

Compact Hausdorff spaces and their algebraic dual

Luca Reggio

University of Oxford

Ottawa Categorical Logic Seminar, 18th March 2021

Main character: The category \mathcal{KH} of compact Hausdorff spaces and continuous maps.

\mathcal{KH} is extremely rich from a **categorical** and **duality theoretic** standpoint:

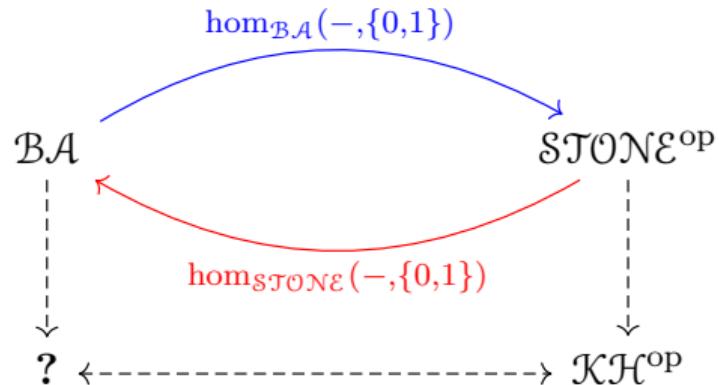
- ▶ Several (useful) dualities for \mathcal{KH} have been discovered starting in the 1940s. Perhaps the best known is **Gelfand & Naimark duality** between \mathcal{KH} and the category of commutative unital C^* -algebras.
- ▶ The category \mathcal{KH} itself has an algebraic nature. In fact, \mathcal{KH} is **monadic** over \mathcal{SET} (Linton '66, Manes '67).
- ▶ The fact that \mathcal{KH} is categorically very well-behaved allows for an **abstract/axiomatic** characterisation of this category, in the spirit of Lawvere's ETCS (1964).

Plan for the talk:

1. \mathcal{KH}^{op} : Duality theory of compact Hausdorff spaces
2. \mathcal{KH} : Pretopos structure and a characterisation result
3. \mathcal{KH}_{\leq} and its dual: Some results and questions

\mathcal{KH}^{op} as an algebraic category

Dualities for \mathcal{KH} can be seen as extensions of the celebrated **Stone duality** for Boolean algebras. Can we generalise Stone duality by removing zero-dimensionality?



\mathcal{BA} = Boolean algebras

\mathcal{STONE} = Zero-dimensional compact Hausdorff spaces

Classical solutions to this problem include:

- ▶ Kakutani (1941): M-spaces
- ▶ Yosida (1941): (some) abelian ℓ -groups
- ▶ Gelfand-Naimark (1943): commutative unital C^* -algebras

Each of these classes contains some **non-algebraic ingredient**, such as the norm in C^* -algebras.

Theorem (Duskin, Negrepontis (1969, 1971))

The functor $\mathcal{KH}^{\text{op}} \rightarrow \mathcal{SET}$, $X \mapsto \mathcal{C}(X, [0, 1])$ is monadic. Hence, \mathcal{KH}^{op} is equivalent to a variety of algebras.

This variety cannot be finitary, but operation symbols of at most **countably infinite arity** suffice to describe it.

In 1982, Isbell showed that finitely many finitary operations, along with a **single operation of arity ω** , are enough to describe a variety dual to \mathcal{KH} . The infinitary operation is:

$$\delta(f_1, f_2, f_3, \dots) := \sum_{i=1}^{\infty} \frac{f_i}{2^i}.$$

The problem of providing an explicit, and preferably **tractable**, axiomatisation of a variety dual to \mathcal{KH} remained open.

In 2017, in a joint work with V. Marra, we gave a **finite** axiomatisation of such a variety, based on the theory of **MV-algebras**.

V. Marra and L. R., *Stone duality above dimension zero. Axiomatising the algebraic theory of $\mathcal{C}(X)$* , Advances in Mathematics, Vol. 307, 2017, pp. 253–287.

The **standard MV-algebra** is the unit interval $[0, 1]$ equipped with the operation $\oplus, \neg, 0$ where

$$x \oplus y := \min(1, x + y) \quad \text{and} \quad \neg x := 1 - x.$$

The **variety of MV-algebras** can be defined as $\mathcal{MV} := \mathbb{HSP}([0, 1])$ (assuming Chang's Completeness theorem).

Why studying the variety \mathcal{MV} in the first place?

MV-algebras provide an algebraic semantics for **Lukasiewicz infinite-valued propositional logic** \mathcal{L}_∞ (1920). Thus, they stand to Łukasiewicz logic as Boolean algebras stand to classical propositional logic.

There is a functor $\text{hom}_{\mathcal{KH}}(-, [0, 1]): \mathcal{KH}^{\text{op}} \rightarrow \mathcal{MV}$ sending X to the set of continuous functions $\mathcal{C}(X, [0, 1])$ equipped with **pointwise operations**.

Also, there is a functor $\text{hom}_{\mathcal{MV}}(-, [0, 1]): \mathcal{MV} \rightarrow \mathcal{KH}^{\text{op}}$ sending A to the set $\text{hom}_{\mathcal{MV}}(A, [0, 1])$ with the subspace topology induced by the **product topology** on $[0, 1]^A$.

Theorem (Cignoli, Dubuc & Mundici, 2004)

$\text{hom}_{\mathcal{MV}}(-, [0, 1]) \dashv \text{hom}_{\mathcal{KH}}(-, [0, 1]): \mathcal{KH}^{\text{op}} \rightarrow \mathcal{MV}$. *Further, any compact Hausdorff space is fixed by this adjunction.*

So, \mathcal{KH} is dual to the full subcategory of \mathcal{MV} on those algebras that are fixed by this adjunction. Can we **axiomatise** this category?

Let us add Isbell's operation δ to the language of MV-algebras.

E.g., for all $\vec{x} = (x_1, x_2, \dots) \in [0, 1]^\omega$, $\delta(\vec{x}) := \sum_{i=1}^{\infty} \frac{x_i}{2^i}$.

More generally, for any $X \in \mathcal{KH}$, the operation δ on $\mathcal{C}(X, [0, 1])$ can be interpreted **pointwise**.

Theorem (Marra & R, 2017)

There is a variety of algebras Δ , defined by finitely many (equational) axioms in the language $\{\delta, \oplus, \neg, 0\}$, that is dually equivalent to \mathcal{KH} .

- ▶ Δ is isomorphic to the full subcategory of \mathcal{MV} defined by the fixed objects for the adjunction $\mathcal{KH}^{\text{op}} \leftrightarrows \mathcal{MV}$.
- ▶ This yields an extension of Stone duality from STONE to \mathcal{KH} while preserving the **algebraic nature** of the dual category.

Next, we sketch an application of the duality between Δ and \mathcal{KH} .

Recall that, for a compact Hausdorff space X , the Stone-Weierstrass theorem provides sufficient conditions for a subset $G \subseteq \mathcal{C}(X, \mathbb{R})$ to be dense in the topology induced by the uniform metric

$$\varrho(f, g) := \sup_{x \in X} \{|f(x) - g(x)|\} \quad \forall f, g \in \mathcal{C}(X, \mathbb{R}).$$

On the other hand, we can associate with Δ an equational consequence relation \models_{Δ} in a standard way. It turns out that the Stone-Weierstrass theorem is equivalent to the Beth definability property for \models_{Δ} :

For any set of variables $\bar{x} \cup \{y\}$ and set of equations $\Sigma(\bar{x}, y)$, if

$$\Sigma(\bar{x}, y) \cup \Sigma(\bar{x}, z/y) \models_{\Delta} y \approx z$$

for all variables z , then there exists a term $t(\bar{x})$ such that

$$\Sigma(\bar{x}, y) \models_{\Delta} y \approx t.$$

\mathcal{KH} and its pretopos structure

As we already mentioned, the category \mathcal{KH} has an algebraic nature. In his PhD thesis (1967), Manes showed that \mathcal{KH} is equivalent to the category of Eilenberg-Moore algebras for the **ultrafilter monad** $\beta: \mathcal{SET} \rightarrow \mathcal{SET}$. A compact Hausdorff space X is regarded as a β -algebra by defining the structure map

$$\beta|X| \rightarrow |X|, \quad \mathcal{U} \mapsto \lim \mathcal{U}.$$

In particular, \mathcal{KH} is an **effective** category, i.e. any (internal) equivalence relation in \mathcal{KH} is the kernel pair of its coequaliser.

Effectiveness is a property typical of “algebraic categories”, such as varieties of algebras, but not of categories of spaces.

E.g., \mathcal{STONE} is *not* an effective category.

Another important aspect of \mathcal{KH} is its structure of **coherent** category.

Recall that a category \mathcal{C} is **regular** if it has finite limits and pullback-stable image factorisations.

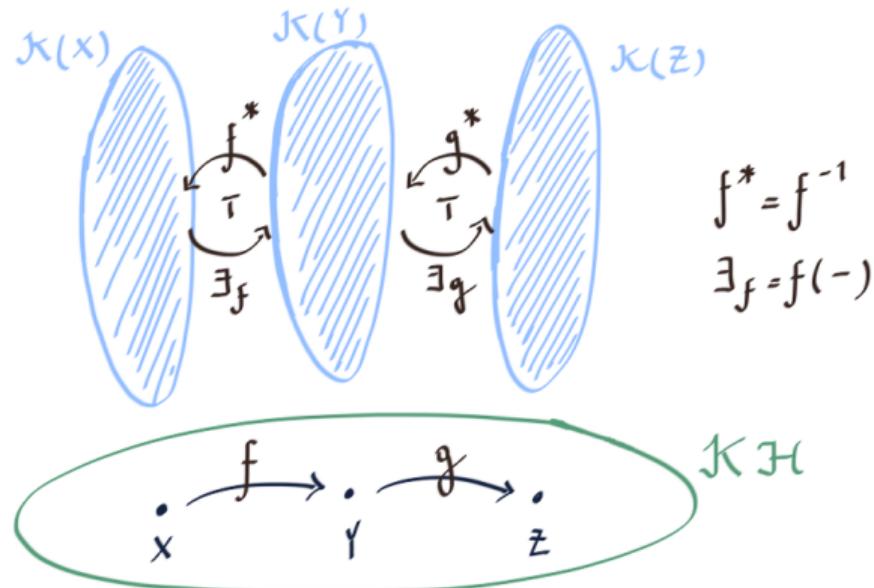
$$\text{Sub: } \mathcal{C}^{\text{op}} \rightarrow \mathcal{SL}, \quad (X \xrightarrow{f} Y) \mapsto (\text{Sub } X \begin{array}{c} \xleftarrow{f^*} \\ \perp \\ \dashrightarrow \\ \exists_f \end{array} \text{Sub } Y)$$

If, in addition, each $\text{Sub } X$ has finite suprema and these are preserved by the pullback functors f^* , then \mathcal{C} is said to be **coherent**.

Lemma

*If \mathcal{C} is coherent, then each $\text{Sub } X$ is a **distributive** lattice. Hence, we get a functor $\text{Sub: } \mathcal{C}^{\text{op}} \rightarrow \mathcal{DL}$.*

- ▶ \mathcal{SET} is coherent.
- ▶ Any variety of algebras (regarded as a category) is regular but, in general, not coherent.
- ▶ \mathcal{KH} (and also \mathcal{STONE}) is coherent:



A **pretopos** is a positive and effective coherent category.

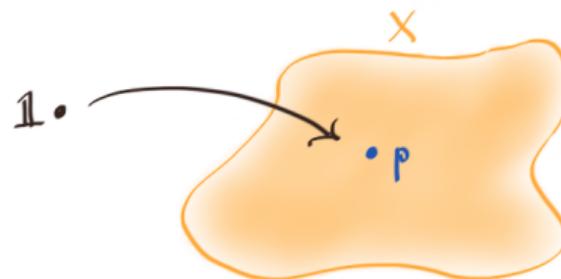
- ▶ \mathcal{SET} and \mathcal{FIN} are pretoposes.
- ▶ \mathcal{KH} is a pretopos; \mathcal{STONE} is not a pretopos.
- ▶ \mathcal{KH}/X is a pretopos for every $X \in \mathcal{KH}$.

It turns out that \mathcal{KH} can be characterised (up to equivalence) within the class of pretoposes.

How can we **separate** \mathcal{KH} from \mathcal{SET} , \mathcal{FIN} , and \mathcal{KH}/X ?

Separating \mathcal{KH} and \mathcal{KH}/X :

Let \mathcal{X} be any category admitting a terminal object $\mathbf{1}$. For any object X of \mathcal{X} , a **point** of X is a morphism $\mathbf{1} \rightarrow X$ in \mathcal{X} .



The category \mathcal{X} is **well-pointed** if, for all $f, g \in \text{hom}_{\mathcal{X}}(X, Y)$,

$$f \neq g \implies \exists p: \mathbf{1} \rightarrow X \text{ s.t. } f \circ p \neq g \circ p.$$

- ▶ \mathcal{KH} is well-pointed.
- ▶ If $|X| \geq 2$, then \mathcal{KH}/X is not well-pointed.

Separating \mathcal{KH} and \mathcal{FN} is also easy. Just observe that \mathcal{KH} contains all **set-indexed copowers of $\mathbf{1}$** , while \mathcal{FN} does not.

(For any set S , the S -fold copower of $\mathbf{1}$ in \mathcal{KH} can be identified with the Stone-Čech compactification βS of the discrete space S .)

To separate \mathcal{KH} and \mathcal{SET} , we introduce a concept of **filtrality** for coherent categories. This is a condition on the lattices of subobjects.

We start by recalling a useful fact (cf. the classical characterisation of Stone locales).

Lemma

Let X be a T_1 -space. The following statements are equivalent:

1. X is a Stone space.
2. $\mathcal{K}(X) \cong \mathcal{F}(B)$ for some Boolean algebra B .

$\mathcal{K}(X)$ = lattice of closed subsets of X (ordered by inclusion)

$\mathcal{F}(B)$ = lattice of non-empty filters on B (ordered by reverse inclusion)

Moreover, every compact Hausdorff space is covered by a Stone space:

$$\forall X \in \mathcal{KH} \ \exists Y \in \text{STONE} \text{ and a continuous surjection } Y \twoheadrightarrow X.$$

(E.g., as free compact Hausdorff spaces are Stone: $\beta|X| \twoheadrightarrow X$.)

For a bounded distributive lattice L , let $\mathcal{C}(L)$ be the Boolean center of L , and $\mathcal{F}(\mathcal{C}(L))$ the filter completion of $\mathcal{C}(L)$. There is a monotone map

$$\varphi: L \rightarrow \mathcal{F}(\mathcal{C}(L)), \quad x \mapsto \uparrow x \cap \mathcal{C}(L).$$

L is a **filtral lattice** if φ is an isomorphism.

An object X of a coherent category \mathcal{X} is **filtral** if $\text{Sub } X$ is a filtral lattice. \mathcal{X} is a **filtral category** if every object of \mathcal{X} is covered by a filtral one; i.e., $\forall X$ there is a regular epi $Y \twoheadrightarrow X$ with Y filtral.

- ▶ The filtral objects in \mathcal{SET} are precisely the **finite sets**. Thus, \mathcal{SET} is not filtral—but \mathcal{FIN} is.
- ▶ The filtral objects in \mathcal{KH} are precisely the **Stone spaces**. Hence \mathcal{KH} is filtral, and so is \mathcal{STONE} .

Theorem (Marra & R)

Up to equivalence, \mathcal{KH} is the unique non-trivial well-pointed pretopos that is filtral and admits all set-indexed copowers of its terminal object.

For more details, see:

V. Marra and L. R., *A characterisation of the category of compact Hausdorff spaces*, Theory and Applications of Categories, Vol. 35, No. 51, 2020, pp. 1871–1906.

The conditions in the previous result are **independent** from each other:

	well-pointed	effective	filtral	copowers of 1
$\mathcal{KH}/\{0, 1\}$	✗	✓	✓	✓
\mathbf{STONE}	✓	✗	✓	✓
\mathcal{SET}	✓	✓	✗	✓
\mathcal{FIN}	✓	✓	✓	✗

Compact ordered spaces

A **compact ordered space** is a pair (X, \leq) where

- ▶ X is a compact space;
- ▶ $\leq \subseteq X \times X$ is a partial order that is closed in $X \times X$.

E.g., $[0, 1]$ with the usual Euclidean topology and linear order is a compact ordered space.

Note that every compact ordered space (X, \leq) is **Hausdorff** because its diagonal $\leq \cap \geq$ is closed.

These spaces (and, more generally, **ordered topological spaces**) have been extensively studied in:

L. Nachbin, *Topology and order*, Van Nostrand Mathematical Studies, No. 4, 1965.

Let \mathcal{KH}_{\leq} be the category of compact ordered spaces and continuous monotone maps, and \mathcal{POS} the category of posets and monotone maps.

The forgetful functor $\mathcal{KH}_{\leq} \rightarrow \mathcal{POS}$ is **monadic** (Flagg, 1997).

(Open) Question: Can we characterise the category \mathcal{KH}_{\leq} , in the same way we characterised \mathcal{KH} ?

(Note that \mathcal{KH}_{\leq} is not balanced, hence *not* a pretopos.)

On the positive side:

Theorem (Abbadini, 2019)

*The functor $\mathcal{KH}_{\leq}^{\text{op}} \rightarrow \mathcal{SET}$, $X \mapsto \text{hom}_{\mathcal{KH}_{\leq}}(X, [0, 1])$ is **monadic**. Hence, $\mathcal{KH}_{\leq}^{\text{op}}$ is equivalent to a variety of algebras.*

A direct proof of the previous result was provided in:

M. Abbadini and L. R., *On the axiomatisability of the dual of compact ordered spaces*, Applied Categorical Structures, Vol. 28, 2020, pp. 921–934.

Thank you for your attention!