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Bidirectional transformations (BX)

' some way of specifying algorithmically how consistency
should be restored” - P. Stevens 2005

Precedents:

» Database view update
» Database a set of tables with columns eg Staff, Projects
> View is query(ies) eg SELECT Name, Role FROM Staff,
Projects WHERE ...
» Propagate a view state update to the database??
» Can be ill-posed (no/non-unique solution)
» Model driven development
» Developers work on separate models, focussing on the

concerns at hand

» When one model is edited, others should be updated to restore
consistency

» eg Object—relational mapping: business logic in object-oriented
language with data layer stored in a relational database.



Bidirectional transformations: approaches

P> Relational: sets X, Y of model states, consistency relation
RCXxY
restorersf : X xY—=Yand b: X x Y —X
subject to correctness/Hippocraticness

» Triple-Graph-Grammars: two graphs for meta-models,
with triples relating nodes across them,
and rules (grammar) for how they evolve
multiple implementations and applications (since 1990's)

> Lenses (set based): defined by Pierce et al, 2004...
» Lenses (categorical): studied by J & R, Diskin et al, 2008...



Lens

» Consider model domains X,Y... of model states

> Model states X, Y might be:
elements of a set, of an order, objects of a category

» Synchronization data (various encodings) specifies
consistency between an X state and a Y state

» Lens L: X—=Y implements
Bidirectional Transformation and has both:
» synchronization data and
» consistency restoration or re-synchronization operator(s)
responding to state change.



Lens

» Symmetric and asymmetric cases arise with different,
but related, motivation...

» Symmetric: Concurrent models with bidirectional (two-way)
re-synchronization: model domains X and Y peers
motivating example: database interoperation

» Asymmetric: Only one non-trivial restoration operator
returns X (global) state change after Y (local) change:
motivating example: database view updates



Symmetric lens

Consistency data (synchronization) for states X in X and Y in Y
denoted by R: X < Y.

Suppose X synchronized with Y by R: X « Y,
then given an update from state X (with target X', say)

a symmetric lens delivers an update to Y (target Y’, say)
and, re-synchronization R : X' ++ Y’.
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Symmetric lens

Consistency data (synchronization) for states X in X and Y in Y
is denoted by R: X < Y.

Suppose X synchronized with Y by R: X < Y,
then given an update from state X (with target X', say)

a symmetric lens delivers an update to Y (target Y’, say)
and, re-synchronization R’ : X’ ++ Y’.

X<—F vy
al oot

- %
X' <— —sY!

10



Symmetric lens

Symmetrically, suppose R : X <+ Y, then
given an update from Y (with target Y’)

symmetric lens delivers update of X in X and,
re-synchronization R"” : X' ++ Y'.

X<~FR oy
b
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X'<—-->Y
R//

» Considered by Hoffman, Pierce, Wagner for X,Y... sets

» More recently Diskin et al. for X,Y... categories
» Also studied by J & R
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Symmetric lens

Formally, taking categories X, Y for model domains:

A symmetric lens L = (dx, dy,f,b) from X to Y
has a span of sets

Ox : Xg=—Rxy —Yq : oy

where elements of Rxy — “corrs” — are denoted R : X <+ Y and
forward and backward propagations f, b denoted

X<—R vy X<—R vy

of o2

XI<77>YI XI<77>YI
R/ RN

where f(a, R) = (8, R) and b(v, R) = (6, R")
and both propagations respect identities and composition.



Symmetric Lens: Example

Suppose X =Y = set? are model domains (we'll interpret below)

Xo Y
RX1=Yy —

X 7 Y

X1 “ Yl

Say X, Y objects of set? have synchronization R just when
X1 = d1X = doy = YO:
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Symmetric Lens: Example

Suppose (fy, 1) : X —= X’ an arrow in X, as in

Xo . Y
0 -
RX=Yo ~
X _ - Y
XI
/O/
=z~ -
X1 X Y1
X
A
X

Forward propagation requires a new arrow Y —= Y’ say,
and a new synchronization R’
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Symmetric Lens: Example

Construct the new arrow (f1,g) : Y — Y’ using the pushout,
and the new synchronization is R’ : X{ = do Y":

o f - Yo f
0 RX1=Yy — _1\
X _ - Y
X! X!
20— _="
z - T -7
X1 X' N v’
\ ~ ~R'X{=dpY’ g\;
1 _ -
| < !
X1 Y1 +x X1

Back propagation uses composition.
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Symmetric Lens: Example

For example: a left hand db state assigns name to address;
a right hand state assigns address to city;
so a synchronization is an address matching

name/address update propagates to a right hand update,
also creating a new city set: the pushout

name address
\fb _ - 7 \fl
R -~ +
X A Y ,
name’ - address
—~ _ 7
=z~ -
address X! - Tity v/

\ _ - R/
fi - g\\\

address’ City + address address’



Symmetric Lens: Composition and equivalence

» Symmetric lenses compose by composing propagations;
pullbacks of §'s provide corrs for a composite

» However two symmetric lenses on the same model domains
may have the same propagation behaviour
i.e. bidirectional transformation implementation

» Should they be distinguished? Depends on preference, and
» J & R defined a congruence relation on lenses X —Y
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Symmetric Lens: Equivalence

Let L, L' have corrs Rxy and Ry .
Say L = [ if there is relation o between corr sets so that:
» o compatible with the §'s
» RoR' implies Y updates of f(«, R) and f'(«, R") equal and
new corrs are o related (similarly for b)
» o total in both directions

Theorem

Equivalence classes of symmetric lenses are arrows of a category,
denoted Slens.
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Symmetric lenses and Mealy morphisms

Bob Paré observed that
f,b are precisely (cat) Mealy morphisms:
f:X—Yandb:Y—X

Bryce Clarke uses this for two important points:

First, composing via span (of sets) composition,
Mealy morphisms are 1-cells of a bicategory
Meal where a 2-cell is:

A map of Mealy morphisms i.e. a span morphism 7:

compatible with the operations
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Symmetric lenses and Mealy morphisms

Second, a Mealy morphism f : X—Y has image category R with:
objects: R
morphisms: pairs (a, R) : R— R’ where f(a,R) = (8, R’)

And factors (in Meal) as X — R —Y using f, moreover

Proposition
Given a Mealy morphism f : X—=Y there is a span of functors
5x R \
/
X Y

where dx is a discrete opfibration and f is a functor
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Symmetric lenses and Mealy morphisms

Symmetric lens X —Y can be represented as
a pair of Mealy morphisms:
J’_
\?
Y

R

Ox
x/

I

» will return to this, but for now...

» giving 2-cells by corresponding maps of Mealy morphisms
defines a (hom) category SymLens(X,Y)
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Asymmetric lens: Background

Arose as strategy for studying the database View Update Problem,
indeed long before symmetric lenses.

» Defined equationally by B. Pierce et al for sets X,Y

» S. Hegner had axiomatics for orders X, Y, a special case of...

> Lenses for X,Y categories (defined by J & R) and:
» defined lens in category C with finite products
» characterized lens as algebra for a monad on C/Y
> generalized to a categorical version (c-lenses).
» Diskin et al. defined (related) categorical version
that we will call asymmetric lenses

Set based lenses also arose (1980's) in considering
“store shapes” (F. Oles thesis)
where there is a similar update problem
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Asymmetric lens: Motivation

Database views consider a Get process G : X —Y
from global database states X to view states Y.

For global state X synched with view state Y = GX:
when can update to Y, e.g. formal insertion (8

lift through G to global update «, and

compatibly — meaning 8 = G(«a)?

This is (an instance of) the View Update Problem.

X—C vy

I
| B

A
X' &=y
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Asymmetric lens

Given an update from state Y = GX in Y (with target Y’)
the asymmetric lens delivers (by a “Putback” process P)
an update to X in X (with target X', say) along with
compatible re-synchronization data, that is Y/ = GX'.

X—S% vy
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Asymmetric lens

Given an update from state Y = GX in Y (with target Y’)
the asymmetric lens delivers (by a “putback” process P)
an update to X in X (with target X', say) along with
compatible re-synchronization data, namely Y’ = GX’.
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s
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Asymmetric lens

Given an update from state Y = GX in Y (with target Y’)
the asymmetric lens delivers (by a “putback” process P)
an update to X in X (with target X', say) along with
compatible re-synchronization data, namely Y’ = GX’.

G

X——Y
al P

Y <~ iﬁ
X' Y’
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Asymmetric lens

Given an update from state Y = GX in Y (with target Y’)
the asymmetric lens delivers (by a “putback” process P)
an update to X in X (with target X', say) along with
compatible re-synchronization data, namely Y’ = GX’.

X—S& vy

P
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Asymmetric lens
The formal axioms (Diskin et al) are:

An asymmetric lens is L = (G, P)
where G : X—=Y is the “Get” functor and

P is the “Put(back)” function and the data G, P satisfy:

(i) PutGet: GP(X,B) =7
(II) Putld: P(X, 1(;)() =1x
(iii) PutPut:

/

/e P s a=P(X.5)

N
PXBB) | =X+ — — >Y'
|
’ ’ r_ Y
P i/ﬂ o' = P(X',B")

X// [ _G_ > Y//

X—S sy
|
\

or

P(X,8'8: GX—=Y'—=Y") = P(X', 8" : GX'—=Y")P(X, B : GX—=Y")
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Asymmetric lens: examples

» Given a split op-fibration G : X —Y:

Just define P(X, ) to be the op-Cartesian arrow.

» For example, dp : set? —=set or dj : set? —=set

» Or indeed for C, D small categories a functor
V : C—=D is fully-faithful
iff (R L-W) V* : set®? —=set® is an opfibration
» Similar op-fibration characterization holds for
small, lex C, D and lex functors
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Asymmetric lens: examples

Split op-fibs called “c-lenses” by J & R and studied earlier
(in the context of View Update Problem)

» defined by equations analogous to asymmetric set-lens
» algebras for a monad on cat/Y

> the Put satisfies a “least change” property

Indeed, any asymmetric lens is an algebra for a related
semi-monad on cat/Y
(Clarke recently showed them to be algebras for a monad)

However: not every asymmetric lens is an op-fibration -
there are small counterexamples
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Asymmetric lens: composition and equivalence

» As for symmetric lenses, there is an obvious composition
of asymmetric lenses and category called AlLens

» A span of asymmetrics

determines a symmetric lens X —Y via:

corrs are objects of S, d's from Gets

f is the left leg Put Py, then the right leg Get G,
b is the right leg Put, then the left leg Get
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Asymmetric lens: composition and equivalence

» Conversely, symmetric lens X —Y determines
a span of asymmetrics with:
head of span (the category) has objects the corrs
arrows are formal squares

X<—R vy

2 2

X' y!
R/

Gets by projection; Puts use f, b

> J & R sought equivalence of the category SLens of symmetrics
and a category of spans of asymmetrics



Asymmetric lens: composition and equivalence

» Define span equivalence (again motivated by behaviour):

» Equivalence is generated by functors ¢ as in

(GLP) — S ~_(Gr.Pr)
x%lxv

with @ surj-on-obj and semi-monad homom (both sides)

Theorem
Equivalence classes of spans define a category SpAlens;
SpALens is isomorphic to SLens.
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Asymmetric lens and cofunctors

» Ahman and Uustalu observed that for a lens (G,P):
Object function of Gy of G together with P determines what
Aguiar called a cofunctor
from Y to X (Note direction!!)

» Cofunctors compose via their functions (axioms are ok)

» Cofunctors generalize both boo functors and discrete
opfibrations.
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Asymmetric lens and cofunctors

» For cofunctor (Go, P) : Y —= X let A the category with:

objects Xg
morphisms (X, 8) : X — P(X, 3) for 5 : Go(X) — Y’

» A cofunctor (Gp, P) : Y — X defines a span of functors:

X%A\¢Y

with ¢ identity on objects and ¢ a discrete opfibration
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Asymmetric lens and cofunctors

Clarke then points out:

» An asymmetric lens (G, P) : X—Y defines a
commutative diagram of functors:

N
% X
X c Y

with ¢ identity on objects and ¢ a discrete opfibration

» Compose asymmetric lenses (seen thus) by composing the
functor/cofunctor parts (giving ALens again)

» but more important from this perspective...
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Spans of asymmetric lens

» For category Y, the category Lens(Y) has:
objects are asymmetric lenses to Y;
arrows (using the representation above) are comm diagrams:

A A

v
N/

» Lens(Y) has products
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Spans of asymmetric lens

» There is a forgetful functor Lens(Y) —cat
sending an object to domain of G.

» The head of the pullback diagram

SpnLens(X,Y)

N

3/ Lens(Y)
\ /

cat

Lens(X

defines the hom categories for a bicategory SpnlLens

» morphisms of SpnLens(X,Y) (2-cells of SpnLens) are
span morphisms of Gets compatible with cofunctor parts
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Symmetric lens adjunctions

» There is forgetful functor Meal(X,Y) — Span(cat)(X,Y)

from the span representation above

» Further, there is Meal(Y, X) — Span(cat)(X,Y)
by first reversing the span representation

» The head of the pullback diagram

SymLens(X,Y)

™~

Meal(Y, X)

e

Span(cat)(X,Y)

Meal(X,

/N

defines the hom categories for a bicategory SymLens
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Symmetric lens adjunctions

Theorem (Clarke, ACT20 paper)
There is an adjoint triple

1 :
SymLens(X,Y) <——m—— SpnLens(X,Y
y X, Y) = " pnLens(X,Y)

with R reflective and (hence) L coreflective

Using functor/cofunctor representations, define M on objects by

- A
N b G'¢
— X/ \Y
T

At 7.7
N Se o\ Sh
X Y
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Symmetric lens adjunctions

» The definition of R is related to the J & R construction
» The definition of L is a bit more complicated

> Using that everything is identity on objects and that the

constructions are compatible with composition, he obtains:

Corollary (Clarke)

There are identity on objects pseudofunctors

Lt
SymlLens <—wm—— Spnlens
R

with L and R locally fully faithful and locally adjoint to M.
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Summary (so far)

» Lenses (either flavour) model BX well

» Symmetric lenses and asymmetrics closely related via spans

v

J & R: Isomorphism of categories from (classes of ) symmetric
lenses to spans of asymmetrics

» Using Mealy morphism and functor/cofunctor representations

v

Clarke describes the bicategories and adjoint triple above
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Multiary lenses

» Multidirectional transformations modelled as n-ary lenses
proposed by Diskin and Konig
> first generalize (binary) symmetric lenses — more propagations
» also generalize spans of asymmetric lenses — to wide spans

» J & R found equivalences similar to the binary case

» Subject to some mild conditions the resulting
multiary lenses compose via wide spans

> A multicategory of multiary lenses arises
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Lenses and learners

Fong and Johnson (BX 2019) relate supervised learning algorithms
to (set-based) symmetric lenses
» Goal: approximate f : A—= B by (a, f(a)) pairs (training
data) parameterized by P, then allow updates
» Learneris (P,/,U,,R) : A— B with
I : P x A— B (implementation),
U: B x P x A— P (update),
R: B x P x A— A (request)
(for details see their paper)
P> They find faithful, symmetric monoidal functor from a

category with learner arrows to a category with symmetric
lens arrows

44



Conclusion

v

Lenses implement BX with categorical precision

Categories, bicategories (even double cats) clarify structure

Some urls:
www.mta.ca/“rrosebru

www.comp.mq.edu.au/ "mike/

vVvyYVvyVvVvyy

Bryce is on Twitter...
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