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Bidirectional transformations (BX)

“ some way of specifying algorithmically how consistency
should be restored” - P. Stevens 2005

Precedents:
I Database view update

I Database a set of tables with columns eg Staff, Projects
I View is query(ies) eg SELECT Name, Role FROM Staff,

Projects WHERE ...
I Propagate a view state update to the database??
I Can be ill-posed (no/non-unique solution)

I Model driven development
I Developers work on separate models, focussing on the

concerns at hand
I When one model is edited, others should be updated to restore

consistency
I eg Object–relational mapping: business logic in object-oriented

language with data layer stored in a relational database.
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Bidirectional transformations: approaches

I Relational: sets X ,Y of model states, consistency relation
R ⊆ X × Y
restorers f : X × Y // Y and b : X × Y // X
subject to correctness/Hippocraticness

I Triple-Graph-Grammars: two graphs for meta-models,
with triples relating nodes across them,
and rules (grammar) for how they evolve
multiple implementations and applications (since 1990’s)

I Lenses (set based): defined by Pierce et al, 2004...

I Lenses (categorical): studied by J & R, Diskin et al, 2008...
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Lens

I Consider model domains X,Y... of model states

I Model states X ,Y might be:
elements of a set, of an order, objects of a category

I Synchronization data (various encodings) specifies
consistency between an X state and a Y state

I Lens L : X // Y implements
Bidirectional Transformation and has both:
I synchronization data and
I consistency restoration or re-synchronization operator(s)

responding to state change.
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Lens

I Symmetric and asymmetric cases arise with different,
but related, motivation...

I Symmetric: Concurrent models with bidirectional (two-way)
re-synchronization: model domains X and Y peers
motivating example: database interoperation

I Asymmetric: Only one non-trivial restoration operator
returns X (global) state change after Y (local) change:
motivating example: database view updates
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Symmetric lens

Consistency data (synchronization) for states X in X and Y in Y
denoted by R : X ↔ Y .

Suppose X synchronized with Y by R : X ↔ Y ,
then given an update from state X (with target X ′, say)

a symmetric lens delivers an update to Y (target Y ′, say)
and, re-synchronization R ′ : X ′ ↔ Y ′.

XX Yoo R // Y
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Symmetric lens

Consistency data (synchronization) for states X in X and Y in Y
denoted by R : X ↔ Y .

Suppose X synchronized with Y by R : X ↔ Y ,
then given an update from state X (with target X ′, say)

a symmetric lens delivers an update to Y (target Y ′, say)
and, re-synchronization R ′ : X ′ ↔ Y ′.

X ′

X

X ′

α
��

X Yoo R // Y
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Symmetric lens

Consistency data (synchronization) for states X in X and Y in Y
denoted by R : X ↔ Y .

Suppose X synchronized with Y by R : X ↔ Y ,
then given an update from state X (with target X ′, say)

a symmetric lens delivers an update to Y (target Y ′, say)
and, re-synchronization R ′ : X ′ ↔ Y ′.

X ′ Y ′

X

X ′

α
��

X Yoo R // Y

Y ′

β
���
�

f
//
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Symmetric lens

Consistency data (synchronization) for states X in X and Y in Y
is denoted by R : X ↔ Y .

Suppose X synchronized with Y by R : X ↔ Y ,
then given an update from state X (with target X ′, say)

a symmetric lens delivers an update to Y (target Y ′, say)
and, re-synchronization R ′ : X ′ ↔ Y ′.

X ′ Y ′oo
R′

//____

X

X ′

α
��

X Yoo R // Y

Y ′

β
���
�

f
//

10



Symmetric lens

Symmetrically, suppose R : X ↔ Y , then
given an update from Y (with target Y ′)

symmetric lens delivers update of X in X and,
re-synchronization R ′′ : X ′ ↔ Y ′.

X ′ Y ′oo
R′′

//____

X

X ′

δ
���
�X Yoo R // Y

Y ′

γ
��

b
oo

I Considered by Hoffman, Pierce, Wagner for X,Y... sets

I More recently Diskin et al. for X,Y... categories

I Also studied by J & R
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Symmetric lens

Formally, taking categories X,Y for model domains:

A symmetric lens L = (δX, δY, f, b) from X to Y
has a span of sets

δX : X0
oo RXY

// Y0 : δY

where elements of RXY – “corrs” – are denoted R : X ↔ Y and
forward and backward propagations f, b denoted

X ′ Y ′oo
R′

//____

X

X ′

α
��

X Yoo R // Y

Y ′

β
���
�

f
//

X ′ Y ′oo
R′′

//____

X

X ′

δ
���
�X Yoo R // Y

Y ′

γ
��

b
oo

where f(α,R) = (β,R ′) and b(γ,R) = (δ,R ′′)

and both propagations respect identities and composition.
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Symmetric Lens: Example

Suppose X = Y = set2 are model domains (we’ll interpret below)

X0

X1

X

��

Y0

Y1

Y

��
X1

Y0

tt

R:X1=Y0

44jjjjjjjjjjjjjjjj

Say X ,Y objects of set2 have synchronization R just when
X1 = d1X = d0Y = Y0,
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Symmetric Lens: Example

Suppose (f0, f1) : X // X ′ an arrow in X, as in

X0

X1

X

��
X ′0

X ′1

X ′

��

X0

X ′0

f0

$$JJJJJJJJ

X1

X ′1
f1 $$JJJJJJJJ

Y0

Y1

Y

��
X1

Y0

tt

R:X1=Y0

44jjjjjjjjjjjjjjjj

Forward propagation requires a new arrow Y // Y ′ say,
and a new synchronization R ′
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Symmetric Lens: Example

Construct the new arrow (f1, g) : Y // Y ′ using the pushout,
and the new synchronization is R ′ : X ′1 = d0Y

′:

X0

X1

X

��
X ′0

X ′1

X ′

��

X0

X ′0

f0

$$JJJJJJJJ

X1

X ′1
f1 $$JJJJJJJJX1

Y0

tt

R:X1=Y0

44jjjjjjjjjjjjjjjj

+

Y0

Y1

Y

��
X ′1

Y1 +X0 X
′
1

Y ′

��

Y0

X ′1

f1

$$JJJJJJJJ

Y1

Y1 +X0 X
′
1

g $$JJJJJJJ

X ′1

X ′1

tt
R′:X ′

1=d0Y ′

44jjjjjjjjjjjjjjjj

Back propagation uses composition.
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Symmetric Lens: Example

For example: a left hand db state assigns name to address;
a right hand state assigns address to city;
so a synchronization is an address matching

name/address update propagates to a right hand update,
also creating a new city set: the pushout

name

address

X

��
name ′

address ′

X ′

��

name

name ′

f0

$$JJJJJJJ

address

address ′
f1 $$JJJJJJJaddress

address

tt

R

44jjjjjjjjjjjjjj

+

address

city

Y

��
address ′

city +address address
′

Y ′

��

address

address ′

f1

$$JJJJJJJ

city

city +address address
′

g $$JJJJJJ

address ′

address ′

tt
R′

44jjjjjjjjjjjjjj
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Symmetric Lens: Composition and equivalence

I Symmetric lenses compose by composing propagations;
pullbacks of δ’s provide corrs for a composite

I However two symmetric lenses on the same model domains
may have the same propagation behaviour
i.e. bidirectional transformation implementation

I Should they be distinguished? Depends on preference, and

I J & R defined a congruence relation on lenses X // Y
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Symmetric Lens: Equivalence

Let L, L′ have corrs RXY and R ′XY.
Say L ≡ L′ if there is relation σ between corr sets so that:

I σ compatible with the δ’s

I RσR ′ implies Y updates of f(α,R) and f ′(α,R ′) equal and
new corrs are σ related (similarly for b)

I σ total in both directions

Theorem
Equivalence classes of symmetric lenses are arrows of a category,
denoted SLens.
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Symmetric lenses and Mealy morphisms

Bob Paré observed that
f, b are precisely (cat) Mealy morphisms:
f : X // Y and b : Y // X

Bryce Clarke uses this for two important points:

First, composing via span (of sets) composition,
Mealy morphisms are 1-cells of a bicategory
Meal where a 2-cell is:

A map of Mealy morphisms i.e. a span morphism τ :

X0

S

gg

δ′X
OOOOOOO

R

X0

δX

wwooooooo R

S

τ

��
Y0

S

77

δ′Y
ooooooo

R

Y0

δY

''OOOOOOOR

S
��

compatible with the operations
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Symmetric lenses and Mealy morphisms

Second, a Mealy morphism f : X // Y has image category R̂ with:
objects: R
morphisms: pairs (α,R) : R // R ′ where f(α,R) = (β,R ′)

And factors (in Meal) as X // R̂ // Y using f, moreover

Proposition

Given a Mealy morphism f : X // Y there is a span of functors

X Y

R̂

X

δ̂X

yyssssssss R̂

Y

f̂

%%KKKKKKKK

where δ̂X is a discrete opfibration and f̂ is a functor
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Symmetric lenses and Mealy morphisms

Symmetric lens X // Y can be represented as
a pair of Mealy morphisms:

X Y

R̂+

X

δ̂X

yysssssss
R̂+

Y

f̂

%%KKKKKKK

X

R̂−

ee

b̂
KKKKKKKX YY

R̂−

99

δ̂Y
sssssss

I will return to this, but for now...

I giving 2-cells by corresponding maps of Mealy morphisms
defines a (hom) category SymLens(X,Y)
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Asymmetric lens: Background

Arose as strategy for studying the database View Update Problem,
indeed long before symmetric lenses.

I Defined equationally by B. Pierce et al for sets X,Y

I S. Hegner had axiomatics for orders X,Y, a special case of...

I Lenses for X,Y categories (defined by J & R) and:
I defined lens in category C with finite products
I characterized lens as algebra for a monad on C/Y
I generalized to a categorical version (c-lenses).

I Diskin et al. defined (related) categorical version
that we will call asymmetric lenses

Set based lenses also arose (1980’s) in considering
“store shapes” (F. Oles thesis)
where there is a similar update problem
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Asymmetric lens: Motivation

Database views consider a Get process G : X // Y
from global database states X to view states Y.

For global state X synched with view state Y = GX :
when can update to Y , e.g. formal insertion β
lift through G to global update α, and
compatibly – meaning β = G (α)?
This is (an instance of) the View Update Problem.

X ′ Y ′� G //___

X

X ′

α

���
�
�X Y� G // Y

Y ′

β

��
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Asymmetric lens

Given an update from state Y = GX in Y (with target Y ′)
the asymmetric lens delivers (by a “Putback” process P)
an update to X in X (with target X ′, say) along with
compatible re-synchronization data, that is Y ′ = GX ′.

XX Y� G // Y
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Asymmetric lens

Given an update from state Y = GX in Y (with target Y ′)
the asymmetric lens delivers (by a “putback” process P)
an update to X in X (with target X ′, say) along with
compatible re-synchronization data, namely Y ′ = GX ′.

Y ′

XX Y� G // Y

Y ′

β
��
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Asymmetric lens

Given an update from state Y = GX in Y (with target Y ′)
the asymmetric lens delivers (by a “putback” process P)
an update to X in X (with target X ′, say) along with
compatible re-synchronization data, namely Y ′ = GX ′.

X ′ Y ′

X

X ′

α
���
�X Y� G // Y

Y ′

β
��

P
oo
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Asymmetric lens

Given an update from state Y = GX in Y (with target Y ′)
the asymmetric lens delivers (by a “putback” process P)
an update to X in X (with target X ′, say) along with
compatible re-synchronization data, namely Y ′ = GX ′.

X ′ Y ′� //____

X

X ′

α
���
�X Y� G // Y

Y ′

β
��

P
oo
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Asymmetric lens
The formal axioms (Diskin et al) are:

An asymmetric lens is L = (G ,P)
where G : X // Y is the “Get” functor and
P is the “Put(back)” function and the data G ,P satisfy:

(i) PutGet: GP(X , β) = β

(ii) PutId: P(X , 1GX ) = 1X

(iii) PutPut:

X ′ Y ′� //____

X

X ′

α

���

�X Y
� G // Y

Y ′

β

��
Poo

X ′′ Y ′′�
G

//____

X ′

X ′′

α′

���

�X
′ Y ′� //____ Y ′

Y ′′

β′

��
Poo

X

X ′′

P(X ,β′β)

��

�



�

1
:

=

α = P(X , β)

α′ = P(X ′, β′)

or

P(X , β′β : GX //Y ′ //Y ′′) = P(X ′, β′ : GX ′ //Y ′′)P(X , β : GX //Y ′)
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Asymmetric lens: examples

I Given a split op-fibration G : X // Y:
Just define P(X , β) to be the op-Cartesian arrow.

I For example, d0 : set2 // set or d1 : set2 // set

I Or indeed for C,D small categories a functor
V : C // D is fully-faithful
iff (R L-W) V ∗ : setD // setC is an opfibration

I Similar op-fibration characterization holds for
small, lex C,D and lex functors
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Asymmetric lens: examples

Split op-fibs called “c-lenses” by J & R and studied earlier
(in the context of View Update Problem)

I defined by equations analogous to asymmetric set-lens

I algebras for a monad on cat/Y

I the Put satisfies a “least change” property

Indeed, any asymmetric lens is an algebra for a related
semi-monad on cat/Y
(Clarke recently showed them to be algebras for a monad)

However: not every asymmetric lens is an op-fibration -
there are small counterexamples
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Asymmetric lens: composition and equivalence

I As for symmetric lenses, there is an obvious composition
of asymmetric lenses and category called ALens

I A span of asymmetrics

X Y
S

X
(GL,PL)

qqddddddddddddd S
Y

(GR ,PR)
--ZZZZZZZZZZZZZ

determines a symmetric lens X // Y via:
corrs are objects of S, δ’s from Gets
f is the left leg Put PL, then the right leg Get GL

b is the right leg Put, then the left leg Get
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Asymmetric lens: composition and equivalence

I Conversely, symmetric lens X // Y determines
a span of asymmetrics with:
head of span (the category) has objects the corrs
arrows are formal squares

X ′ Y ′oo
R′

//

X

X ′

α
��

X Yoo R // Y

Y ′

β
��

Gets by projection; Puts use f, b

I J & R sought equivalence of the category SLens of symmetrics
and a category of spans of asymmetrics
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Asymmetric lens: composition and equivalence

I Define span equivalence (again motivated by behaviour):

I Equivalence is generated by functors Φ as in

X Y

S

X

(GL,PL)

tthhhhhhhhhhhhhh S

Y

(GR ,PR)

**VVVVVVVVVVVVVV

X

S′

jj

(G ′
L,P

′
L) VVVVVVVVVVVVVX YY

S′

44

(G ′
R ,P

′
R)hhhhhhhhhhhhh

S

S′

Φ

��

with Φ surj-on-obj and semi-monad homom (both sides)

Theorem
Equivalence classes of spans define a category SpALens;
SpALens is isomorphic to SLens.

33



Asymmetric lens and cofunctors

I Ahman and Uustalu observed that for a lens (G,P):
Object function of G0 of G together with P determines what
Aguiar called a cofunctor
from Y to X (Note direction!!)

I Cofunctors compose via their functions (axioms are ok)

I Cofunctors generalize both boo functors and discrete
opfibrations.
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Asymmetric lens and cofunctors

I For cofunctor (G0,P) : Y // X let Λ the category with:
objects X0

morphisms (X , β) : X // P(X , β) for β : G0(X ) // Y ′

I A cofunctor (G0,P) : Y // X defines a span of functors:

X Y

Λ

X

φ

yyssssssss Λ

Y

φ

%%KKKKKKKK

with φ identity on objects and φ a discrete opfibration
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Asymmetric lens and cofunctors

Clarke then points out:

I An asymmetric lens (G ,P) : X // Y defines a
commutative diagram of functors:

X Y
G

//

Λ

X

φ

{{wwwwwwww Λ

Y

φ

##GGGGGGGG

with φ identity on objects and φ a discrete opfibration

I Compose asymmetric lenses (seen thus) by composing the
functor/cofunctor parts (giving ALens again)

I but more important from this perspective...
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Spans of asymmetric lens

I For category Y, the category Lens(Y) has:
objects are asymmetric lenses to Y;
arrows (using the representation above) are comm diagrams:

X X′
H

//

Λ

X

φ

��

Λ Λ′
H̄ // Λ′

X′

φ′

��
X

Y

G
��?????????

Λ

Y

φ̄

��/
////////////////

X′

Y

G ′
�����������

Λ′

Y

φ̄′

�������������������

I Lens(Y) has products
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Spans of asymmetric lens

I There is a forgetful functor Lens(Y) // cat
sending an object to domain of G .

I The head of the pullback diagram

Lens(X) Lens(Y)

SpnLens(X,Y)

Lens(X)
yyrrrrrrr

SpnLens(X,Y)

Lens(Y)
%%LLLLLLL

Lens(X)

cat
%%LLLLLLLL

Lens(X) Lens(Y)Lens(Y)

cat
yyrrrrrrrr

defines the hom categories for a bicategory SpnLens

I morphisms of SpnLens(X,Y) (2-cells of SpnLens) are
span morphisms of Gets compatible with cofunctor parts
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Symmetric lens adjunctions

I There is forgetful functor Meal(X,Y) // Span(cat)(X,Y)
from the span representation above

I Further, there is Meal(Y,X) // Span(cat)(X,Y)
by first reversing the span representation

I The head of the pullback diagram

Meal(X,Y) Meal(Y,X)

SymLens(X,Y)

Meal(X,Y)
yyrrrrrrr

SymLens(X,Y)

Meal(Y,X)
%%LLLLLLL

Meal(X,Y)

Span(cat)(X,Y)
%%LLLLLLL

Meal(X,Y) Meal(Y,X)Meal(Y,X)

Span(cat)(X,Y)
yyrrrrrrr

defines the hom categories for a bicategory SymLens
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Symmetric lens adjunctions

Theorem (Clarke, ACT20 paper)

There is an adjoint triple

SymLens(X,Y) SpnLens(X,Y)

� � L //

SymLens(X,Y) SpnLens(X,Y)oo MSymLens(X,Y) SpnLens(X,Y)
� �

R
//

⊥
⊥

with R reflective and (hence) L coreflective

Using functor/cofunctor representations, define M on objects by

Λ

X
φ̄ ��??????Λ Z

φ // Z

X
G��������

Z

Y
G ′ ��??????Z Λ′oo φ′

Λ′

Y
φ̄′��������

7→ X Y

Λ

X

φ̄

zzvvvvvvv Λ

Y

G ′φ

$$HHHHHHH

X

Λ′

dd

Gφ′ HHHHHHX YY

Λ′

::

φ̄′vvvvvv
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Symmetric lens adjunctions

I The definition of R is related to the J & R construction

I The definition of L is a bit more complicated

I Using that everything is identity on objects and that the
constructions are compatible with composition, he obtains:

Corollary (Clarke)

There are identity on objects pseudofunctors

SymLens SpnLens
L //

SymLens SpnLensoo MSymLens SpnLens
R

//

with L and R locally fully faithful and locally adjoint to M.
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Summary (so far)

I Lenses (either flavour) model BX well

I Symmetric lenses and asymmetrics closely related via spans

I J & R: Isomorphism of categories from (classes of) symmetric
lenses to spans of asymmetrics

I Using Mealy morphism and functor/cofunctor representations

I Clarke describes the bicategories and adjoint triple above
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Multiary lenses

I Multidirectional transformations modelled as n-ary lenses
proposed by Diskin and Konig
I first generalize (binary) symmetric lenses – more propagations
I also generalize spans of asymmetric lenses – to wide spans

I J & R found equivalences similar to the binary case

I Subject to some mild conditions the resulting
multiary lenses compose via wide spans

I A multicategory of multiary lenses arises
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Lenses and learners

Fong and Johnson (BX 2019) relate supervised learning algorithms
to (set-based) symmetric lenses

I Goal: approximate f : A // B by (a, f (a)) pairs (training
data) parameterized by P, then allow updates

I Learner is (P, I ,U, ,R) : A // B with
I : P × A // B (implementation),
U : B × P × A // P (update),
R : B × P × A // A (request)
(for details see their paper)

I They find faithful, symmetric monoidal functor from a
category with learner arrows to a category with symmetric
lens arrows
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Conclusion

I Lenses implement BX with categorical precision

I Categories, bicategories (even double cats) clarify structure

I Some urls:

I www.mta.ca/~rrosebru

I www.comp.mq.edu.au/~mike/

I Bryce is on Twitter...
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