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Differential Categories: The Four Tomes

Differential Categories
Blute, Cockett, Seely - 2006

Cartesian Differential Categories
Blute, Cockett, Seely - 2009

Differential Restriction Categories
Cockett, Cruttwell, Gallagher - 2011

Tangent Categories
Rosicky - 1984

Cockett, Cruttwell - 2014

TODAY’S STORY: Generalizing the exponential function ex to Cartesian Differential Categories.

Lemay, J-S. P. Exponential Functions in Cartesian Differential Categories. Applied
Categorical Structures (2020). https://doi.org/10.1007/s10485-020-09610-0



Cartesian Differential Categories

A Cartesian differential category is:

A category X with finite products

Where each homset X(A,B) is a commutative monoid with:

+ : X(A,B)× X(A,B)→ X(A,B) 0 ∈ X(A,B)

such that composition preserves the addition in the following sense:

(f + g) ◦ x = f ◦ x + g ◦ x 0 ◦ x = 0

and X comes equipped with a differential combinator D:

f : A→ B

D[f ] : A× A→ B

such that D satisfies axioms which generalize the directional derivative from multivariable
differential calculus such as the chain rule, linearity in its second argument, symmetry of the
partial derivatives, etc. (there are 7 axioms).

R. Blute, R. Cockett, R.A.G. Seely, Cartesian Differential Categories , Theory and Applications of Categories 23, pp.

622-672, 2009



Main Example of a Cartesian Differential Category

Let SMOOTH be the category of smooth real functions, that is, the category whose objects are
the Euclidean vector spaces Rn and whose maps are smooth function F : Rn → Rm, which is
actually an m-tuple of smooth functions F = 〈f1, . . . , fn〉, where fi : Rn → R.

Example

SMOOTH is a CDC where the differential combinator is given by the directional derivative of
smooth functions. Explicitly, for a smooth map f : Rn → R recall that the gradient of f is:

∇(f ) : Rn → Rn ∇(f )(~v) := 〈
∂f

∂x1
(~v), . . . ,

∂f

∂xn
(~v)〉

Then the differential combinator is defined as the directional derivative:

D[f ] : Rn × Rn → R D[f ](~v , ~w) := ∇(f )(~v) · ~w =
n∑

i=1

∂f

∂xi
(~v)wi

For a smooth map F : Rm → Rn, F = 〈f1, . . . , fn〉, the differential combinator is defined as:

D[F ] : Rn × Rn → Rm D[F ] := 〈D[f1], . . . ,D[fn]〉

which can also be defined using the Jacobian of F :

D[F ](~v , ~w) = J(F )(~v)~wT



Other Examples of Cartesian Differential Categories

Example

Any category with finite biproduct ⊕ is a CDC, where for a map f : A→ B:

D[f ] := A⊕ A
π1 // A f // B

For example, for any commutative semiring R, the category of R-modules MODR is a CDC
where D[f ](x , y) = f (y).

For any commutative semiring R, let POLYR be the category whose objects are the natural
numbers n ∈ N and where a map P : n→ m is an m-tuple of polynomials P := 〈p1, . . . , pm〉,
where pi ∈ R[x1, . . . , xn]. POLYR is a CDC where D[P] : n × n→ m is defined as:

D[P] :=

〈
n∑

i=1

∂p1

∂xi
yi , . . . ,

n∑
i=1

∂pn

∂xi
yi

〉

where
n∑

i=1

∂p1
∂xi

yi ∈ R[x1, . . . , xn, y1, . . . , yn]. Note that POLYR is a sub-CDC of SMOOTH.



Other Examples of Cartesian Differential Categories

Example

The coKleisli category of a differential category is a CDC (more on this example later)

R. Blute, R. Cockett, R.A.G. Seely, Differential Categories, Mathematical Structures in Computer Science Vol. 1616,

pp 1049-1083, 2006.

Every model of the differential λ-calculus induces a CDC.

Manzonetto, G., 2012. What is a Categorical Model of the Differential and the Resource λ-Calculi?. Mathematical

Structures in Computer Science, 22(3), pp.451-520.

Bauer et. al (BJORT) constructed an Abelian functor calculus model of a CDC.

Bauer, K., Johnson, B., Osborne, C., Riehl, E. and Tebbe, A., 2018. Directional derivatives and higher order chain

rules for abelian functor calculus. Topology and its Applications, 235, pp.375-427.

There exists both free and cofree constructions of CDCs.

Cockett, J.R.B. and Seely, R.A.G., 2011. The Faa di bruno construction. Theory and applications of categories,

25(15), pp.394-425.



Exponential Function

The goal is now to generalize the exponential to Cartesian differential categories.

The exponential function ex : R→ R can be defined in numerous equivalent ways:

The (partial) inverse of the natural logarithm function ln(x)

As the limit:
ex = lim

n→∞
(1 +

x

n
)n

As the convergent power series:

ex =
∞∑
n=0

xn

n!

As the solution to f ′(x) = f (x) with initial condition f (0) = 1

PROBLEM: In arbitrary Cartesian differential categories, one does not necessarily have partial
functions, a notion of convergence, infinite sums, or even (unique) solutions to initial value
problems. So we must look for a more algebraic characterization of the exponential function.



Exponential Function

The exponential function ex : R→ R satisfies the following important properties:

ex+y = exey e0 = 1

These seem like reasonable equations one can write down in a CDC, so what’s the problem?

PROBLEM: While this seems promising, arbitrary objects in a Cartesian differential category do
not necessarily come equipped with a multiplication.

SOLUTION: Rather than requiring this extra ring structure on objects, it turns out that the
differential combinator D will allow to bypass the need for a multiplication!



Directional Derivative of the Exponential Function

The directional derivative of the exponential function ex : R→ R is:

D[ex ] : R× R→ R D[ex ](a, b) =
∂ex

∂x
(a)b = eab

so the multiplication of R appears!

We can express ex+y = exey and e0 = 1 in terms of the differential combinator as follows:

D[ex ](0, b) = e0b = b D[ex ](a, eb) = eaeb = ea+b

and these equations we can easily generalize to a CDC.



Differential Exponential Maps

In a Cartesian differential category, for an object A define the map ⊕ : A× A→ A as:

⊕ = π0 + π1

In SMOOTH, this gives the point-wise addition of vectors.

Definition

A differential exponential map in a Cartesian differential category is a map e : A→ A, such that
the following diagrams commute:

A
〈0,1〉 // A× A

D[e]

��

A× A
1×e //

⊕

��

A× A

D[e]

��
A A

e
// A

Using element notation, the above diagrams are:

D[e](0, x) = x D[e](x , e(y)) = e(x + y)



Differential Exponential Maps – Examples in SMOOTH

Example

(i) The exponential function ex : R→ R is a differential exponential map.

(ii) The point-wise exponential function, ex × ey : R2 → R2, (x , y) 7→ (ex , ey ), is a differential
exponential map.

(iii) Define the smooth function ε : R2 → R2, (x , y) 7→ (ex cos(y), ex sin(y)). Then ε is a
differential exponential map. But what is ε?

It’s the complex exponential function: Writing as (x , y) as x + iy with i2 = −1:

ex+iy = ex cos(y) + iex sin(y)



Differential Exponential Maps – Examples in SMOOTH

Example

(iv) Define the smooth function ε′ : R2 → R2, (x , y) 7→ (ex cosh(y), ex sinh(y)). Then ε is a
differential exponential map. But what is ε′?

It’s the split-complex exponential function: Writing as (x , y) as x + jy with j2 = 1:

ex+jy = ex cosh(y) + jex sinh(y)

(v) Define the smooth function T(ex ) : R2 → R2 as (x , y) 7→ (ex , exy). Then T(ex ) is a
differential exponential map. But what is this map?

It’s the dual numbers exponential function: Writing as (x , y) as x + εy with ε2 = 0:

ex+yε = ex + exyε

Example

There are no non-trivial differential exponential maps in POLYR or a category with finite
biproducts (i.e. the only differential exponential map is the identity of the terminal object, 1 = 0).



Constructions and Results of Differential Exponential Maps

Lemma

In a Cartesian differential category X:

(i) For the terminal object >, the identity 1> : > → > is a differential exponential map;

(ii) If e : A→ A and e′ : B → B are differential exponential maps, then e × e′ : A× B → A× B
is a differential exponential map;

(iii) Let T : X→ X be the tangent endofunctor defined as:

T(A) = A× A T(f ) = 〈f ◦ π0,D[f ]〉

Then if e : A→ A is a differential exponential map, then T(e) : A× A→ A× A is a
differential exponential map. (In fact, this makes the category of differential exponential
maps a tangent category but NOT a CDC).

Cockett, J. R. B., Cruttwell, G. S. (2014). Differential structure, tangent structure, and SDG. Applied Categorical

Structures, 22(2), 331-417.

(iv) Let e : A→ A be a differential exponential map. Then e ◦ 0 = 0 if and only if A is a terminal
object.



What if we had a multiplication?

Definition

A differential exponential semiring is a quadruple (A,�, u, e) consisting of an object A and maps:

� : A× A→ A u : > → A e : A→ A

such that:

(i) The differential of � is D[�] = � ◦ (π0 × π1) +� ◦ (π1 × π0)

(ii) (A,�, u) is a commutative monoid (in fact (A,�, u,⊕, 0) is a commutative semiring);

(iii) The following diagrams commute:

A× A

D[e]
%%

e×1 // A

�

��

>

u

##

0 // A

e

��

A× A

e×e

��

⊕ // A

e

��
A A A× A

�
// A

The above three diagrams correspond to D[ex ](x , y) = exy , e0 = 1, and ex+y = exey

Proposition

If (A,�, u, e) is a differential exponential semiring, then e is a differential exponential map.



A multiplication from differential exponential maps

One can build a differential exponential semiring from a differential exponential map.

Consider the classical exponential function ex and consider its second order directional derivative:

D2[ex ]((x , y), (z,w)) = exyz + exw

Setting x = 0 and w = 0, one obtains yz, the multiplication of real numbers!

D2[ex ]((0, y), (z, 0)) = yz

The unit for this multiplication is obtain from e0 = 1. Generalizing this construction allows one to
show how a differential exponential map induces a differential exponential semiring.

Proposition

Let e : A→ A be a differential exponential map, and define the maps �e : A× A→ A and
ue : > → A respectively as follows:

�e := A× A
〈0,1〉×〈1,0〉 // (A× A)× (A× A)

D2[e] // A

ue := > 0 // A e // A

Then (A,�e , ue , e) is a differential exponential semiring.

Proof of commutativity and unit: easy. Proof of associativity: tricky!

These constructions are inverses of each other! (so there is an isomorphism between categories)



Differential Exponential Semirings1 – Examples in SMOOTH

Example

(i) For the exponential function ex : R→ R, the induced multiplication is precisely given by the
standard multiplication of real numbers, �ex (x , y) = xy and uex (∗) = 1

(ii) For the point-wise exponential function ex × ey : R2 → R2, we obtain the point-wise
multiplication of vectors: �ex×ey ((x , y), (z,w)) = (xz, yw) and uex×ey (∗) = (1, 1).

(iii) For the complex exponential function ε : R2 → R2, we obtain the multiplication:

�ε ((x1, y1), (x2, y2)) = (x1x2 − y1y2, x1y2 + x2y1) uε(∗) = (1, 0)

This ring structure on R2 is precisely that of complex numbers.

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1)

1Of course, since SMOOTH has negatives, then these examples are also rings!



Differential Exponential Semirings2 – Examples in SMOOTH

Example

(iv) For the split-complex exponential function ε′ : R2 → R2, we obtain the multiplication:

�ε ((x1, y1), (x2, y2)) = (x1x2 + y1y2, x1y2 + x2y1) uε′ (∗) = (1, 0)

This ring structure on R2 is precisely that of split-complex numbers.

(x1 + jy1)(x2 + ky2) = (x1x2 + y1y2) + j(x1y2 + x2y1)

(v) For the dual number exponential function T(ex ) : R2 → R2, we obtain the multiplication:

�T(e) ((x1, y1), (x2, y2)) = (x1x2, x1y2 + y1x2) uT(e)(∗) = (1, 0)

This ring structure on R2 is precisely that of the ring of dual numbers R[ε].

(x1 + y1ε)(x2 + y2ε) = x1x2 + (x1y2 + y1x2)ε

2Of course, since SMOOTH has negatives, then these examples are also rings!



Solution to Initial Value Problems

Every differential exponential map is also a solution to the analogue of the initial value problem
f ′(x) = f (x) with f (0) = 1.

Proposition

Let (A,�, u, e) be a differential exponential semiring. Then the following diagram commutes:

>
u

**
0

ttA
e //

〈1,u◦0〉 ��

A

e��
A× A

D[e]
// A

Note that the we do not say it is the unique solution! However, if one had unique solutions to
differential equations, then such a solution would give a differential exponential map.

One can also use differential exponential maps to solve other differential equation: like
generalizations of initial value problems of the form f ′(x) = f (x)a with initial condition f (0) = b,
whose classical solution is f (x) = eaxb.

Cockett, J. R. B., G. S. H. Cruttwell, and J-SP Lemay. ”Differential equations in a tangent category I: Complete vector

fields, flows, and exponentials.” arXiv preprint arXiv:1911.12120 (2019)



Differential Exponential Maps in the coKleisli Categories

An interesting and important source of Cartesian differential categories are coKleisli categories of
differential categories. In this case a differential exponential map is of type

e : !A→ A

so a map in the coKleisli category of a comonad !

(We can give an alternative characterization as a ⊗-monoid morphism)

Example

Let k be a field of characteristic 0 and let VECk be the category of k-vector spaces and k-linear
maps. VECk is a differential category where !V is the cofree cocommutative k-coalgebra over V .
If X is a basis of V then

!(V ) ∼=
⊕
v∈V

k[X ]

Clift, J. and Murfet, D., 2018. Derivatives of Turing machines in Linear Logic. arXiv:1805.11813.

coKl(!) is the cofree CDC over the category of k-vector spaces and arbitrary functions.

Garner, R, and Lemay, J-S P. ”Cartesian differential categories as skew enriched categories.”arXiv:2002.02554 (2020).

Differential exponential maps in coKl(!) correspond precisely to commutative k-algebras.

!(A) −→ A

pa(x1, . . . , xn) 7−→ p(x1, . . . , xn)



Future Work

Find and study more examples of differential exponential maps. Places to look:
Cofree Cartesian Differential Categories
Abelian Functor Calculus
Categorical models of the differential λ-calculus (which in most cases has infinite sums!)

The exponential function ex can be defined as the inverse of the natural logarithm function
ln(x). Since ln(x) is only partially defined, one must work in a differential restriction
category to generalize the natural logarithm function in such a way that differential
exponential maps arise as their (partial) inverse.

Generalize differential exponential maps to tangent categories, and this notion should be a
generalization of exponential maps for manifolds and Lie groups.

Generalize the trigonometric functions cos and sin, and the hyperbolic functions cosh and
sinh, and other kinds of functions.

In the coKleisli category examples, many of them have a natural transformation µ : !!A→ !A
which is a differential exponential map and yet looks like a monad structure on !. How close
is it to actually being a monad?
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