niefield

Union College
Schenectady, NY

February 4, 2021

Double Categories

A **double category** \mathbb{D} is a pseudo internal category in CAT

$$\mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \xrightarrow{\odot} \mathbb{D}_1 \begin{array}{c} \xrightarrow{s} \\ \xleftarrow{t} \\ \xleftarrow{-\text{id}^\bullet} \end{array} \mathbb{D}_0$$

i.e., $s \circ \text{id}^\bullet = t \circ \text{id}^\bullet = \text{id}_{\mathbb{D}_0}$, $s \circ \odot = s$, $t \circ \odot = t$, and \odot is associative with unit id^\bullet , up to coherent isomorphism.

Objects X of \mathbb{D}_0 : **objects** of \mathbb{D}

Morphisms $f: X \rightarrow Y$ of \mathbb{D}_0 : **horizontal or tight morphisms** of \mathbb{D}

Objects $v: X_s \rightarrow X_t$ of \mathbb{D}_1 : **vertical or loose morphism** of \mathbb{D}

$$X_s \xrightarrow{f_s} Y_s$$

Morphisms $v \downarrow \varphi \downarrow w$ of \mathbb{D}_1 : **cells** of \mathbb{D}

$$X_t \xrightarrow{f_t} Y_t$$

Why Double Categories?

Two kinds of morphisms in one category

- ▶ $\mathcal{T}(\mathbb{D})$: 2-category of objects, tight morphisms, and cells
- ▶ $\mathcal{L}(\mathbb{D})$: bicategory of objects, loose morphisms, and cells

Introduced by Ehresmann (1963)

Papers by Grandis and Paré (1999 -)

Papers by Shulman (2008 -)

Many others

Set-Like Double Categories: $\mathbb{D}_0 = \text{Sets}$

$$\text{Rel}_1:$$
$$\begin{array}{ccc} X_s & \xrightarrow{f_s} & Y_s \\ R \downarrow & \subseteq & \downarrow S \\ X_t & \xrightarrow{f_t} & Y_t \end{array} \quad (x_s, x_t) \in R \Rightarrow (f_s x_s, f_t x_t) \in S$$

$$\text{Span}_1:$$
$$\begin{array}{ccccc} & & X_s & \xrightarrow{f_s} & Y_s \\ & \nearrow v_s & & & \swarrow w_s \\ X & \xrightarrow{f} & Y & & \\ & \searrow v_t & & \swarrow w_t & \\ & & X_t & \xrightarrow{f_t} & Y_t \end{array} \quad \odot \text{ via pullback}$$

$$\text{Cospan}_1:$$
$$\begin{array}{ccccc} & & X_s & \xrightarrow{f_s} & Y_s & \swarrow w_s \\ & \searrow v_s & & & & \\ & & X & \xrightarrow{f} & Y & \\ & \nearrow v_t & & \swarrow w_t & & \\ & & X_t & \xrightarrow{f_t} & Y_t & \end{array} \quad \odot \text{ via pushout}$$

Can define Span (resp, Cospan) for \mathbb{D}_0 with pullbacks (resp, pushouts).

Space-Like Double Categories

Top: top spaces X, Y , $X \xrightarrow{f} Y$, $\frac{X_s \xrightarrow{v} X_t}{\mathcal{O}(X_s) \xrightarrow{v} \mathcal{O}(X_t)}$, $\frac{\text{cont maps}}{\text{pres } \wedge, \top}$

$$\mathcal{O}(X_s) \xrightarrow{\mathcal{O}(f_s)} \mathcal{O}(Y_s)$$

$$\mathcal{O}(X_t) \xrightarrow{\mathcal{O}(f_t)} \mathcal{O}(Y_t)$$

$v \downarrow \supseteq w \downarrow$

Topos: toposes \mathcal{X}, \mathcal{Y} , $\mathcal{X} \xrightarrow{f} \mathcal{Y}$, $\mathcal{X}_s \xrightarrow{v} \mathcal{X}_t$, $\frac{\text{geom morph}}{\text{lex}}$

$$\mathcal{X}_s \xrightarrow{f_s} \mathcal{Y}_s$$

$$\mathcal{X}_t \xrightarrow{f_t} \mathcal{Y}_t$$

$v \downarrow \leftarrow w \downarrow$

Loc: locales X, Y , $X \xrightarrow{f} Y$, $X_s \xrightarrow{v} X_t$, $\frac{\text{locale maps}}{\text{pres } \wedge, \top}$

$$X_s \xrightarrow{f_s} Y_s$$

$$X_t \xrightarrow{f_t} Y_t$$

$v \downarrow \geq w \downarrow$

Quant^{op}: quantales Q , $Q \xrightarrow{f} R$, $Q_s \xrightarrow{v} Q_t$, $\frac{\exists f^* \vdash f}{f^* \text{ pres } \cdot, e}$

$$Q_s \xrightarrow{f_s} R_s$$

$$Q_t \xrightarrow{f_t} R_t$$

$v \downarrow \geq w \downarrow$

Ring-Like Double Categories

Ring: rings R , $R \xrightarrow{\text{homoms}} S$, $R_s \xrightarrow[\text{bimodules}]{M} R_t$, $\begin{array}{ccc} R_s & \xrightarrow{f_s} & S_s \\ M \downarrow & \varphi \searrow & \downarrow N \\ R_t & \xrightarrow{f_t} & S_t \end{array}$ \odot via \otimes

Quant: quantales Q , $Q \xrightarrow{\text{homoms}} R$, $Q_s \xrightarrow[\text{bimodules}]{M} Q_t$, $\begin{array}{ccc} Q_s & \xrightarrow{f_s} & R_s \\ M \downarrow & \varphi \searrow & \downarrow N \\ Q_t & \xrightarrow{f_t} & R_t \end{array}$ \odot via \otimes

This generalizes to the double category $\mathcal{V}\text{-Bimod}$ of monoids, homomorphisms, and bimodules in any symmetric monoidal category \mathcal{V} .

Cat-Like Double Categories

Cat: categories X , $X \rightarrow Y$, $\begin{array}{c} X_s \rightarrow X_t \\ \text{functors} \end{array}$, $\begin{array}{c} X_s^{\text{op}} \times X_t \rightarrow \text{Sets} \\ \text{v} \\ \text{profunctors} \end{array}$, $\begin{array}{ccc} X_s & \xrightarrow{f_s} & Y_s \\ v \downarrow & \varphi & \downarrow w \\ X_t & \xrightarrow{f_t} & Y_t \end{array}$ \odot via coends

$$v(x_s, x_t) \xrightarrow{\varphi} w(f_s x_s, f_t x_t)$$

Pos: posets X , $X \rightarrow Y$, $\begin{array}{c} X \rightarrow Y \\ \text{monotone} \end{array}$, $\begin{array}{c} X_s \rightarrow X_t \\ \text{order ideals} \end{array}$, $\begin{array}{ccc} X_s & \xrightarrow{f_s} & Y_s \\ v \downarrow & \subseteq & \downarrow w \\ X_t & \xrightarrow{f_t} & Y_t \end{array}$

One can define the double category $\mathcal{V}\text{-Cat}$ of \mathcal{V} -enriched categories, \mathcal{V} -functors, and \mathcal{V} -profunctors for any symmetric monoidal \mathcal{V} , giving:

Qtd: quantaloids, when $\mathcal{V} = \text{Sup}$, i.e., sup-lattices

Rngd: ringoids, when $\mathcal{V} = \text{Ab}$, i.e., abelian groups

Ord: preorders, when $\mathcal{V} = \mathcal{2}$

Fibrant Double Categories (aka Framed Bicategories)

A double category \mathbb{D} is called **fibrant** if every $X \xrightarrow{f} Y$ has a **companion**, i.e., a vertical morphism $X \xrightarrow{f_*} Y$ and cells

$$\begin{array}{ccc} X & \xrightarrow{\text{id}_X} & X \\ \text{id}_X^\bullet \downarrow & \eta & \downarrow f_* \\ X & \xrightarrow{f} & Y \end{array}$$

$$\begin{array}{ccc} X & \xrightarrow{f} & Y \\ f_* \downarrow & \varepsilon & \downarrow \text{id}_Y^\bullet \\ Y & \xrightarrow{\text{id}_Y} & Y \end{array}$$

whose horizontal and vertical compositions are identities, and a **conjoint**, i.e., a vertical morphism $Y \xrightarrow{f^*} X$ and cells

$$\begin{array}{ccc} X & \xrightarrow{f} & Y \\ \text{id}_X^\bullet \downarrow & \alpha & \downarrow f^* \\ X & \xrightarrow{\text{id}_X} & X \end{array}$$

$$\begin{array}{ccc} Y & \xrightarrow{\text{id}_Y} & Y \\ f^* \downarrow & \beta & \downarrow \text{id}_Y^\bullet \\ X & \xrightarrow{f} & Y \end{array}$$

whose horizontal and vertical compositions are identities.

Examples

All the examples are fibrant, i.e., given $f: X \rightarrow Y$,

$\mathbb{R}\text{el}$: $f_* = \{(x, y) \mid y = fx\}$ and $f^* = \{(y, x) \mid y = fx\}$

$\mathbb{C}\text{ospan}, \mathbb{S}\text{pan}$: f as one leg and the identity the other

$\mathbb{T}\text{op}, \mathbb{L}\text{oc}, \mathbb{T}\text{opos}, \mathbb{Q}\text{uant}^{\text{op}}$: direct/inverse images

$\mathbb{P}\text{os}$: $f_* = \{(x, y) \mid fx \leq y\}$ and $f^* = \{(y, x) \mid y \leq fx\}$

$\mathcal{V}\text{-}\mathbb{C}\text{at}$: $f_*(x, y) = Y(fx, y)$ and $f^*(y, x) = Y(y, fx)$

$\mathbb{B}\text{imod}(\mathcal{V})$: Y as an (X, Y) - and (Y, X) -bimodule via f

Fibrant Double Categories, Span, and Cospan

A **lax functor** $F: \mathbb{C} \rightarrow \mathbb{D}$ consists of functors $F_0: \mathbb{C}_0 \rightarrow \mathbb{D}_0$ and $F_1: \mathbb{C}_1 \rightarrow \mathbb{D}_1$ (both denoted F) compatible* with s and t , and cells

$$\text{id}_{FX} \xrightarrow{\rho_X} F(\text{id}_X) \quad \text{and} \quad Fv \odot Fv' \xrightarrow{\rho_{v,v'}} F(v \odot v')$$

with naturality/coherence conditions. F is called **normal**, if ρ_X is invertible, and F is called **pseudo**, if ρ_X and $\rho_{v,v'}$ are invertible.

*compatible:

$$\begin{array}{ccc} X_s & \xrightarrow{f_s} & Y_s \\ v \downarrow & \varphi & \downarrow w \\ X_t & \xrightarrow{f_t} & Y_t \end{array} \quad \mapsto \quad \begin{array}{ccc} FX_s & \xrightarrow{Ff_s} & FY_s \\ Fv \downarrow & F\varphi & \downarrow Fw \\ FX_t & \xrightarrow{Ff_t} & FY_t \end{array}$$

Fibrant Double Categories, Span, and Cospan, cont.

Proposition (N, TAC 2012)

Suppose \mathbb{D}_0 has pushouts. Then \mathbb{D} is fibrant if and only if $\text{id}_{\mathbb{D}_0}$ extends to a normal lax functor $F: \text{Cospan}(\mathbb{D}_0) \rightarrow \mathbb{D}$.

Proof.

$$(\Rightarrow) F(X_s \xrightarrow{\nu_s} X \xleftarrow{\nu_t} X_t) = X_s \xrightarrow{\nu_{s*}} X \xrightarrow{\nu_t^*} X_t$$

$$(\Leftarrow) f_* = F(X \xrightarrow{f} Y \xleftarrow{\text{id}_Y} Y) \text{ and } f^* = F(Y \xrightarrow{\text{id}_Y} Y \xleftarrow{f} X)$$

□

Applying the proposition to \mathbb{D}_0^{op} gives:

Corollary

Suppose \mathbb{D}_0 has pullbacks. Then \mathbb{D} is fibrant if and only if $\text{id}_{\mathbb{D}_0}$ extends to a normal lax functor $\text{Span}(\mathbb{D}_0) \rightarrow \mathbb{D}$.

Remark: These results apply to all the examples here.

Cartesian Double Categories

There is a 2-category **LxDbI** with double categories as 0-cells, lax functors as 1-cells, and suitable* 2-cells. It has a sub-2-category **PsDbl** whose 1-cells are pseudo functors. Both have finite 2-products with $\mathbb{C} \times \mathbb{D}$ defined point-wise and terminal object $\mathbb{1}$.

*suitable = horizontal transformations, in the sense of Grandis/Paré

Following Aleiferi, we say \mathbb{D} is **pre-cartesian** if $\Delta: \mathbb{D} \rightarrow \mathbb{D} \times \mathbb{D}$ and $!: \mathbb{D} \rightarrow \mathbb{1}$ have right adjoints in **LxDbI**, which we denote \times and 1 ; and \mathbb{D} is **cartesian** if \times and 1 are pseudo, i.e., adjoints in **PsDbl**.

Can show:

$\mathbb{R}\mathbb{e}\mathbb{l}$, $\mathbb{S}\mathbb{p}\mathbb{a}\mathbb{n}$, $\mathbb{C}\mathbb{o}\mathbb{s}\mathbb{p}\mathbb{a}\mathbb{n}$, $\mathbb{C}\mathbb{a}\mathbb{t}$, $\mathbb{P}\mathbb{o}\mathbb{s}$ are cartesian

$\mathcal{V}\text{-}\mathbb{C}\mathbb{a}\mathbb{t}$, $\mathbb{B}\mathbb{i}\mathbb{m}\mathbb{o}\mathbb{d}\mathbb{(}\mathcal{V}\mathbb{)}$ are pre-cartesian, for \mathcal{V} cartesian

$\mathbb{T}\mathbb{o}\mathbb{p}$, $\mathbb{L}\mathbb{o}\mathbb{c}$, $\mathbb{T}\mathbb{o}\mathbb{p}\mathbb{o}\mathbb{s}$ are pre-cartesian

References

- ▶ E. Aleiferi, Cartesian Double Categories with an Emphasis on Characterizing Spans, <https://arxiv.org/abs/1809.06940>.
- ▶ C. Ehresmann. Catégories structurées, Ann. Sci. École Norm. Sup. 80 (1963), 349–426.
- ▶ M. Grandis and R. Paré, Limits in double categories, Cahiers 40 (1999), 162–220.
- ▶ S. Niefield, Span, cospan, and other double categories, TAC 26, (2012), 729–742
- ▶ R. Paré, Yoneda theory for double categories, TAC 25 (2011), 436–489.
- ▶ M. Shulman, Framed bicategories and monoidal fibrations, TAC 20 (2008), 650–738.