

Lenses: an introductory view

Bob Rosebrugh

Ottawa Logic Seminar / 2020-11-12

Outline

- ▶ Bidirectional transformations
- ▶ Lenses: symmetric and asymmetric
- ▶ Categories of lenses
- ▶ Bicategories of lenses
- ▶ Recent developments
 - ▶ multiary lenses (and a different composition)
 - ▶ learners

Bidirectional transformations (BX)

“ some way of specifying algorithmically how consistency should be restored” - P. Stevens 2005

Precedents:

- ▶ Database view update
 - ▶ Database a set of tables with columns eg Staff, Projects
 - ▶ View is query(ies) eg SELECT Name, Role FROM Staff, Projects WHERE ...
 - ▶ Propagate a view state update to the database??
 - ▶ Can be ill-posed (no/non-unique solution)
- ▶ Model driven development
 - ▶ Developers work on separate models, focussing on the concerns at hand
 - ▶ When one model is edited, others should be updated to restore consistency
 - ▶ eg Object-relational mapping: business logic in object-oriented language with data layer stored in a relational database.

Bidirectional transformations: approaches

- ▶ Relational: sets X, Y of model states, *consistency* relation $R \subseteq X \times Y$
restorers $f : X \times Y \rightarrow Y$ and $b : X \times Y \rightarrow X$
subject to correctness/Hippocraticness
- ▶ Triple-Graph-Grammars: two *graphs* for meta-models,
with *triples* relating nodes across them,
and rules (*grammar*) for how they evolve
multiple implementations and applications (since 1990's)
- ▶ Lenses (set based): defined by Pierce et al, 2004...
- ▶ Lenses (categorical): studied by J & R, Diskin et al, 2008...

Lens

- ▶ Consider model domains $X, Y \dots$ of *model states*
- ▶ Model states X, Y might be:
elements of a set, of an order, objects of a category
- ▶ *Synchronization data* (various encodings) specifies
consistency between an X state and a Y state
- ▶ **Lens** $L : X \rightarrow Y$ implements
Bidirectional Transformation and has both:
 - ▶ *synchronization data* and
 - ▶ *consistency restoration* or *re-synchronization* operator(s)
responding to state change.

- ▶ *Symmetric* and *asymmetric* cases arise with different, but related, motivation...
- ▶ **Symmetric:** Concurrent models with bidirectional (two-way) re-synchronization: model domains X and Y peers
motivating example: database interoperation
- ▶ **Asymmetric:** Only one non-trivial restoration operator returns X (global) state change after Y (local) change:
motivating example: database view updates

Symmetric lens

Consistency data (synchronization) for states X in X and Y in Y denoted by $R : X \leftrightarrow Y$.

Suppose X synchronized with Y by $R : X \leftrightarrow Y$,
then given an *update* from state X (with target X' , say)

a *symmetric lens* delivers an **update** to Y (target Y' , say)
and, re-synchronization $R' : X' \leftrightarrow Y'$.

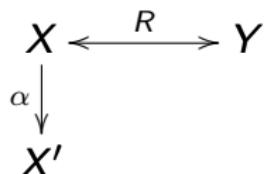
$$X \xleftrightarrow{R} Y$$

Symmetric lens

Consistency data (synchronization) for states X in X and Y in Y denoted by $R : X \leftrightarrow Y$.

Suppose X synchronized with Y by $R : X \leftrightarrow Y$,
then given an *update* from state X (with target X' , say)

a *symmetric lens* delivers an *update* to Y (target Y' , say)
and, *re-synchronization* $R' : X' \leftrightarrow Y'$.

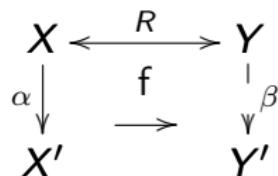


Symmetric lens

Consistency data (synchronization) for states X in X and Y in Y denoted by $R : X \leftrightarrow Y$.

Suppose X synchronized with Y by $R : X \leftrightarrow Y$,
then given an *update* from state X (with target X' , say)

a *symmetric lens* delivers an *update* to Y (target Y' , say)
and, *re-synchronization* $R' : X' \leftrightarrow Y'$.



Symmetric lens

Consistency data (synchronization) for states X in X and Y in Y is denoted by $R : X \leftrightarrow Y$.

Suppose X synchronized with Y by $R : X \leftrightarrow Y$, then given an *update* from state X (with target X' , say)

a *symmetric lens* delivers an **update** to Y (target Y' , say) and, **re-synchronization** $R' : X' \leftrightarrow Y'$.

$$\begin{array}{ccc} X & \xleftrightarrow{R} & Y \\ \alpha \downarrow & f & \uparrow \beta \\ X' & \xleftrightarrow[R']{- -} & Y' \end{array}$$

Symmetric lens

Symmetrically, suppose $R : X \leftrightarrow Y$, then given an update from Y (with target Y')

symmetric lens delivers update of X in X and, re-synchronization $R'' : X' \leftrightarrow Y'$.

$$\begin{array}{ccc} X & \xleftrightarrow{R} & Y \\ \delta \downarrow & b & \downarrow \gamma \\ X' & \xleftrightarrow{R''} & Y' \end{array}$$

- ▶ Considered by Hoffman, Pierce, Wagner for $X, Y \dots$ sets
- ▶ More recently Diskin et al. for $X, Y \dots$ categories
- ▶ Also studied by J & R

Symmetric lens

Formally, taking categories X, Y for model domains:

A **symmetric lens** $L = (\delta_X, \delta_Y, f, b)$ from X to Y
has a span of sets

$$\delta_X : X_0 \leftarrow R_{XY} \rightarrow Y_0 : \delta_Y$$

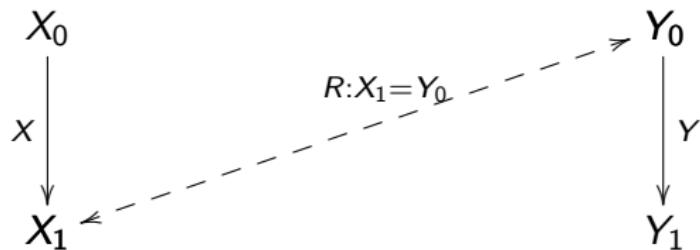
where elements of R_{XY} – “*corrs*” – are denoted $R : X \leftrightarrow Y$ and
forward and backward propagations f, b denoted

$$\begin{array}{ccc} X & \xleftarrow{R} & Y \\ \alpha \downarrow & f \longrightarrow & \beta \uparrow \\ X' & \xleftarrow{R'} \dashv & \dashv \xrightarrow{R''} Y' \\ & & \delta \uparrow \qquad \qquad \qquad \gamma \downarrow \\ & & X' \xleftarrow{R''} \dashv \dashv \xrightarrow{R'} Y' \end{array}$$

where $f(\alpha, R) = (\beta, R')$ and $b(\gamma, R) = (\delta, R'')$
and both propagations respect identities and composition.

Symmetric Lens: Example

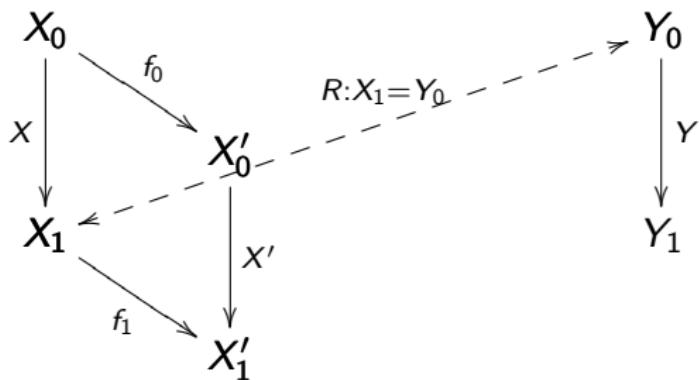
Suppose $X = Y = \text{set}^2$ are model domains (we'll interpret below)



Say X, Y objects of set^2 have synchronization R just when
 $X_1 = d_1 X = d_0 Y = Y_0$,

Symmetric Lens: Example

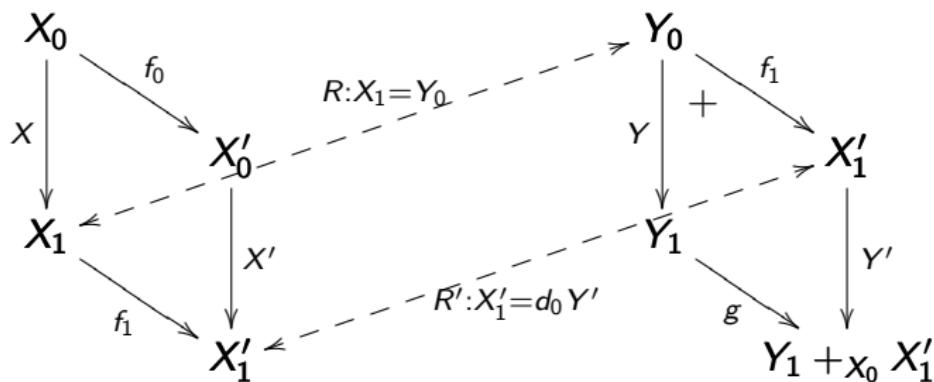
Suppose $(f_0, f_1) : X \rightarrow X'$ an arrow in \mathbf{X} , as in



Forward propagation requires a new arrow $Y \rightarrow Y'$ say, and a new synchronization R'

Symmetric Lens: Example

Construct the new arrow $(f_1, g) : Y \rightarrow Y'$ using the pushout, and the new synchronization is $R' : X'_1 = d_0 Y'$:

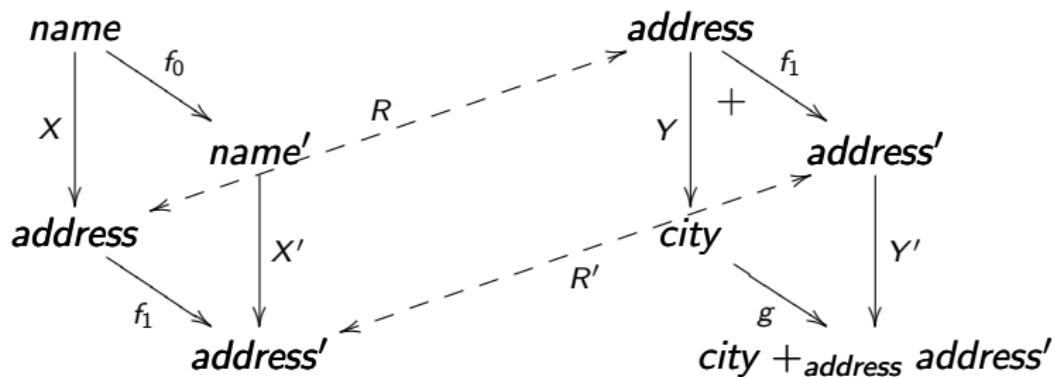


Back propagation uses composition.

Symmetric Lens: Example

For example: a left hand db state assigns *name* to *address*;
a right hand state assigns *address* to *city*;
so a synchronization is an *address* matching

name/address update propagates to a right hand update,
also creating a new *city* set: the pushout



Symmetric Lens: Composition and equivalence

- ▶ Symmetric lenses compose by composing propagations; pullbacks of δ 's provide corrs for a composite
- ▶ *However* two symmetric lenses on the same model domains *may* have the same propagation behaviour
i.e. bidirectional transformation implementation
- ▶ Should they be distinguished? Depends on preference, and
- ▶ J & R defined a congruence relation on lenses $X \rightarrow Y$

Symmetric Lens: Equivalence

Let L, L' have corrs R_{XY} and R'_{XY} .

Say $L \equiv L'$ if there is relation σ between corr sets so that:

- ▶ σ compatible with the δ 's
- ▶ $R\sigma R'$ implies Y updates of $f(\alpha, R)$ and $f'(\alpha, R')$ equal and new corrs are σ related (similarly for b)
- ▶ σ total in both directions

Theorem

Equivalence classes of symmetric lenses are arrows of a category, denoted SLens.

Symmetric lenses and Mealy morphisms

Bob Paré observed that

f, b are precisely (cat) **Mealy morphisms**:

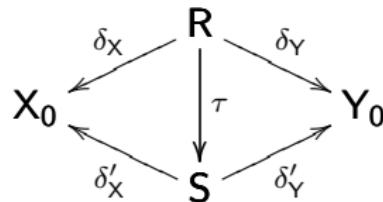
$$f : X \longrightarrow Y \text{ and } b : Y \longrightarrow X$$

Bryce Clarke uses this for two important points:

First, composing via span (of sets) composition,
Mealy morphisms are 1-cells of a bicategory

Meal where a 2-cell is:

A **map** of Mealy morphisms i.e. a span morphism τ :



compatible with the operations

Symmetric lenses and Mealy morphisms

Second, a Mealy morphism $f : X \rightarrow Y$ has image category \hat{R} with:
objects: R

morphisms: pairs $(\alpha, R) : R \rightarrow R'$ where $f(\alpha, R) = (\beta, R')$

And factors (in Meal) as $X \rightarrow \hat{R} \rightarrow Y$ using f , moreover

Proposition

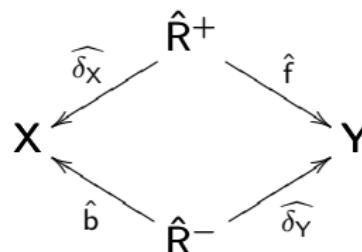
Given a Mealy morphism $f : X \rightarrow Y$ there is a span of functors

$$\begin{array}{ccc} & \hat{R} & \\ \widehat{\delta_X} \swarrow & & \searrow \hat{f} \\ X & & Y \end{array}$$

where $\widehat{\delta_X}$ is a discrete opfibration and \hat{f} is a functor

Symmetric lenses and Mealy morphisms

Symmetric lens $X \rightarrow Y$ can be represented as a pair of Mealy morphisms:



- ▶ will return to this, but for now...
- ▶ giving 2-cells by corresponding maps of Mealy morphisms defines a (hom) category $\text{SymLens}(X, Y)$

Asymmetric lens: Background

Arose as strategy for studying the database View Update Problem, indeed long before symmetric lenses.

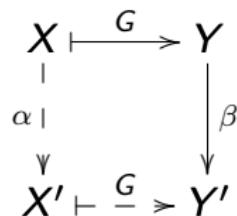
- ▶ Defined equationally by B. Pierce et al for sets X, Y
- ▶ S. Hegner had axiomatics for orders X, Y , a special case of...
- ▶ Lenses for X, Y categories (defined by J & R) and:
 - ▶ defined lens *in* category \mathcal{C} with finite products
 - ▶ characterized lens as algebra for a monad on \mathcal{C}/Y
 - ▶ generalized to a categorical version (c-lenses).
- ▶ Diskin et al. defined (related) categorical version that we will call *asymmetric lenses*

Set based lenses also arose (1980's) in considering
"store shapes" (F. Oles thesis)
where there is a similar update problem

Asymmetric lens: Motivation

Database *views* consider a *Get* process $G : X \rightarrow Y$ from global database states X to view states Y .

For global state X *synced* with view state $Y = GX$:
when can update to Y , e.g. formal insertion β
lift through G to global update α , and
compatibly – meaning $\beta = G(\alpha)$?
This is (an instance of) the **View Update Problem**.



Asymmetric lens

Given an *update* from state $Y = GX$ in Y (with target Y')
the asymmetric lens delivers (by a “Putback” process P)
an **update** to X in X (with target X' , say) *along with*
compatible re-synchronization data, that is $Y' = GX'$.

$$X \xrightarrow{G} Y$$

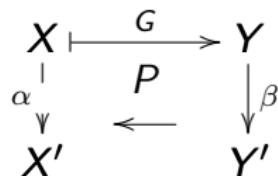
Asymmetric lens

Given an *update* from state $Y = GX$ in Y (with target Y')
the asymmetric lens delivers (by a “putback” process P)
an **update** to X in X (with target X' , say) *along with*
compatible re-synchronization data, namely $Y' = GX'$.

$$\begin{array}{ccc} X & \xrightarrow{G} & Y \\ & & \downarrow \beta \\ & & Y' \end{array}$$

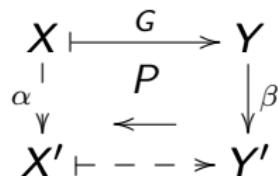
Asymmetric lens

Given an *update* from state $Y = GX$ in Y (with target Y')
the asymmetric lens delivers (by a “putback” process P)
an **update** to X in X (with target X' , say) *along with*
compatible re-synchronization data, namely $Y' = GX'$.



Asymmetric lens

Given an *update* from state $Y = GX$ in Y (with target Y')
the asymmetric lens delivers (by a “putback” process P)
an **update** to X in X (with target X' , say) *along with*
compatible re-synchronization data, namely $Y' = GX'$.



Asymmetric lens

The formal axioms (Diskin et al) are:

An **asymmetric lens** is $L = (G, P)$

where $G : X \rightarrow Y$ is the “Get” functor and P is the “Put(back)” function and the data G, P satisfy:

- (i) PutGet: $GP(X, \beta) = \beta$
- (ii) PutId: $P(X, 1_{GX}) = 1_X$
- (iii) PutPut:

$$\begin{array}{ccc} X & \xrightarrow{G} & Y \\ \swarrow \alpha & \xleftarrow{P} & \downarrow \beta \\ P(X, \beta' \beta) & = & X' \dashv \dashv Y' \\ \downarrow \alpha' & \xleftarrow{P} & \downarrow \beta' \\ X'' \dashv \dashv Y'' & & \end{array} \quad \alpha = P(X, \beta) \quad \alpha' = P(X', \beta')$$

or

$$P(X, \beta' \beta : GX \rightarrow Y' \rightarrow Y'') = P(X', \beta' : GX' \rightarrow Y'') P(X, \beta : GX \rightarrow Y')$$

Asymmetric lens: examples

- ▶ Given a split op-fibration $G : X \rightarrow Y$:
Just define $P(X, \beta)$ to be the op-Cartesian arrow.
- ▶ For example, $d_0 : \text{set}^2 \rightarrow \text{set}$ or $d_1 : \text{set}^2 \rightarrow \text{set}$
- ▶ Or indeed for C, D small categories a functor
 $V : C \rightarrow D$ is fully-faithful
iff (R L-W) $V^* : \text{set}^D \rightarrow \text{set}^C$ is an opfibration
- ▶ Similar op-fibration characterization holds for
small, lex C, D and lex functors

Asymmetric lens: examples

Split op-fibs called “c-lenses” by J & R and studied earlier (in the context of View Update Problem)

- ▶ defined by equations analogous to asymmetric set-lens
- ▶ algebras for a monad on cat/\mathbb{Y}
- ▶ the Put satisfies a “least change” property

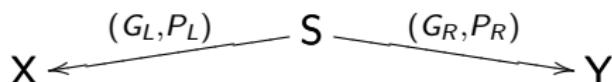
Indeed, *any* asymmetric lens is an algebra for a related *semi-monad* on cat/\mathbb{Y}

(Clarke recently showed them to be algebras for a monad)

However: *not every* asymmetric lens is an op-fibration - there are small counterexamples

Asymmetric lens: composition and equivalence

- ▶ As for symmetric lenses, there is an obvious composition of asymmetric lenses and category called ALens
- ▶ A *span* of asymmetrics



determines a symmetric lens $X \rightarrow Y$ via:
corrs are objects of S , δ 's from Gets
 f is the left leg Put P_L , then the right leg Get G_L
 b is the right leg Put, then the left leg Get

Asymmetric lens: composition and equivalence

- ▶ Conversely, symmetric lens $X \rightarrow Y$ determines a *span* of asymmetrics with:
head of span (the category) has objects the corrs
arrows are formal squares

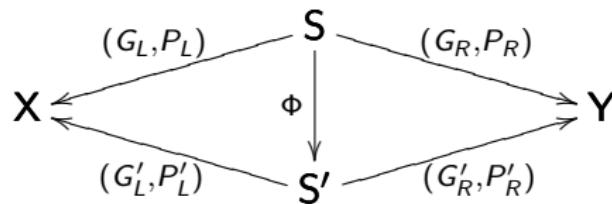
$$\begin{array}{ccc} X & \xleftarrow{R} & Y \\ \alpha \downarrow & & \downarrow \beta \\ X' & \xleftarrow{R'} & Y' \end{array}$$

Gets by projection; Puts use f, b

- ▶ J & R sought equivalence of the category SLens of symmetrics and a category of spans of asymmetrics

Asymmetric lens: composition and equivalence

- ▶ Define span equivalence (again motivated by behaviour):
- ▶ Equivalence is generated by functors Φ as in



with Φ surj-on-obj and semi-monad homom (both sides)

Theorem

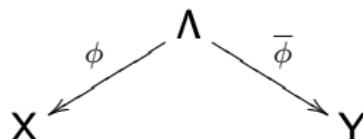
*Equivalence classes of spans define a category SpALens;
SpALens is isomorphic to SLens.*

Asymmetric lens and cofunctors

- ▶ Ahman and Uustalu observed that for a lens (G, P) :
Object function of G_0 of G together with P determines what Aguiar called a **cofunctor** from Y to X (Note direction!!)
- ▶ Cofunctors compose via their functions (axioms are ok)
- ▶ Cofunctors generalize both boo functors and discrete opfibrations.

Asymmetric lens and cofunctors

- ▶ For cofunctor $(G_0, P) : Y \rightarrow X$ let Λ the category with:
objects X_0
morphisms $(X, \beta) : X \rightarrow P(X, \beta)$ for $\beta : G_0(X) \rightarrow Y'$
- ▶ A cofunctor $(G_0, P) : Y \rightarrow X$ defines a span of functors:

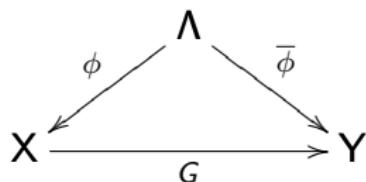


with ϕ identity on objects and $\bar{\phi}$ a discrete opfibration

Asymmetric lens and cofunctors

Clarke then points out:

- ▶ An asymmetric lens $(G, P) : X \rightarrow Y$ defines a commutative diagram of functors:

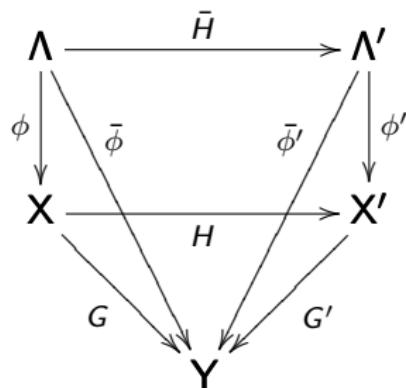


with ϕ identity on objects and $\bar{\phi}$ a discrete opfibration

- ▶ Compose asymmetric lenses (seen thus) by composing the functor/cofunctor parts (giving ALens again)
- ▶ but more important from this perspective...

Spans of asymmetric lens

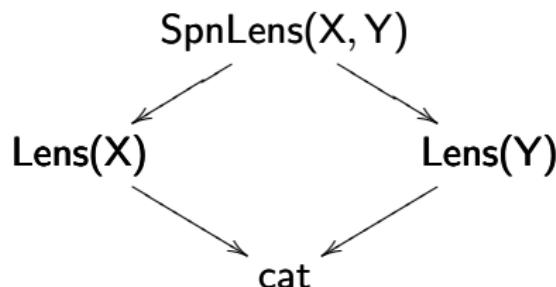
- ▶ For category Y , the category $\text{Lens}(Y)$ has:
objects are asymmetric lenses to Y ;
arrows (using the representation above) are comm diagrams:



- ▶ $\text{Lens}(Y)$ has products

Spans of asymmetric lens

- ▶ There is a forgetful functor $\text{Lens}(Y) \rightarrow \text{cat}$ sending an object to domain of G .
- ▶ The head of the pullback diagram

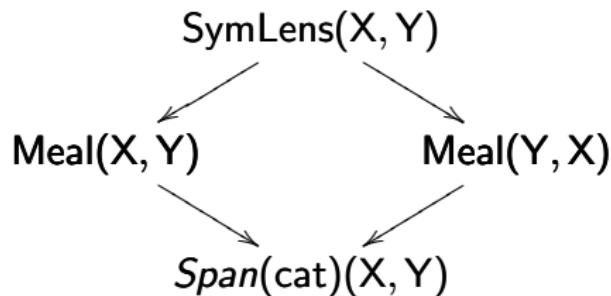


defines the hom categories for a bicategory SpnLens

- ▶ morphisms of $\text{SpnLens}(X, Y)$ (2-cells of SpnLens) are span morphisms of G compatible with cofunctor parts

Symmetric lens adjunctions

- ▶ There is forgetful functor $\text{Meal}(X, Y) \rightarrow \text{Span}(\text{cat})(X, Y)$ from the span representation above
- ▶ Further, there is $\text{Meal}(Y, X) \rightarrow \text{Span}(\text{cat})(X, Y)$ by first reversing the span representation
- ▶ The head of the pullback diagram



defines the hom categories for a bicategory SymLens

Symmetric lens adjunctions

Theorem (Clarke, ACT20 paper)

There is an adjoint triple

$$\begin{array}{ccc} & L & \\ \text{SymLens}(X, Y) & \begin{array}{c} \perp \\ \perp \\ \perp \end{array} & \text{SpnLens}(X, Y) \\ & R & \end{array}$$

with R reflective and (hence) L coreflective

Using functor/cofunctor representations, define M on objects by

$$\begin{array}{ccc} \Lambda & \xrightarrow{\phi} & Z & \xleftarrow{\phi'} & \Lambda' \\ \bar{\phi} \searrow & \searrow G & \swarrow G' & \swarrow \bar{\phi}' & \\ X & & Y & & \Lambda' \end{array} \quad \mapsto \quad \begin{array}{ccccc} & \Lambda & & & Y \\ & \bar{\phi} \swarrow & & G' \phi \searrow & \\ X & & & & Y \\ & \swarrow G \phi' & & \swarrow \bar{\phi}' & \\ & \Lambda' & & & \end{array}$$

Symmetric lens adjunctions

- ▶ The definition of R is related to the J & R construction
- ▶ The definition of L is a bit more complicated
- ▶ Using that everything is identity on objects and that the constructions are compatible with composition, he obtains:

Corollary (Clarke)

There are identity on objects pseudofunctors

$$\begin{array}{ccc} \text{SymLens} & \begin{array}{c} \xrightarrow{L} \\ \xleftarrow{M} \\ \xrightarrow{R} \end{array} & \text{SpnLens} \end{array}$$

with L and R locally fully faithful and locally adjoint to M .

Summary (so far)

- ▶ Lenses (either flavour) model BX well
- ▶ Symmetric lenses and asymmetrics closely related via spans
- ▶ J & R: Isomorphism of categories from (classes of) symmetric lenses to spans of asymmetrics
- ▶ Using Mealy morphism and functor/cofunctor representations
- ▶ Clarke describes the bicategories and adjoint triple above

Multiary lenses

- ▶ Multidirectional transformations modelled as n -ary lenses proposed by Diskin and Konig
 - ▶ first generalize (binary) symmetric lenses – more propagations
 - ▶ also generalize spans of asymmetric lenses – to wide spans
- ▶ J & R found equivalences similar to the binary case
- ▶ Subject to some mild conditions the resulting *multiary lenses* compose via wide spans
- ▶ A multicategory of multiary lenses arises

Lenses and learners

Fong and Johnson (BX 2019) relate supervised learning algorithms to (set-based) symmetric lenses

- ▶ Goal: approximate $f : A \rightarrow B$ by $(a, f(a))$ pairs (training data) parameterized by P , then allow updates
- ▶ Learner is $(P, I, U, R) : A \rightarrow B$ with
 - $I : P \times A \rightarrow B$ (implementation),
 - $U : B \times P \times A \rightarrow P$ (update),
 - $R : B \times P \times A \rightarrow A$ (request)(for details see their paper)
- ▶ They find faithful, symmetric monoidal functor from a category with learner arrows to a category with symmetric lens arrows

Conclusion

- ▶ Lenses implement BX with categorical precision
- ▶ Categories, bicategories (even double cats) clarify structure
- ▶ Some urls:
- ▶ www.mta.ca/~rrosebru
- ▶ www.comp.mq.edu.au/~mike/
- ▶ Bryce is on Twitter...