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Main character: The category KH of compact Hausdorff spaces and
continuous maps.

KH is extremely rich from a categorical and duality theoretic
standpoint:

» Several (useful) dualities for KH have been discovered starting in
the 1940s. Perhaps the best known is Gelfand & Naimark duality

between KXH and the category of commutative unital C*-algebras.

» The category KX itself has an algebraic nature. In fact, XH is
monadic over 8ET (Linton '66, Manes '67).

» The fact that KXH is categorically very well-behaved allows for an
abstract /axiomatic characterisation of this category, in the spirit
of Lawvere’s ETCS (1964).
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Plan for the talk:

1. KH®P: Duality theory of compact Hausdorfl spaces
2. XH: Pretopos structure and a characterisation result

3. XH< and its dual: Some results and questions
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KHP as an algebraic category



Dualities for KXH can be seen as extensions of the celebrated Stone
duality for Boolean algebras. Can we generalise Stone duality by
removing zero-dimensionality?

homgp 4 (—,{0,1})

T

BA STONE®P

BA = Boolean algebras
STONE = Zero-dimensional compact Hausdorff spaces
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Classical solutions to this problem include:
» Kakutani (1941): M-spaces
» Yosida (1941): (some) abelian ¢-groups

» Gelfand-Naimark (1943): commutative unital C*-algebras

Each of these classes contains some non-algebraic ingredient, such as
the norm in C*-algebras.

Theorem (Duskin, Negrepontis (1969, 1971))

The functor XKHP — SET, X — C(X,[0,1]) is monadic. Hence, KHP
s equivalent to a variety of algebras.

This variety cannot be finitary, but operation symbols of at most
countably infinite arity suffice to describe it.
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In 1982, Isbell showed that finitely many finitary operations, along
with a single operation of arity w, are enough to describe a variety dual
to KH. The infinitary operation is:

BRI

5(f1)f27f37...) = Z
=1

The problem of providing an explicit, and preferably tractable,
axiomatisation of a variety dual to KH remained open.

In 2017, in a joint work with V. Marra, we gave a finite axiomatisation
of such a variety, based on the theory of MV-algebras.

V. Marra and L. R., Stone duality above dimension zero. Axiomatising the algebraic
theory of C(X), Advances in Mathematics, Vol. 307, 2017, pp. 253-287.

%)



The standard MV-algebra is the unit interval [0, 1] equipped with the
operation @, —,0 where

r@y=min(l,x+y) and -z:=1-uz.

The variety of MV-algebras can be defined as MV := HSP(|0, 1])
(assuming Chang’s Completeness theorem).

Why studying the variety MV in the first place?

MV-algebras provide an algebraic semantics for
Lukasiewicz infinite-valued propositional logic
Lo (1920). Thus, they stand to Lukasiewicz
logic as Boolean algebras stand to classical
propositional logic.
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There is a functor homgge(—, [0, 1]): KHP — MV sending X to the set
of continuous functions C(X, [0, 1]) equipped with pointwise operations.

Also, there is a functor homyy(—, [0, 1]): MV — KHP sending A to
the set homyy (A4, [0, 1]) with the subspace topology induced by the
product topology on [0, 1]4.

Theorem (Cignoli, Dubuc & Mundici, 2004)

homyy(—, [0, 1]) 4 homgege(—, [0, 1]) : KHP — MV. Further, any
compact Hausdorff space is fixed by this adjunction.

So, XXH is dual to the full subcategory of MV on those algebras that
are fixed by this adjunction. Can we axiomatise this category?
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Let us add Isbell’s operation § to the language of MV-algebras.

B.g., for all @ = (1,22,...) € [0,1]%, §(7) = 32°, 4.

More generally, for any X € KX, the operation 6 on C(X, [0, 1]) can be
interpreted pointwise.

Theorem (Marra & R, 2017)

There is a variety of algebras A, defined by finitely many (equational)
azioms in the language {0, ®,—,0}, that is dually equivalent to KIH.

» A is isomorphic to the full subcategory of MV defined by the fixed
objects for the adjunction KHP = MV.

» This yields an extension of Stone duality from STONE to KH
while preserving the algebraic nature of the dual category.

Next, we sketch an application of the duality between A and KH.
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Recall that, for a compact Hausdorff space X, the Stone-Weierstrass
theorem provides sufficient conditions for a subset G C (X, R) to be
dense in the topology induced by the uniform metric

o(f,9) = Sgg{lf(fﬂ) —g(@)[} Vf,g9 € C(X,R).

On the other hand, we can associate with A an equational consequence
relation FA in a standard way. It turns out that the Stone-Weierstrass
theorem is equivalent to the Beth definability property for Fa:

For any set of variables T U {y} and set of equations (7, y), if
(@ y)UE(E, z/y) Fay ~ 2
for all variables z, then there exists a term ¢(Z) such that

S(Z,y) Ea y =~ t.



KXH and its pretopos structure



As we already mentioned, the category XH has an algebraic nature.

In his PhD thesis (1967), Manes showed that K7 is equivalent to the
category of Eilenberg-Moore algebras for the ultrafilter monad

B: 8ET — SET. A compact Hausdorff space X is regarded as a
(-algebra by defining the structure map

Bl1X| —|X], U~ limU.
In particular, K3 is an effective category, i.e. any (internal)

equivalence relation in KX is the kernel pair of its coequaliser.

Effectiveness is a property typical of “algebraic categories”, such as
varieties of algebras, but not of categories of spaces.

E.g., STONE is not an effective category.



Another important aspect of KXH is its structure of coherent category.

Recall that a category C is regular if it has finite limits and
pullback-stable image factorisations.

; S
Sub: CP? - 8L, (X =>Y) — (SubX T SubY)
~e_y
3

If, in addition, each Sub X has finite suprema and these are preserved
by the pullback functors f*, then € is said to be coherent.

Lemma
If C is coherent, then each Sub X is a distributive lattice. Hence, we
get a functor Sub: C°P — DL.



» S8ET is coherent.

» Any variety of algebras (regarded as a category) is regular but, in
general, not coherent.

» KH (and also STONE) is coherent:

* *
/{\ [,3\ j*-f"
A A
3‘} 31/ 3f—'f(")

S SO KH
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A pretopos is a positive and effective coherent category.
» SET and FIN are pretoposes.

» KH is a pretopos; STONE is not a pretopos.
» KH/X is a pretopos for every X € KKH.

It turns out that KXH can be characterised (up to equivalence) within
the class of pretoposes.

How can we separate KH from SET, FIN, and KH/X?



Separating KH and KH/X:

Let X be any category admitting a terminal object 1. For any object
X of X, a point of X is a morphism 1 — X in X.

Le ™ TN

g’

The category X is well-pointed if, for all f,g € homy(X,Y),

f#9g — dp:1 - X st. fopF£gop.

» KIJ{ is well-pointed.
» If | X| > 2, then KH /X is not well-pointed.



Separating KXH and FIN is also easy. Just observe that KH contains
all set-indexed copowers of 1, while FIN does not.

(For any set S, the S-fold copower of 1 in KXH can be identified with
the Stone-Cech compactification 3S of the discrete space S.)

To separate XH and SET, we introduce a concept of filtrality for
coherent categories. This is a condition on the lattices of subobjects.

We start by recalling a useful fact (cf. the classical characterisation of
Stone locales).



Lemma
Let X be a Ty-space. The following statements are equivalent:

1. X is a Stone space.
2. K(X) = F(B) for some Boolean algebra B.

JC(X) = lattice of closed subsets of X (ordered by inclusion)
F(B) = lattice of non-empty filters on B (ordered by reverse inclusion)

Moreover, every compact Hausdorff space is covered by a Stone space:
VX € KH Y € STONE and a continuous surjection Y — X.

(E.g., as free compact Hausdorff spaces are Stone: §|X| — X.)
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For a bounded distributive lattice L, let C(L) be the Boolean center of
L, and F(C(L)) the filter completion of C(L). There is a monotone map

p: L - F(C(L)), x—TzNC(L).
L is a filtral lattice if ¢ is an isomorphism.

An object X of a coherent category X is filtral if Sub X is a filtral
lattice. X is a filtral category if every object of X is covered by a filtral
one; i.e., VX there is a regular epi Y — X with Y filtral.

» The filtral objects in SET are precisely the finite sets. Thus, SET
is not filtral—but FIN is.

» The filtral objects in KH are precisely the Stone spaces. Hence
KK is filtral, and so is STONE.



Theorem (Marra & R)

Up to equivalence, KH is the unique non-trivial well-pointed pretopos
that is filtral and admits all set-indexed copowers of its terminal object.

For more details, see:

V. Marra and L. R., A characterisation of the category of compact Hausdorff spaces,
Theory and Applications of Categories, Vol. 35, No. 51, 2020, pp. 1871-1906.

The conditions in the previous result are independent from each other:

well-pointed | effective | filtral | copowers of 1
KXH/{0,1} X v v v
STONE v X v v
SET v v X v
FIN v v v X




Compact ordered spaces



A compact ordered space is a pair (X, <) where
» X is a compact space;
» < C X x X is a partial order that is closed in X x X.

E.g., [0,1] with the usual Euclidean topology and linear order is a
compact ordered space.

Note that every compact ordered space (X, <) is Hausdorfl because its
diagonal < N > is closed.

These spaces (and, more generally, ordered topological spaces) have
been extensively studied in:
L. Nachbin, Topology and order, Van Nostrand Mathematical Studies, No. 4, 1965.
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Let KJ< be the category of compact ordered spaces and continuous
monotone maps, and POS the category of posets and monotone maps.

The forgetful functor XH< — POS is monadic (Flagg, 1997).

(Open) Question: Can we characterise the category KXH<, in the same
way we characterised KH?
(Note that XH< is not balanced, hence not a pretopos.)

On the positive side:

Theorem (Abbadini, 2019)

The functor fKI}COSP — 8&T, X — homgyg_ (X,[0,1]) is monadic. Hence,
fKiH%p is equivalent to a variety of algebras.

A direct proof of the previous result was provided in:

M. Abbadini and L. R., On the aziomatisability of the dual of compact ordered
spaces, Applied Categorical Structures, Vol. 28, 2020, pp. 921-934.



Thank you for your attention!
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