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TODAY'’S STORY: Generalizing the exponential function e to Cartesian Differential Categories.

ﬁ Lemay, J-S. P. Exponential Functions in Cartesian Differential Categories. Applied
Categorical Structures (2020). https://doi.org/10.1007 /s10485-020-09610-0



Cartesian Differential Categories

A Cartesian differential category is:
@ A category X with finite products
o Where each homset X(A, B) is a commutative monoid with:
+:X(A, B) x X(A,B) = X(A, B) 0 € X(A, B)
such that composition preserves the addition in the following sense:

(f+g)ox=fox+gox Oox=0

e and X comes equipped with a differential combinator D:

f:A—=B
D[f]:AxA—B
such that D satisfies axioms which generalize the directional derivative from multivariable

differential calculus such as the chain rule, linearity in its second argument, symmetry of the
partial derivatives, etc. (there are 7 axioms).

@ R. Blute, R. Cockett, R.A.G. Seely, Cartesian Differential Categories , Theory and Applications of Categories 23, pp.
622-672, 2009



Main Example of a Cartesian Differential Category

Let SMOOTH be the category of smooth real functions, that is, the category whose objects are
the Euclidean vector spaces R"” and whose maps are smooth function F : R” — R™, which is
actually an m-tuple of smooth functions F = (fi,..., f,), where f; : R" — R.

Example

SMOOTH is a CDC where the differential combinator is given by the directional derivative of
smooth functions. Explicitly, for a smooth map f : R” — R recall that the gradient of f is:
or

Y
Oxn

V(f):R" - R" V() (V) = <§—:1(\7),,. (7))

Then the differential combinator is defined as the directional derivative:

D[f] : R" x R" — R D[f](V, W) := V(f)(V).W:ZC%

=

V)w;

For a smooth map F : R™ — R", F = (fi, ..., fp), the differential combinator is defined as:
D[F]: R" x R" — R™ D[F] := (D[f1], - - ., D[fa])

which can also be defined using the Jacobian of F:

DIFI(7, W) = J(F)(A)w'




Other Examples of Cartesian Differential Categories

@ Any category with finite biproduct & is a CDC, where for a map f : A — B:

T f

D[f] = A® A A B

For example, for any commutative semiring R, the category of R-modules MODg is a CDC
where D[f](x,y) = f(y).

@ For any commutative semiring R, let POLY g be the category whose objects are the natural
numbers n € N and where a map P : n — m is an m-tuple of polynomials P := (p1, ..., pm).
where p; € R[x1,...,xn]. POLYg is a CDC where D[P] : n X n — m is defined as:

D[P] o i@ b iap" .
= aX'y“.“, 8X,‘yl

i=1 ! i=1

n
where > %21y, € R[x1,...,Xn, y1, ..., yn]. Note that POLYg is a sub-CDC of SMOOTH.
i=1 '




Other Examples of Cartesian Differential Categories

@ The coKleisli category of a differential category is a CDC (more on this example later)

@ R. Blute, R. Cockett, R.A.G. Seely, Differential Categories, Mathematical Structures in Computer Science Vol. 1616,
pp 1049-1083, 2006.

o Every model of the differential A-calculus induces a CDC.
@ Manzonetto, G., 2012. What is a Categorical Model of the Differential and the Resource A-Calculi?. Mathematical
Structures in Computer Science, 22(3), pp.451-520.
o Bauer et. al (BJORT) constructed an Abelian functor calculus model of a CDC.
@ Bauer, K., Johnson, B., Osborne, C., Riehl, E. and Tebbe, A., 2018. Directional derivatives and higher order chain
rules for abelian functor calculus. Topology and its Applications, 235, pp.375-427.

@ There exists both free and cofree constructions of CDCs.

@ Cockett, J.R.B. and Seely, R.A.G., 2011. The Faa di bruno construction. Theory and applications of categories,
25(15), pp.394-425.




Exponential Function

The goal is now to generalize the exponential to Cartesian differential categories.

The exponential function e : R — R can be defined in numerous equivalent ways:
@ The (partial) inverse of the natural logarithm function /n(x)
@ As the limit:

e = lim (1+ i)"
n— o0 n

@ As the convergent power series:

3
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I
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3%

3
I
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@ As the solution to f/(x) = f(x) with initial condition f(0) =1

PROBLEM: In arbitrary Cartesian differential categories, one does not necessarily have partial
functions, a notion of convergence, infinite sums, or even (unique) solutions to initial value
problems. So we must look for a more algebraic characterization of the exponential function.



Exponential Function

The exponential function € : R — R satisfies the following important properties:

&Y = XY =1
These seem like reasonable equations one can write down in a CDC, so what's the problem?

PROBLEM: While this seems promising, arbitrary objects in a Cartesian differential category do
not necessarily come equipped with a multiplication.

SOLUTION: Rather than requiring this extra ring structure on objects, it turns out that the
differential combinator D will allow to bypass the need for a multiplication!



Directional Derivative of the Exponential Function

The directional derivative of the exponential function e* : R — R is:

oe*
Ox

D[eX] :RxR =R D[eX](a, b) = (a)b=¢e?b
so the multiplication of R appears!

We can express XY = eXe¥ and €® =1 in terms of the differential combinator as follows:
D[eX](07 b) = eob =b D[ex](a, eb) = eaeb = ea+b

and these equations we can easily generalize to a CDC.



Differential Exponential Maps

In a Cartesian differential category, for an object A define the map ®: AXx A — A as:
& =mo+m

In SMOOTH, this gives the point-wise addition of vectors.

Definition

A differential exponential map in a Cartesian differential category is a map e : A — A, such that
the following diagrams commute:

(0,1) 1xe

A— > AXxX A AXA— > AXA
\LD[EI GB\L iD[e]
A A A
e

Using element notation, the above diagrams are:

D[e](0, x) = x Dlel(x, e(y)) = e(x +y)



Differential Exponential Maps — Examples in SMOOTH

@ The exponential function ¥ : R — R is a differential exponential map.

@ The point-wise exponential function, eX x e’ : RZ — R?, (x,y) — (&%, €¥), is a differential
exponential map.

@ Define the smooth function ¢ : R? — R?, (x,y) + (€ cos(y), e sin(y)). Then ¢ is a
differential exponential map. But what is €?

It’s the complex exponential function: Writing as (x, y) as x + iy with i? = —1:

et = ¥ cos(y) + ie* sin(y)




Differential Exponential Maps — Examples in SMOOTH

Example

@ Define the smooth function ¢’ : R? — R?, (x,y) + (€ cosh(y), € sinh(y)). Then € is a
differential exponential map. But what is €’?

It’s the split-complex exponential function: Writing as (x, y) as x + jy with j2 = 1:
e = e cosh(y) + je* sinh(y)

@ Define the smooth function T(eX) : R? — R? as (x,y) — (e*,eXy). Then T(eX) is a
differential exponential map. But what is this map?

It’s the dual numbers exponential function: Writing as (x, y) as x + ey with €2 = 0:

ex+ys = &~ o exys

There are no non-trivial differential exponential maps in POLY gz or a category with finite
biproducts (i.e. the only differential exponential map is the identity of the terminal object, 1 = 0).




Constructions and Results of Differential Exponential Maps

Lemma

In a Cartesian differential category X:

Q

@

For the terminal object T, the identity 1 : T — T is a differential exponential map;

Ife: A— A and e’ : B — B are differential exponential maps, thene x e’ : AX B — Ax B
is a differential exponential map;

Let T : X — X be the tangent endofunctor defined as:
T(A)=AXA T(f) = (f o mo, D[f])

Then if e : A — A is a differential exponential map, then T(e) : AX A— AX Aisa
differential exponential map. (In fact, this makes the category of differential exponential
maps a tangent category but NOT a CDC).

@ Cockett, J. R. B., Cruttwell, G. S. (2014). Differential structure, tangent structure, and SDG. Applied Categorical
Structures, 22(2), 331-417.

Let e : A — A be a differential exponential map. Then e o0 = 0 if and only if A is a terminal
object.

v




What if we had a multiplication?

A differential exponential semiring is a quadruple (A, ®, u, e) consisting of an object A and maps:

O:AxXxA—=A u:T—A e:A— A

such that:
@ The differential of ® is D[®] = ® o (mg X 71) + ® o (71 X ™)
@ (A, ©,u) is a commutative monoid (in fact (A, ®, u, ®,0) is a commutative semiring);

@ The following diagrams commute:

AxA—1 S T % oA AxA—2 S a
(O] @ exe e

Dle] “
A A AxA——> A

The above three diagrams correspond to D[eX](x,y) = Xy, e® = 1, and &1 = eXe¥

Proposition

If (A, ®, u, e) is a differential exponential semiring, then e is a differential exponential map.




A multiplication from differential exponential maps

One can build a differential exponential semiring from a differential exponential map.
Consider the classical exponential function e* and consider its second order directional derivative:
D’[e]((x, ), (z,w)) = e¥yz + w
Setting x = 0 and w = 0, one obtains yz, the multiplication of real numbers!
D’[]((0,),(,0)) = yz

The unit for this multiplication is obtain from e® = 1. Generalizing this construction allows one to
show how a differential exponential map induces a differential exponential semiring.

Proposition

Let e : A — A be a differential exponential map, and define the maps ®e : A X A — A and
ue : T — A respectively as follows:

(0,1) x(1,0) D?[e]
Oei= AXA———— > (AXA) X (AXA) —— A
Ue:= T 0 A e A

Then (A, @e, Ue, €) is a differential exponential semiring.

Proof of commutativity and unit: easy. Proof of associativity: tricky!

These constructions are inverses of each other! (so there is an isomorphism between categories)



Differential Exponential Semirings® — Examples in SMOOTH

Example

@ For the exponential function e* : R — R, the induced multiplication is precisely given by the
standard multiplication of real numbers, @ex(x,y) = xy and uex(x) = 1

@ For the point-wise exponential function e* x e¥ : R2 — R?, we obtain the point-wise
multiplication of vectors: @exxer ((X,¥), (2, w)) = (xz, yw) and uexxev (*) = (1, 1).

@ For the complex exponential function € : R2 — R2, we obtain the multiplication:
Oc ((x1,51), (X2, ¥2)) = (x1x2 — y1y2, X1y2 + x2y1) ue(*) = (1,0)

This ring structure on R? is precisely that of complex numbers.

(xa + iv1) (2 + iyv2) = (xix2 — y1y2) + i(x1y2 + xoy1)

LOf course, since SMOOTH has negatives, then these examples are also rings!



Differential Exponential Semirings? — Examples in SMOOTH

@ For the split-complex exponential function €’ : R2 — R2, we obtain the multiplication:

Oc ((x1,¥1), (X2, ¥2)) = (x1x2 + y1¥2, x1y2 + x2y1) ue(¥) = (1,0)
This ring structure on R? is precisely that of split-complex numbers.
(a +iy1)(x2 + ky2) = (xaxz + y1y2) +i(x1y2 + xey1)
@ For the dual number exponential function T(e¥) : R2 — R2, we obtain the multiplication:
O1(e) ((x1,11), (%2, ¥2)) = (3132, x1y2 + y1%2) ut(e)(*) = (1,0)

This ring structure on R? is precisely that of the ring of dual numbers R][e].

(x1 + y18) (32 + y2¢) = x1x2 + (x1y2 + y1Xx2)e

20f course, since SMOOTH has negatives, then these examples are also rings!



Solution to Initial Value Problems

Every differential exponential map is also a solution to the analogue of the initial value problem
f'(x) = f(x) with £(0) = 1.

Proposition

Let (A, ®, u, e) be a differential exponential semiring. Then the following diagram commutes:

/ \

A = A

(l,uoO)J/ l/e
AX A A

Dle]

Note that the we do not say it is the unique solution! However, if one had unique solutions to
differential equations, then such a solution would give a differential exponential map.

One can also use differential exponential maps to solve other differential equation: like
generalizations of initial value problems of the form f’(x) = f(x)a with initial condition f(0) = b,
whose classical solution is f(x) = e®b.

@ Cockett, J. R. B., G. S. H. Cruttwell, and J-SP Lemay. " Differential equations in a tangent category I: Complete vector
fields, flows, and exponentials.” arXiv preprint arXiv:1911.12120 (2019)



Differential Exponential Maps in the coKleisli Categories

An interesting and important source of Cartesian differential categories are coKleisli categories of
differential categories. In this case a differential exponential map is of type

e:!lA—= A

so a map in the coKleisli category of a comonad !

(We can give an alternative characterization as a ®-monoid morphism)

Example

Let k be a field of characteristic 0 and let VEC, be the category of k-vector spaces and k-linear
maps. VEC is a differential category where !V is the cofree cocommutative k-coalgebra over V.

If X is a basis of V then
(V) = P k[X]
vev
B Clift, J. and Murfet, D., 2018. Derivatives of Turing machines in Linear Logic. arXiv:1805.11813.
coKI(!) is the cofree CDC over the category of k-vector spaces and arbitrary functions.
@ Garner, R, and Lemay, J-S P. " Cartesian differential categories as skew enriched categories.” arXiv:2002.02554 (2020).

Differential exponential maps in coKI(!) correspond precisely to commutative k-algebras.
I(A) — A

Pa(X1y .-y Xn) —> p(X1y .-y Xn)




o Find and study more examples of differential exponential maps. Places to look:

o Cofree Cartesian Differential Categories
e Abelian Functor Calculus
o Categorical models of the differential A-calculus (which in most cases has infinite sums!)

@ The exponential function e* can be defined as the inverse of the natural logarithm function
In(x). Since In(x) is only partially defined, one must work in a differential restriction
category to generalize the natural logarithm function in such a way that differential
exponential maps arise as their (partial) inverse.

o Generalize differential exponential maps to tangent categories, and this notion should be a
generalization of exponential maps for manifolds and Lie groups.

o Generalize the trigonometric functions cos and sin, and the hyperbolic functions cosh and
sinh, and other kinds of functions.

@ In the coKleisli category examples, many of them have a natural transformation p: A — IA
which is a differential exponential map and yet looks like a monad structure on !. How close
is it to actually being a monad?



Reference
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HOPE YOU ENJOYED MY TALK!
MERCI!



