

Exponential Functions in a Cartesian Differential Category

JS Pacaud Lemay
(Thanks for the invite Rick!)

Differential Categories: The Four Tomes

Differential Categories

Blute, Cockett, Seely - 2006

Cartesian Differential Categories

Blute, Cockett, Seely - 2009

Differential Restriction Categories

Cockett, Cruttwell, Gallagher - 2011

Tangent Categories

Rosicky - 1984

Cockett, Cruttwell - 2014

TODAY'S STORY: Generalizing the exponential function e^x to Cartesian Differential Categories.

Lemay, J-S. P. **Exponential Functions in Cartesian Differential Categories.** Applied Categorical Structures (2020). <https://doi.org/10.1007/s10485-020-09610-0>

Cartesian Differential Categories

A **Cartesian differential category** is:

- A category \mathbb{X} with finite products
- Where each homset $\mathbb{X}(A, B)$ is a commutative monoid with:

$$+ : \mathbb{X}(A, B) \times \mathbb{X}(A, B) \rightarrow \mathbb{X}(A, B) \quad 0 \in \mathbb{X}(A, B)$$

such that composition preserves the addition in the following sense:

$$(f + g) \circ x = f \circ x + g \circ x \quad 0 \circ x = 0$$

- and \mathbb{X} comes equipped with a **differential combinator** D :

$$\frac{f : A \rightarrow B}{D[f] : A \times A \rightarrow B}$$

such that D satisfies axioms which generalize the directional derivative from multivariable differential calculus such as the chain rule, linearity in its second argument, symmetry of the partial derivatives, etc. (there are 7 axioms).

R. Blute, R. Cockett, R.A.G. Seely, **Cartesian Differential Categories**, Theory and Applications of Categories 23, pp. 622-672, 2009

Main Example of a Cartesian Differential Category

Let SMOOTH be the category of smooth real functions, that is, the category whose objects are the Euclidean vector spaces \mathbb{R}^n and whose maps are smooth function $F : \mathbb{R}^n \rightarrow \mathbb{R}^m$, which is actually an m -tuple of smooth functions $F = \langle f_1, \dots, f_n \rangle$, where $f_i : \mathbb{R}^n \rightarrow \mathbb{R}$.

Example

SMOOTH is a CDC where the differential combinator is given by the directional derivative of smooth functions. Explicitly, for a smooth map $f : \mathbb{R}^n \rightarrow \mathbb{R}$ recall that the gradient of f is:

$$\nabla(f) : \mathbb{R}^n \rightarrow \mathbb{R}^n \quad \nabla(f)(\vec{v}) := \left\langle \frac{\partial f}{\partial x_1}(\vec{v}), \dots, \frac{\partial f}{\partial x_n}(\vec{v}) \right\rangle$$

Then the differential combinator is defined as the directional derivative:

$$D[f] : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R} \quad D[f](\vec{v}, \vec{w}) := \nabla(f)(\vec{v}) \cdot \vec{w} = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\vec{v}) w_i$$

For a smooth map $F : \mathbb{R}^m \rightarrow \mathbb{R}^n$, $F = \langle f_1, \dots, f_n \rangle$, the differential combinator is defined as:

$$D[F] : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^m \quad D[F] := \langle D[f_1], \dots, D[f_n] \rangle$$

which can also be defined using the Jacobian of F :

$$D[F](\vec{v}, \vec{w}) = J(F)(\vec{v}) \vec{w}^T$$

Other Examples of Cartesian Differential Categories

Example

- Any category with finite biproduct \oplus is a CDC, where for a map $f : A \rightarrow B$:

$$D[f] := A \oplus A \xrightarrow{\pi_1} A \xrightarrow{f} B$$

For example, for any commutative semiring R , the category of R -modules MOD_R is a CDC where $D[f](x, y) = f(y)$.

- For any commutative semiring R , let POLY_R be the category whose objects are the natural numbers $n \in \mathbb{N}$ and where a map $P : n \rightarrow m$ is an m -tuple of polynomials $P := \langle p_1, \dots, p_m \rangle$, where $p_i \in R[x_1, \dots, x_n]$. POLY_R is a CDC where $D[P] : n \times n \rightarrow m$ is defined as:

$$D[P] := \left\langle \sum_{i=1}^n \frac{\partial p_1}{\partial x_i} y_i, \dots, \sum_{i=1}^n \frac{\partial p_m}{\partial x_i} y_i \right\rangle$$

where $\sum_{i=1}^n \frac{\partial p_1}{\partial x_i} y_i \in R[x_1, \dots, x_n, y_1, \dots, y_n]$. Note that POLY_R is a sub-CDC of SMOOTH.

Other Examples of Cartesian Differential Categories

Example

- The coKleisli category of a differential category is a CDC (more on this example later)

R. Blute, R. Cockett, R.A.G. Seely, **Differential Categories**, Mathematical Structures in Computer Science Vol. 16(16), pp 1049-1083, 2006.

- Every model of the differential λ -calculus induces a CDC.

Manzonetto, G., 2012. **What is a Categorical Model of the Differential and the Resource λ -Calculi?**. Mathematical Structures in Computer Science, 22(3), pp.451-520.

- Bauer et. al (BJORT) constructed an Abelian functor calculus model of a CDC.

Bauer, K., Johnson, B., Osborne, C., Riehl, E. and Tebbe, A., 2018. **Directional derivatives and higher order chain rules for abelian functor calculus**. Topology and its Applications, 235, pp.375-427.

- There exists both free and cofree constructions of CDCs.

Cockett, J.R.B. and Seely, R.A.G., 2011. **The Faa di Bruno construction**. Theory and applications of categories, 25(15), pp.394-425.

Exponential Function

The goal is now to generalize the exponential to Cartesian differential categories.

The exponential function $e^x : \mathbb{R} \rightarrow \mathbb{R}$ can be defined in numerous equivalent ways:

- The (partial) inverse of the natural logarithm function $\ln(x)$

- As the limit:

$$e^x = \lim_{n \rightarrow \infty} \left(1 + \frac{x}{n}\right)^n$$

- As the convergent power series:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

- As the solution to $f'(x) = f(x)$ with initial condition $f(0) = 1$

PROBLEM: In arbitrary Cartesian differential categories, one does not necessarily have partial functions, a notion of convergence, infinite sums, or even (unique) solutions to initial value problems. So we must look for a more algebraic characterization of the exponential function.

Exponential Function

The exponential function $e^x : \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following important properties:

$$e^{x+y} = e^x e^y$$

$$e^0 = 1$$

These seem like reasonable equations one can write down in a CDC, so what's the problem?

PROBLEM: While this seems promising, arbitrary objects in a Cartesian differential category do not necessarily come equipped with a multiplication.

SOLUTION: Rather than requiring this extra ring structure on objects, it turns out that the differential combinator D will allow to bypass the need for a multiplication!

Directional Derivative of the Exponential Function

The directional derivative of the exponential function $e^x : \mathbb{R} \rightarrow \mathbb{R}$ is:

$$D[e^x] : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \quad D[e^x](a, b) = \frac{\partial e^x}{\partial x}(a)b = e^a b$$

so the multiplication of \mathbb{R} appears!

We can express $e^{x+y} = e^x e^y$ and $e^0 = 1$ in terms of the differential combinator as follows:

$$D[e^x](0, b) = e^0 b = b \quad D[e^x](a, e^b) = e^a e^b = e^{a+b}$$

and these equations we can easily generalize to a CDC.

Differential Exponential Maps

In a Cartesian differential category, for an object A define the map $\oplus : A \times A \rightarrow A$ as:

$$\oplus = \pi_0 + \pi_1$$

In SMOOTH, this gives the point-wise addition of vectors.

Definition

A **differential exponential map** in a Cartesian differential category is a map $e : A \rightarrow A$, such that the following diagrams commute:

$$\begin{array}{ccc} A & \xrightarrow{\langle 0,1 \rangle} & A \times A \\ & \searrow & \downarrow D[e] \\ & & A \end{array}$$

$$\begin{array}{ccc} A \times A & \xrightarrow{1 \times e} & A \times A \\ \oplus \downarrow & & \downarrow D[e] \\ A & \xrightarrow{e} & A \end{array}$$

Using element notation, the above diagrams are:

$$D[e](0, x) = x$$

$$D[e](x, e(y)) = e(x + y)$$

Example

- ➊ The exponential function $e^x : \mathbb{R} \rightarrow \mathbb{R}$ is a differential exponential map.
- ➋ The point-wise exponential function, $e^x \times e^y : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $(x, y) \mapsto (e^x, e^y)$, is a differential exponential map.
- ➌ Define the smooth function $\epsilon : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $(x, y) \mapsto (e^x \cos(y), e^x \sin(y))$. Then ϵ is a differential exponential map. But what is ϵ ?

It's the complex exponential function: Writing as (x, y) as $x + iy$ with $i^2 = -1$:

$$e^{x+iy} = e^x \cos(y) + ie^x \sin(y)$$

Differential Exponential Maps – Examples in SMOOTH

Example

- IV Define the smooth function $\epsilon' : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $(x, y) \mapsto (e^x \cosh(y), e^x \sinh(y))$. Then ϵ is a differential exponential map. But what is ϵ' ?

It's the split-complex exponential function: Writing as (x, y) as $x + jy$ with $j^2 = 1$:

$$e^{x+jy} = e^x \cosh(y) + j e^x \sinh(y)$$

- V Define the smooth function $T(e^x) : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ as $(x, y) \mapsto (e^x, e^x y)$. Then $T(e^x)$ is a differential exponential map. But what is this map?

It's the dual numbers exponential function: Writing as (x, y) as $x + \varepsilon y$ with $\varepsilon^2 = 0$:

$$e^{x+y\varepsilon} = e^x + e^x y \varepsilon$$

Example

There are no non-trivial differential exponential maps in POLY_R or a category with finite biproducts (i.e. the only differential exponential map is the identity of the terminal object, $1 = 0$).

Constructions and Results of Differential Exponential Maps

Lemma

In a Cartesian differential category \mathbb{X} :

- For the terminal object T , the identity $1_T : T \rightarrow T$ is a differential exponential map;
- If $e : A \rightarrow A$ and $e' : B \rightarrow B$ are differential exponential maps, then $e \times e' : A \times B \rightarrow A \times B$ is a differential exponential map;
- Let $T : \mathbb{X} \rightarrow \mathbb{X}$ be the tangent endofunctor defined as:

$$T(A) = A \times A$$

$$T(f) = \langle f \circ \pi_0, D[f] \rangle$$

Then if $e : A \rightarrow A$ is a differential exponential map, then $T(e) : A \times A \rightarrow A \times A$ is a differential exponential map. (In fact, this makes the category of differential exponential maps a tangent category but **NOT** a CDC).

Cockett, J. R. B., Cruttwell, G. S. (2014). Differential structure, tangent structure, and SDG. *Applied Categorical Structures*, 22(2), 331-417.

- Let $e : A \rightarrow A$ be a differential exponential map. Then $e \circ 0 = 0$ if and only if A is a terminal object.

What if we had a multiplication?

Definition

A **differential exponential semiring** is a quadruple (A, \odot, u, e) consisting of an object A and maps:

$$\odot : A \times A \rightarrow A$$

$$u : \mathbb{T} \rightarrow A$$

$$e : A \rightarrow A$$

such that:

- ① The differential of \odot is $D[\odot] = \odot \circ (\pi_0 \times \pi_1) + \odot \circ (\pi_1 \times \pi_0)$
- ② (A, \odot, u) is a commutative monoid (in fact $(A, \odot, u, \oplus, 0)$ is a commutative semiring);
- ③ The following diagrams commute:

$$\begin{array}{ccc} A \times A & \xrightarrow{e \times 1} & A \\ & \searrow D[e] & \downarrow \odot \\ & A & \end{array} \quad \begin{array}{ccc} \mathbb{T} & \xrightarrow{0} & A \\ & \searrow u & \downarrow e \\ & A & \end{array} \quad \begin{array}{ccc} A \times A & \xrightarrow{\oplus} & A \\ \downarrow e \times e & & \downarrow e \\ A \times A & \xrightarrow{\odot} & A \end{array}$$

The above three diagrams correspond to $D[e^x](x, y) = e^x y$, $e^0 = 1$, and $e^{x+y} = e^x e^y$

Proposition

If (A, \odot, u, e) is a differential exponential semiring, then e is a differential exponential map.

A multiplication from differential exponential maps

One can build a differential exponential semiring from a differential exponential map.

Consider the classical exponential function e^x and consider its second order directional derivative:

$$D^2[e^x]((x, y), (z, w)) = e^x yz + e^x w$$

Setting $x = 0$ and $w = 0$, one obtains yz , the multiplication of real numbers!

$$D^2[e^x]((0, y), (z, 0)) = yz$$

The unit for this multiplication is obtain from $e^0 = 1$. Generalizing this construction allows one to show how a differential exponential map induces a differential exponential semiring.

Proposition

Let $e : A \rightarrow A$ be a differential exponential map, and define the maps $\odot_e : A \times A \rightarrow A$ and $u_e : \mathbb{T} \rightarrow A$ respectively as follows:

$$\begin{aligned} \odot_e := A \times A &\xrightarrow{\langle 0, 1 \rangle \times \langle 1, 0 \rangle} (A \times A) \times (A \times A) \xrightarrow{D^2[e]} A \\ u_e := \mathbb{T} &\xrightarrow{0} A \xrightarrow{e} A \end{aligned}$$

Then (A, \odot_e, u_e, e) is a differential exponential semiring.

Proof of commutativity and unit: easy. Proof of associativity: **tricky!**

These constructions are inverses of each other! (so there is an isomorphism between categories)

Example

- For the exponential function $e^x : \mathbb{R} \rightarrow \mathbb{R}$, the induced multiplication is precisely given by the standard multiplication of real numbers, $\odot_{e^x}(x, y) = xy$ and $u_{e^x}(\ast) = 1$
- For the point-wise exponential function $e^x \times e^y : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, we obtain the point-wise multiplication of vectors: $\odot_{e^x \times e^y}((x, y), (z, w)) = (xz, yw)$ and $u_{e^x \times e^y}(\ast) = (1, 1)$.
- For the complex exponential function $\epsilon : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, we obtain the multiplication:

$$\odot_{\epsilon}((x_1, y_1), (x_2, y_2)) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1) \quad u_{\epsilon}(\ast) = (1, 0)$$

This ring structure on \mathbb{R}^2 is precisely that of complex numbers.

$$(x_1 + iy_1)(x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$

¹Of course, since SMOOTH has negatives, then these examples are also rings!

Example

- For the split-complex exponential function $\epsilon' : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, we obtain the multiplication:

$$\odot_{\epsilon} ((x_1, y_1), (x_2, y_2)) = (x_1 x_2 + y_1 y_2, x_1 y_2 + x_2 y_1) \quad u_{\epsilon'}(*) = (1, 0)$$

This ring structure on \mathbb{R}^2 is precisely that of split-complex numbers.

$$(x_1 + j y_1)(x_2 + k y_2) = (x_1 x_2 + y_1 y_2) + j(x_1 y_2 + x_2 y_1)$$

- For the dual number exponential function $T(e^x) : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, we obtain the multiplication:

$$\odot_{T(e)} ((x_1, y_1), (x_2, y_2)) = (x_1 x_2, x_1 y_2 + y_1 x_2) \quad u_{T(e)}(*) = (1, 0)$$

This ring structure on \mathbb{R}^2 is precisely that of the ring of dual numbers $\mathbb{R}[\varepsilon]$.

$$(x_1 + y_1 \varepsilon)(x_2 + y_2 \varepsilon) = x_1 x_2 + (x_1 y_2 + y_1 x_2) \varepsilon$$

²Of course, since SMOOTH has negatives, then these examples are also rings!

Solution to Initial Value Problems

Every differential exponential map is also a solution to the analogue of the initial value problem $f'(x) = f(x)$ with $f(0) = 1$.

Proposition

Let (A, \odot, u, e) be a differential exponential semiring. Then the following diagram commutes:

$$\begin{array}{ccccc} & & T & & \\ & \swarrow 0 & & \searrow u & \\ A & \xleftarrow{e} & A & \xrightarrow{e} & A \\ \downarrow \langle 1, u \odot 0 \rangle & & & & \downarrow e \\ A \times A & \xrightarrow{D[e]} & & & A \end{array}$$

Note that we do not say it is the unique solution! However, if one had unique solutions to differential equations, then such a solution would give a differential exponential map.

One can also use differential exponential maps to solve other differential equations: like generalizations of initial value problems of the form $f'(x) = f(x)a$ with initial condition $f(0) = b$, whose classical solution is $f(x) = e^{ax}b$.

Cockett, J. R. B., G. S. H. Crutwell, and J-SP Lemay. "Differential equations in a tangent category I: Complete vector fields, flows, and exponentials." arXiv preprint arXiv:1911.12120 (2019)

Differential Exponential Maps in the coKleisli Categories

An interesting and important source of Cartesian differential categories are coKleisli categories of differential categories. In this case a differential exponential map is of type

$$e : !A \rightarrow A$$

so a map in the coKleisli category of a comonad !

(We can give an alternative characterization as a \otimes -monoid morphism)

Example

Let k be a field of characteristic 0 and let VEC_k be the category of k -vector spaces and k -linear maps. VEC_k is a differential category where $!V$ is the cofree cocommutative k -coalgebra over V . If X is a basis of V then

$$!(V) \cong \bigoplus_{v \in V} k[X]$$

Clift, J. and Murfet, D., 2018. [Derivatives of Turing machines in Linear Logic](#). arXiv:1805.11813.

$\text{coKI}(!)$ is the cofree CDC over the category of k -vector spaces and *arbitrary* functions.

Garner, R. and Lemay, J-S P. ["Cartesian differential categories as skew enriched categories."](#) arXiv:2002.02554 (2020).

Differential exponential maps in $\text{coKI}(!)$ correspond precisely to commutative k -algebras.

$$!(A) \longrightarrow A$$

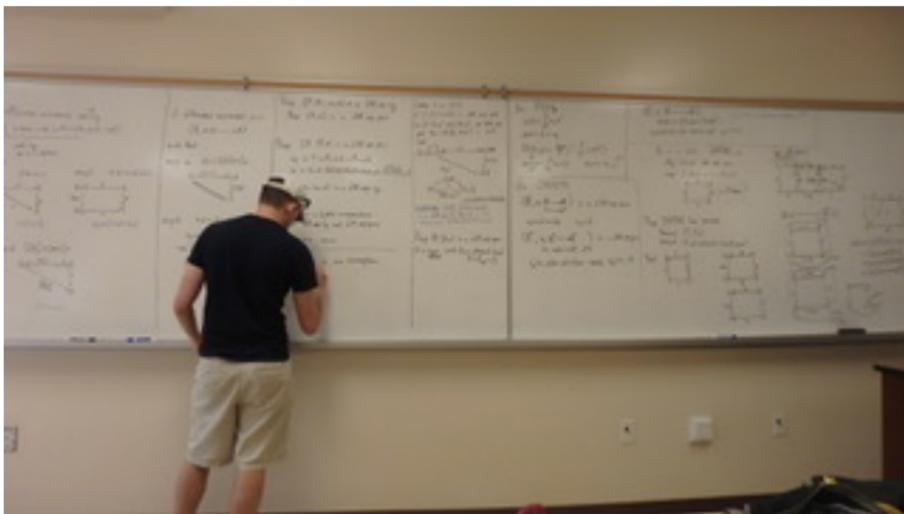
$$p_a(x_1, \dots, x_n) \longmapsto p(x_1, \dots, x_n)$$

Future Work

- Find and study more examples of differential exponential maps. Places to look:
 - Cofree Cartesian Differential Categories
 - Abelian Functor Calculus
 - Categorical models of the differential λ -calculus (which in most cases has infinite sums!)
- The exponential function e^x can be defined as the inverse of the natural logarithm function $\ln(x)$. Since $\ln(x)$ is only partially defined, one must work in a differential restriction category to generalize the natural logarithm function in such a way that differential exponential maps arise as their (partial) inverse.
- Generalize differential exponential maps to tangent categories, and this notion should be a generalization of exponential maps for manifolds and Lie groups.
- Generalize the trigonometric functions \cos and \sin , and the hyperbolic functions \cosh and \sinh , and other kinds of functions.
- In the coKleisli category examples, many of them have a natural transformation $\mu : !!A \rightarrow !A$ which is a differential exponential map and yet looks like a monad structure on $!$. How close is it to actually being a monad?

Reference

Lemay, J-S. P. **Exponential Functions in Cartesian Differential Categories**. Applied Categorical Structures (2020). <https://doi.org/10.1007/s10485-020-09610-0>



HOPE YOU ENJOYED MY TALK!
MERCI!